blob: 27e7db099d8a358b1ab92736ef70c78f6b646782 [file] [log] [blame]
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
Douglas Gregor94b1dd22008-10-24 04:54:22 +000015#include "SemaInherit.h"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000016#include "clang/Basic/Diagnostic.h"
Douglas Gregoreb8f3062008-11-12 17:17:38 +000017#include "clang/Lex/Preprocessor.h"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000018#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
Douglas Gregorf9eb9052008-11-19 21:05:33 +000020#include "clang/AST/ExprCXX.h"
Douglas Gregoreb8f3062008-11-12 17:17:38 +000021#include "clang/AST/TypeOrdering.h"
Douglas Gregorbf3af052008-11-13 20:12:29 +000022#include "llvm/ADT/SmallPtrSet.h"
Douglas Gregor3fc749d2008-12-23 00:26:44 +000023#include "llvm/ADT/STLExtras.h"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000024#include "llvm/Support/Compiler.h"
25#include <algorithm>
26
27namespace clang {
28
29/// GetConversionCategory - Retrieve the implicit conversion
30/// category corresponding to the given implicit conversion kind.
31ImplicitConversionCategory
32GetConversionCategory(ImplicitConversionKind Kind) {
33 static const ImplicitConversionCategory
34 Category[(int)ICK_Num_Conversion_Kinds] = {
35 ICC_Identity,
36 ICC_Lvalue_Transformation,
37 ICC_Lvalue_Transformation,
38 ICC_Lvalue_Transformation,
39 ICC_Qualification_Adjustment,
40 ICC_Promotion,
41 ICC_Promotion,
Douglas Gregor5cdf8212009-02-12 00:15:05 +000042 ICC_Promotion,
43 ICC_Conversion,
44 ICC_Conversion,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000045 ICC_Conversion,
46 ICC_Conversion,
47 ICC_Conversion,
48 ICC_Conversion,
49 ICC_Conversion,
Douglas Gregor15da57e2008-10-29 02:00:59 +000050 ICC_Conversion,
Douglas Gregorf9201e02009-02-11 23:02:49 +000051 ICC_Conversion,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000052 ICC_Conversion
53 };
54 return Category[(int)Kind];
55}
56
57/// GetConversionRank - Retrieve the implicit conversion rank
58/// corresponding to the given implicit conversion kind.
59ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
60 static const ImplicitConversionRank
61 Rank[(int)ICK_Num_Conversion_Kinds] = {
62 ICR_Exact_Match,
63 ICR_Exact_Match,
64 ICR_Exact_Match,
65 ICR_Exact_Match,
66 ICR_Exact_Match,
67 ICR_Promotion,
68 ICR_Promotion,
Douglas Gregor5cdf8212009-02-12 00:15:05 +000069 ICR_Promotion,
70 ICR_Conversion,
71 ICR_Conversion,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000072 ICR_Conversion,
73 ICR_Conversion,
74 ICR_Conversion,
75 ICR_Conversion,
76 ICR_Conversion,
Douglas Gregor15da57e2008-10-29 02:00:59 +000077 ICR_Conversion,
Douglas Gregorf9201e02009-02-11 23:02:49 +000078 ICR_Conversion,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000079 ICR_Conversion
80 };
81 return Rank[(int)Kind];
82}
83
84/// GetImplicitConversionName - Return the name of this kind of
85/// implicit conversion.
86const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
87 static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
88 "No conversion",
89 "Lvalue-to-rvalue",
90 "Array-to-pointer",
91 "Function-to-pointer",
92 "Qualification",
93 "Integral promotion",
94 "Floating point promotion",
Douglas Gregor5cdf8212009-02-12 00:15:05 +000095 "Complex promotion",
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000096 "Integral conversion",
97 "Floating conversion",
Douglas Gregor5cdf8212009-02-12 00:15:05 +000098 "Complex conversion",
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000099 "Floating-integral conversion",
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000100 "Complex-real conversion",
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000101 "Pointer conversion",
102 "Pointer-to-member conversion",
Douglas Gregor15da57e2008-10-29 02:00:59 +0000103 "Boolean conversion",
Douglas Gregorf9201e02009-02-11 23:02:49 +0000104 "Compatible-types conversion",
Douglas Gregor15da57e2008-10-29 02:00:59 +0000105 "Derived-to-base conversion"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000106 };
107 return Name[Kind];
108}
109
Douglas Gregor60d62c22008-10-31 16:23:19 +0000110/// StandardConversionSequence - Set the standard conversion
111/// sequence to the identity conversion.
112void StandardConversionSequence::setAsIdentityConversion() {
113 First = ICK_Identity;
114 Second = ICK_Identity;
115 Third = ICK_Identity;
116 Deprecated = false;
117 ReferenceBinding = false;
118 DirectBinding = false;
Douglas Gregor225c41e2008-11-03 19:09:14 +0000119 CopyConstructor = 0;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000120}
121
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000122/// getRank - Retrieve the rank of this standard conversion sequence
123/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
124/// implicit conversions.
125ImplicitConversionRank StandardConversionSequence::getRank() const {
126 ImplicitConversionRank Rank = ICR_Exact_Match;
127 if (GetConversionRank(First) > Rank)
128 Rank = GetConversionRank(First);
129 if (GetConversionRank(Second) > Rank)
130 Rank = GetConversionRank(Second);
131 if (GetConversionRank(Third) > Rank)
132 Rank = GetConversionRank(Third);
133 return Rank;
134}
135
136/// isPointerConversionToBool - Determines whether this conversion is
137/// a conversion of a pointer or pointer-to-member to bool. This is
138/// used as part of the ranking of standard conversion sequences
139/// (C++ 13.3.3.2p4).
140bool StandardConversionSequence::isPointerConversionToBool() const
141{
142 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
143 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
144
145 // Note that FromType has not necessarily been transformed by the
146 // array-to-pointer or function-to-pointer implicit conversions, so
147 // check for their presence as well as checking whether FromType is
148 // a pointer.
149 if (ToType->isBooleanType() &&
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000150 (FromType->isPointerType() || FromType->isBlockPointerType() ||
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000151 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
152 return true;
153
154 return false;
155}
156
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000157/// isPointerConversionToVoidPointer - Determines whether this
158/// conversion is a conversion of a pointer to a void pointer. This is
159/// used as part of the ranking of standard conversion sequences (C++
160/// 13.3.3.2p4).
161bool
162StandardConversionSequence::
163isPointerConversionToVoidPointer(ASTContext& Context) const
164{
165 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
166 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
167
168 // Note that FromType has not necessarily been transformed by the
169 // array-to-pointer implicit conversion, so check for its presence
170 // and redo the conversion to get a pointer.
171 if (First == ICK_Array_To_Pointer)
172 FromType = Context.getArrayDecayedType(FromType);
173
174 if (Second == ICK_Pointer_Conversion)
175 if (const PointerType* ToPtrType = ToType->getAsPointerType())
176 return ToPtrType->getPointeeType()->isVoidType();
177
178 return false;
179}
180
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000181/// DebugPrint - Print this standard conversion sequence to standard
182/// error. Useful for debugging overloading issues.
183void StandardConversionSequence::DebugPrint() const {
184 bool PrintedSomething = false;
185 if (First != ICK_Identity) {
186 fprintf(stderr, "%s", GetImplicitConversionName(First));
187 PrintedSomething = true;
188 }
189
190 if (Second != ICK_Identity) {
191 if (PrintedSomething) {
192 fprintf(stderr, " -> ");
193 }
194 fprintf(stderr, "%s", GetImplicitConversionName(Second));
Douglas Gregor225c41e2008-11-03 19:09:14 +0000195
196 if (CopyConstructor) {
197 fprintf(stderr, " (by copy constructor)");
198 } else if (DirectBinding) {
199 fprintf(stderr, " (direct reference binding)");
200 } else if (ReferenceBinding) {
201 fprintf(stderr, " (reference binding)");
202 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000203 PrintedSomething = true;
204 }
205
206 if (Third != ICK_Identity) {
207 if (PrintedSomething) {
208 fprintf(stderr, " -> ");
209 }
210 fprintf(stderr, "%s", GetImplicitConversionName(Third));
211 PrintedSomething = true;
212 }
213
214 if (!PrintedSomething) {
215 fprintf(stderr, "No conversions required");
216 }
217}
218
219/// DebugPrint - Print this user-defined conversion sequence to standard
220/// error. Useful for debugging overloading issues.
221void UserDefinedConversionSequence::DebugPrint() const {
222 if (Before.First || Before.Second || Before.Third) {
223 Before.DebugPrint();
224 fprintf(stderr, " -> ");
225 }
Chris Lattnerd9d22dd2008-11-24 05:29:24 +0000226 fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000227 if (After.First || After.Second || After.Third) {
228 fprintf(stderr, " -> ");
229 After.DebugPrint();
230 }
231}
232
233/// DebugPrint - Print this implicit conversion sequence to standard
234/// error. Useful for debugging overloading issues.
235void ImplicitConversionSequence::DebugPrint() const {
236 switch (ConversionKind) {
237 case StandardConversion:
238 fprintf(stderr, "Standard conversion: ");
239 Standard.DebugPrint();
240 break;
241 case UserDefinedConversion:
242 fprintf(stderr, "User-defined conversion: ");
243 UserDefined.DebugPrint();
244 break;
245 case EllipsisConversion:
246 fprintf(stderr, "Ellipsis conversion");
247 break;
248 case BadConversion:
249 fprintf(stderr, "Bad conversion");
250 break;
251 }
252
253 fprintf(stderr, "\n");
254}
255
256// IsOverload - Determine whether the given New declaration is an
257// overload of the Old declaration. This routine returns false if New
258// and Old cannot be overloaded, e.g., if they are functions with the
259// same signature (C++ 1.3.10) or if the Old declaration isn't a
260// function (or overload set). When it does return false and Old is an
261// OverloadedFunctionDecl, MatchedDecl will be set to point to the
262// FunctionDecl that New cannot be overloaded with.
263//
264// Example: Given the following input:
265//
266// void f(int, float); // #1
267// void f(int, int); // #2
268// int f(int, int); // #3
269//
270// When we process #1, there is no previous declaration of "f",
271// so IsOverload will not be used.
272//
273// When we process #2, Old is a FunctionDecl for #1. By comparing the
274// parameter types, we see that #1 and #2 are overloaded (since they
275// have different signatures), so this routine returns false;
276// MatchedDecl is unchanged.
277//
278// When we process #3, Old is an OverloadedFunctionDecl containing #1
279// and #2. We compare the signatures of #3 to #1 (they're overloaded,
280// so we do nothing) and then #3 to #2. Since the signatures of #3 and
281// #2 are identical (return types of functions are not part of the
282// signature), IsOverload returns false and MatchedDecl will be set to
283// point to the FunctionDecl for #2.
284bool
285Sema::IsOverload(FunctionDecl *New, Decl* OldD,
286 OverloadedFunctionDecl::function_iterator& MatchedDecl)
287{
288 if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
289 // Is this new function an overload of every function in the
290 // overload set?
291 OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
292 FuncEnd = Ovl->function_end();
293 for (; Func != FuncEnd; ++Func) {
294 if (!IsOverload(New, *Func, MatchedDecl)) {
295 MatchedDecl = Func;
296 return false;
297 }
298 }
299
300 // This function overloads every function in the overload set.
301 return true;
302 } else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
303 // Is the function New an overload of the function Old?
304 QualType OldQType = Context.getCanonicalType(Old->getType());
305 QualType NewQType = Context.getCanonicalType(New->getType());
306
307 // Compare the signatures (C++ 1.3.10) of the two functions to
308 // determine whether they are overloads. If we find any mismatch
309 // in the signature, they are overloads.
310
311 // If either of these functions is a K&R-style function (no
312 // prototype), then we consider them to have matching signatures.
313 if (isa<FunctionTypeNoProto>(OldQType.getTypePtr()) ||
314 isa<FunctionTypeNoProto>(NewQType.getTypePtr()))
315 return false;
316
317 FunctionTypeProto* OldType = cast<FunctionTypeProto>(OldQType.getTypePtr());
318 FunctionTypeProto* NewType = cast<FunctionTypeProto>(NewQType.getTypePtr());
319
320 // The signature of a function includes the types of its
321 // parameters (C++ 1.3.10), which includes the presence or absence
322 // of the ellipsis; see C++ DR 357).
323 if (OldQType != NewQType &&
324 (OldType->getNumArgs() != NewType->getNumArgs() ||
325 OldType->isVariadic() != NewType->isVariadic() ||
326 !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
327 NewType->arg_type_begin())))
328 return true;
329
330 // If the function is a class member, its signature includes the
331 // cv-qualifiers (if any) on the function itself.
332 //
333 // As part of this, also check whether one of the member functions
334 // is static, in which case they are not overloads (C++
335 // 13.1p2). While not part of the definition of the signature,
336 // this check is important to determine whether these functions
337 // can be overloaded.
338 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
339 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
340 if (OldMethod && NewMethod &&
341 !OldMethod->isStatic() && !NewMethod->isStatic() &&
Douglas Gregor1ca50c32008-11-21 15:36:28 +0000342 OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000343 return true;
344
345 // The signatures match; this is not an overload.
346 return false;
347 } else {
348 // (C++ 13p1):
349 // Only function declarations can be overloaded; object and type
350 // declarations cannot be overloaded.
351 return false;
352 }
353}
354
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000355/// TryImplicitConversion - Attempt to perform an implicit conversion
356/// from the given expression (Expr) to the given type (ToType). This
357/// function returns an implicit conversion sequence that can be used
358/// to perform the initialization. Given
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000359///
360/// void f(float f);
361/// void g(int i) { f(i); }
362///
363/// this routine would produce an implicit conversion sequence to
364/// describe the initialization of f from i, which will be a standard
365/// conversion sequence containing an lvalue-to-rvalue conversion (C++
366/// 4.1) followed by a floating-integral conversion (C++ 4.9).
367//
368/// Note that this routine only determines how the conversion can be
369/// performed; it does not actually perform the conversion. As such,
370/// it will not produce any diagnostics if no conversion is available,
371/// but will instead return an implicit conversion sequence of kind
372/// "BadConversion".
Douglas Gregor225c41e2008-11-03 19:09:14 +0000373///
374/// If @p SuppressUserConversions, then user-defined conversions are
375/// not permitted.
Douglas Gregor09f41cf2009-01-14 15:45:31 +0000376/// If @p AllowExplicit, then explicit user-defined conversions are
377/// permitted.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000378ImplicitConversionSequence
Douglas Gregor225c41e2008-11-03 19:09:14 +0000379Sema::TryImplicitConversion(Expr* From, QualType ToType,
Douglas Gregor09f41cf2009-01-14 15:45:31 +0000380 bool SuppressUserConversions,
Douglas Gregor734d9862009-01-30 23:27:23 +0000381 bool AllowExplicit)
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000382{
383 ImplicitConversionSequence ICS;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000384 if (IsStandardConversion(From, ToType, ICS.Standard))
385 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
Douglas Gregorf9201e02009-02-11 23:02:49 +0000386 else if (getLangOptions().CPlusPlus &&
387 IsUserDefinedConversion(From, ToType, ICS.UserDefined,
Douglas Gregor734d9862009-01-30 23:27:23 +0000388 !SuppressUserConversions, AllowExplicit)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000389 ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000390 // C++ [over.ics.user]p4:
391 // A conversion of an expression of class type to the same class
392 // type is given Exact Match rank, and a conversion of an
393 // expression of class type to a base class of that type is
394 // given Conversion rank, in spite of the fact that a copy
395 // constructor (i.e., a user-defined conversion function) is
396 // called for those cases.
397 if (CXXConstructorDecl *Constructor
398 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
Douglas Gregor2b1e0032009-02-02 22:11:10 +0000399 QualType FromCanon
400 = Context.getCanonicalType(From->getType().getUnqualifiedType());
401 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
402 if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) {
Douglas Gregor225c41e2008-11-03 19:09:14 +0000403 // Turn this into a "standard" conversion sequence, so that it
404 // gets ranked with standard conversion sequences.
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000405 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
406 ICS.Standard.setAsIdentityConversion();
407 ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
408 ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
Douglas Gregor225c41e2008-11-03 19:09:14 +0000409 ICS.Standard.CopyConstructor = Constructor;
Douglas Gregor2b1e0032009-02-02 22:11:10 +0000410 if (ToCanon != FromCanon)
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000411 ICS.Standard.Second = ICK_Derived_To_Base;
412 }
Douglas Gregor60d62c22008-10-31 16:23:19 +0000413 }
Douglas Gregor734d9862009-01-30 23:27:23 +0000414
415 // C++ [over.best.ics]p4:
416 // However, when considering the argument of a user-defined
417 // conversion function that is a candidate by 13.3.1.3 when
418 // invoked for the copying of the temporary in the second step
419 // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
420 // 13.3.1.6 in all cases, only standard conversion sequences and
421 // ellipsis conversion sequences are allowed.
422 if (SuppressUserConversions &&
423 ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion)
424 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000425 } else
Douglas Gregor60d62c22008-10-31 16:23:19 +0000426 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000427
428 return ICS;
429}
430
431/// IsStandardConversion - Determines whether there is a standard
432/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
433/// expression From to the type ToType. Standard conversion sequences
434/// only consider non-class types; for conversions that involve class
435/// types, use TryImplicitConversion. If a conversion exists, SCS will
436/// contain the standard conversion sequence required to perform this
437/// conversion and this routine will return true. Otherwise, this
438/// routine will return false and the value of SCS is unspecified.
439bool
440Sema::IsStandardConversion(Expr* From, QualType ToType,
441 StandardConversionSequence &SCS)
442{
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000443 QualType FromType = From->getType();
444
Douglas Gregor60d62c22008-10-31 16:23:19 +0000445 // Standard conversions (C++ [conv])
Douglas Gregoreb8f3062008-11-12 17:17:38 +0000446 SCS.setAsIdentityConversion();
Douglas Gregor60d62c22008-10-31 16:23:19 +0000447 SCS.Deprecated = false;
Douglas Gregor45920e82008-12-19 17:40:08 +0000448 SCS.IncompatibleObjC = false;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000449 SCS.FromTypePtr = FromType.getAsOpaquePtr();
Douglas Gregor225c41e2008-11-03 19:09:14 +0000450 SCS.CopyConstructor = 0;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000451
Douglas Gregorf9201e02009-02-11 23:02:49 +0000452 // There are no standard conversions for class types in C++, so
453 // abort early. When overloading in C, however, we do permit
454 if (FromType->isRecordType() || ToType->isRecordType()) {
455 if (getLangOptions().CPlusPlus)
456 return false;
457
458 // When we're overloading in C, we allow, as standard conversions,
459 }
460
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000461 // The first conversion can be an lvalue-to-rvalue conversion,
462 // array-to-pointer conversion, or function-to-pointer conversion
463 // (C++ 4p1).
464
465 // Lvalue-to-rvalue conversion (C++ 4.1):
466 // An lvalue (3.10) of a non-function, non-array type T can be
467 // converted to an rvalue.
468 Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
469 if (argIsLvalue == Expr::LV_Valid &&
Douglas Gregor904eed32008-11-10 20:40:00 +0000470 !FromType->isFunctionType() && !FromType->isArrayType() &&
471 !FromType->isOverloadType()) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000472 SCS.First = ICK_Lvalue_To_Rvalue;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000473
474 // If T is a non-class type, the type of the rvalue is the
475 // cv-unqualified version of T. Otherwise, the type of the rvalue
Douglas Gregorf9201e02009-02-11 23:02:49 +0000476 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
477 // just strip the qualifiers because they don't matter.
478
479 // FIXME: Doesn't see through to qualifiers behind a typedef!
Douglas Gregor60d62c22008-10-31 16:23:19 +0000480 FromType = FromType.getUnqualifiedType();
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000481 }
482 // Array-to-pointer conversion (C++ 4.2)
483 else if (FromType->isArrayType()) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000484 SCS.First = ICK_Array_To_Pointer;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000485
486 // An lvalue or rvalue of type "array of N T" or "array of unknown
487 // bound of T" can be converted to an rvalue of type "pointer to
488 // T" (C++ 4.2p1).
489 FromType = Context.getArrayDecayedType(FromType);
490
491 if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
492 // This conversion is deprecated. (C++ D.4).
Douglas Gregor60d62c22008-10-31 16:23:19 +0000493 SCS.Deprecated = true;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000494
495 // For the purpose of ranking in overload resolution
496 // (13.3.3.1.1), this conversion is considered an
497 // array-to-pointer conversion followed by a qualification
498 // conversion (4.4). (C++ 4.2p2)
Douglas Gregor60d62c22008-10-31 16:23:19 +0000499 SCS.Second = ICK_Identity;
500 SCS.Third = ICK_Qualification;
501 SCS.ToTypePtr = ToType.getAsOpaquePtr();
502 return true;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000503 }
504 }
505 // Function-to-pointer conversion (C++ 4.3).
506 else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000507 SCS.First = ICK_Function_To_Pointer;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000508
509 // An lvalue of function type T can be converted to an rvalue of
510 // type "pointer to T." The result is a pointer to the
511 // function. (C++ 4.3p1).
512 FromType = Context.getPointerType(FromType);
Sebastian Redl33b399a2009-02-04 21:23:32 +0000513 }
Douglas Gregor904eed32008-11-10 20:40:00 +0000514 // Address of overloaded function (C++ [over.over]).
515 else if (FunctionDecl *Fn
516 = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
517 SCS.First = ICK_Function_To_Pointer;
518
519 // We were able to resolve the address of the overloaded function,
520 // so we can convert to the type of that function.
521 FromType = Fn->getType();
522 if (ToType->isReferenceType())
523 FromType = Context.getReferenceType(FromType);
Sebastian Redl33b399a2009-02-04 21:23:32 +0000524 else if (ToType->isMemberPointerType()) {
525 // Resolve address only succeeds if both sides are member pointers,
526 // but it doesn't have to be the same class. See DR 247.
527 // Note that this means that the type of &Derived::fn can be
528 // Ret (Base::*)(Args) if the fn overload actually found is from the
529 // base class, even if it was brought into the derived class via a
530 // using declaration. The standard isn't clear on this issue at all.
531 CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
532 FromType = Context.getMemberPointerType(FromType,
533 Context.getTypeDeclType(M->getParent()).getTypePtr());
534 } else
Douglas Gregor904eed32008-11-10 20:40:00 +0000535 FromType = Context.getPointerType(FromType);
536 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000537 // We don't require any conversions for the first step.
538 else {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000539 SCS.First = ICK_Identity;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000540 }
541
542 // The second conversion can be an integral promotion, floating
543 // point promotion, integral conversion, floating point conversion,
544 // floating-integral conversion, pointer conversion,
545 // pointer-to-member conversion, or boolean conversion (C++ 4p1).
Douglas Gregorf9201e02009-02-11 23:02:49 +0000546 // For overloading in C, this can also be a "compatible-type"
547 // conversion.
Douglas Gregor45920e82008-12-19 17:40:08 +0000548 bool IncompatibleObjC = false;
Douglas Gregorf9201e02009-02-11 23:02:49 +0000549 if (Context.hasSameUnqualifiedType(FromType, ToType)) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000550 // The unqualified versions of the types are the same: there's no
551 // conversion to do.
Douglas Gregor60d62c22008-10-31 16:23:19 +0000552 SCS.Second = ICK_Identity;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000553 }
554 // Integral promotion (C++ 4.5).
555 else if (IsIntegralPromotion(From, FromType, ToType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000556 SCS.Second = ICK_Integral_Promotion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000557 FromType = ToType.getUnqualifiedType();
558 }
559 // Floating point promotion (C++ 4.6).
560 else if (IsFloatingPointPromotion(FromType, ToType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000561 SCS.Second = ICK_Floating_Promotion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000562 FromType = ToType.getUnqualifiedType();
563 }
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000564 // Complex promotion (Clang extension)
565 else if (IsComplexPromotion(FromType, ToType)) {
566 SCS.Second = ICK_Complex_Promotion;
567 FromType = ToType.getUnqualifiedType();
568 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000569 // Integral conversions (C++ 4.7).
Sebastian Redl07779722008-10-31 14:43:28 +0000570 // FIXME: isIntegralType shouldn't be true for enums in C++.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000571 else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
Sebastian Redl07779722008-10-31 14:43:28 +0000572 (ToType->isIntegralType() && !ToType->isEnumeralType())) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000573 SCS.Second = ICK_Integral_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000574 FromType = ToType.getUnqualifiedType();
575 }
576 // Floating point conversions (C++ 4.8).
577 else if (FromType->isFloatingType() && ToType->isFloatingType()) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000578 SCS.Second = ICK_Floating_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000579 FromType = ToType.getUnqualifiedType();
580 }
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000581 // Complex conversions (C99 6.3.1.6)
582 else if (FromType->isComplexType() && ToType->isComplexType()) {
583 SCS.Second = ICK_Complex_Conversion;
584 FromType = ToType.getUnqualifiedType();
585 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000586 // Floating-integral conversions (C++ 4.9).
Sebastian Redl07779722008-10-31 14:43:28 +0000587 // FIXME: isIntegralType shouldn't be true for enums in C++.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000588 else if ((FromType->isFloatingType() &&
Sebastian Redl07779722008-10-31 14:43:28 +0000589 ToType->isIntegralType() && !ToType->isBooleanType() &&
590 !ToType->isEnumeralType()) ||
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000591 ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
592 ToType->isFloatingType())) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000593 SCS.Second = ICK_Floating_Integral;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000594 FromType = ToType.getUnqualifiedType();
595 }
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000596 // Complex-real conversions (C99 6.3.1.7)
597 else if ((FromType->isComplexType() && ToType->isArithmeticType()) ||
598 (ToType->isComplexType() && FromType->isArithmeticType())) {
599 SCS.Second = ICK_Complex_Real;
600 FromType = ToType.getUnqualifiedType();
601 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000602 // Pointer conversions (C++ 4.10).
Douglas Gregor45920e82008-12-19 17:40:08 +0000603 else if (IsPointerConversion(From, FromType, ToType, FromType,
604 IncompatibleObjC)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000605 SCS.Second = ICK_Pointer_Conversion;
Douglas Gregor45920e82008-12-19 17:40:08 +0000606 SCS.IncompatibleObjC = IncompatibleObjC;
Sebastian Redl07779722008-10-31 14:43:28 +0000607 }
Sebastian Redl4433aaf2009-01-25 19:43:20 +0000608 // Pointer to member conversions (4.11).
609 else if (IsMemberPointerConversion(From, FromType, ToType, FromType)) {
610 SCS.Second = ICK_Pointer_Member;
611 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000612 // Boolean conversions (C++ 4.12).
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000613 else if (ToType->isBooleanType() &&
614 (FromType->isArithmeticType() ||
615 FromType->isEnumeralType() ||
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000616 FromType->isPointerType() ||
Sebastian Redl4433aaf2009-01-25 19:43:20 +0000617 FromType->isBlockPointerType() ||
618 FromType->isMemberPointerType())) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000619 SCS.Second = ICK_Boolean_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000620 FromType = Context.BoolTy;
Douglas Gregorf9201e02009-02-11 23:02:49 +0000621 }
622 // Compatible conversions (Clang extension for C function overloading)
623 else if (!getLangOptions().CPlusPlus &&
624 Context.typesAreCompatible(ToType, FromType)) {
625 SCS.Second = ICK_Compatible_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000626 } else {
627 // No second conversion required.
Douglas Gregor60d62c22008-10-31 16:23:19 +0000628 SCS.Second = ICK_Identity;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000629 }
630
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000631 QualType CanonFrom;
632 QualType CanonTo;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000633 // The third conversion can be a qualification conversion (C++ 4p1).
Douglas Gregor98cd5992008-10-21 23:43:52 +0000634 if (IsQualificationConversion(FromType, ToType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000635 SCS.Third = ICK_Qualification;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000636 FromType = ToType;
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000637 CanonFrom = Context.getCanonicalType(FromType);
638 CanonTo = Context.getCanonicalType(ToType);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000639 } else {
640 // No conversion required
Douglas Gregor60d62c22008-10-31 16:23:19 +0000641 SCS.Third = ICK_Identity;
642
643 // C++ [over.best.ics]p6:
644 // [...] Any difference in top-level cv-qualification is
645 // subsumed by the initialization itself and does not constitute
646 // a conversion. [...]
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000647 CanonFrom = Context.getCanonicalType(FromType);
648 CanonTo = Context.getCanonicalType(ToType);
Douglas Gregor60d62c22008-10-31 16:23:19 +0000649 if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000650 CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
651 FromType = ToType;
652 CanonFrom = CanonTo;
653 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000654 }
655
656 // If we have not converted the argument type to the parameter type,
657 // this is a bad conversion sequence.
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000658 if (CanonFrom != CanonTo)
Douglas Gregor60d62c22008-10-31 16:23:19 +0000659 return false;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000660
Douglas Gregor60d62c22008-10-31 16:23:19 +0000661 SCS.ToTypePtr = FromType.getAsOpaquePtr();
662 return true;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000663}
664
665/// IsIntegralPromotion - Determines whether the conversion from the
666/// expression From (whose potentially-adjusted type is FromType) to
667/// ToType is an integral promotion (C++ 4.5). If so, returns true and
668/// sets PromotedType to the promoted type.
669bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
670{
671 const BuiltinType *To = ToType->getAsBuiltinType();
Sebastian Redlf7be9442008-11-04 15:59:10 +0000672 // All integers are built-in.
Sebastian Redl07779722008-10-31 14:43:28 +0000673 if (!To) {
674 return false;
675 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000676
677 // An rvalue of type char, signed char, unsigned char, short int, or
678 // unsigned short int can be converted to an rvalue of type int if
679 // int can represent all the values of the source type; otherwise,
680 // the source rvalue can be converted to an rvalue of type unsigned
681 // int (C++ 4.5p1).
Sebastian Redl07779722008-10-31 14:43:28 +0000682 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000683 if (// We can promote any signed, promotable integer type to an int
684 (FromType->isSignedIntegerType() ||
685 // We can promote any unsigned integer type whose size is
686 // less than int to an int.
687 (!FromType->isSignedIntegerType() &&
Sebastian Redl07779722008-10-31 14:43:28 +0000688 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000689 return To->getKind() == BuiltinType::Int;
Sebastian Redl07779722008-10-31 14:43:28 +0000690 }
691
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000692 return To->getKind() == BuiltinType::UInt;
693 }
694
695 // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
696 // can be converted to an rvalue of the first of the following types
697 // that can represent all the values of its underlying type: int,
698 // unsigned int, long, or unsigned long (C++ 4.5p2).
699 if ((FromType->isEnumeralType() || FromType->isWideCharType())
700 && ToType->isIntegerType()) {
701 // Determine whether the type we're converting from is signed or
702 // unsigned.
703 bool FromIsSigned;
704 uint64_t FromSize = Context.getTypeSize(FromType);
705 if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
706 QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
707 FromIsSigned = UnderlyingType->isSignedIntegerType();
708 } else {
709 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
710 FromIsSigned = true;
711 }
712
713 // The types we'll try to promote to, in the appropriate
714 // order. Try each of these types.
Douglas Gregorc9467cf2008-12-12 02:00:36 +0000715 QualType PromoteTypes[6] = {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000716 Context.IntTy, Context.UnsignedIntTy,
Douglas Gregorc9467cf2008-12-12 02:00:36 +0000717 Context.LongTy, Context.UnsignedLongTy ,
718 Context.LongLongTy, Context.UnsignedLongLongTy
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000719 };
Douglas Gregorc9467cf2008-12-12 02:00:36 +0000720 for (int Idx = 0; Idx < 6; ++Idx) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000721 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
722 if (FromSize < ToSize ||
723 (FromSize == ToSize &&
724 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
725 // We found the type that we can promote to. If this is the
726 // type we wanted, we have a promotion. Otherwise, no
727 // promotion.
Sebastian Redl07779722008-10-31 14:43:28 +0000728 return Context.getCanonicalType(ToType).getUnqualifiedType()
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000729 == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
730 }
731 }
732 }
733
734 // An rvalue for an integral bit-field (9.6) can be converted to an
735 // rvalue of type int if int can represent all the values of the
736 // bit-field; otherwise, it can be converted to unsigned int if
737 // unsigned int can represent all the values of the bit-field. If
738 // the bit-field is larger yet, no integral promotion applies to
739 // it. If the bit-field has an enumerated type, it is treated as any
740 // other value of that type for promotion purposes (C++ 4.5p3).
Douglas Gregorb7b5d132009-02-12 00:26:06 +0000741 // FIXME: We should delay checking of bit-fields until we actually
742 // perform the conversion.
743 if (MemberExpr *MemRef = dyn_cast_or_null<MemberExpr>(From)) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000744 using llvm::APSInt;
Douglas Gregor86f19402008-12-20 23:49:58 +0000745 if (FieldDecl *MemberDecl = dyn_cast<FieldDecl>(MemRef->getMemberDecl())) {
746 APSInt BitWidth;
747 if (MemberDecl->isBitField() &&
748 FromType->isIntegralType() && !FromType->isEnumeralType() &&
749 From->isIntegerConstantExpr(BitWidth, Context)) {
750 APSInt ToSize(Context.getTypeSize(ToType));
751
752 // Are we promoting to an int from a bitfield that fits in an int?
753 if (BitWidth < ToSize ||
754 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
755 return To->getKind() == BuiltinType::Int;
756 }
757
758 // Are we promoting to an unsigned int from an unsigned bitfield
759 // that fits into an unsigned int?
760 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
761 return To->getKind() == BuiltinType::UInt;
762 }
763
764 return false;
Sebastian Redl07779722008-10-31 14:43:28 +0000765 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000766 }
767 }
768
769 // An rvalue of type bool can be converted to an rvalue of type int,
770 // with false becoming zero and true becoming one (C++ 4.5p4).
Sebastian Redl07779722008-10-31 14:43:28 +0000771 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000772 return true;
Sebastian Redl07779722008-10-31 14:43:28 +0000773 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000774
775 return false;
776}
777
778/// IsFloatingPointPromotion - Determines whether the conversion from
779/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
780/// returns true and sets PromotedType to the promoted type.
781bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
782{
783 /// An rvalue of type float can be converted to an rvalue of type
784 /// double. (C++ 4.6p1).
785 if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000786 if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType()) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000787 if (FromBuiltin->getKind() == BuiltinType::Float &&
788 ToBuiltin->getKind() == BuiltinType::Double)
789 return true;
790
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000791 // C99 6.3.1.5p1:
792 // When a float is promoted to double or long double, or a
793 // double is promoted to long double [...].
794 if (!getLangOptions().CPlusPlus &&
795 (FromBuiltin->getKind() == BuiltinType::Float ||
796 FromBuiltin->getKind() == BuiltinType::Double) &&
797 (ToBuiltin->getKind() == BuiltinType::LongDouble))
798 return true;
799 }
800
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000801 return false;
802}
803
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000804/// \brief Determine if a conversion is a complex promotion.
805///
806/// A complex promotion is defined as a complex -> complex conversion
807/// where the conversion between the underlying real types is a
Douglas Gregorb7b5d132009-02-12 00:26:06 +0000808/// floating-point or integral promotion.
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000809bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
810 const ComplexType *FromComplex = FromType->getAsComplexType();
811 if (!FromComplex)
812 return false;
813
814 const ComplexType *ToComplex = ToType->getAsComplexType();
815 if (!ToComplex)
816 return false;
817
818 return IsFloatingPointPromotion(FromComplex->getElementType(),
Douglas Gregorb7b5d132009-02-12 00:26:06 +0000819 ToComplex->getElementType()) ||
820 IsIntegralPromotion(0, FromComplex->getElementType(),
821 ToComplex->getElementType());
Douglas Gregor5cdf8212009-02-12 00:15:05 +0000822}
823
Douglas Gregorcb7de522008-11-26 23:31:11 +0000824/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
825/// the pointer type FromPtr to a pointer to type ToPointee, with the
826/// same type qualifiers as FromPtr has on its pointee type. ToType,
827/// if non-empty, will be a pointer to ToType that may or may not have
828/// the right set of qualifiers on its pointee.
829static QualType
830BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
831 QualType ToPointee, QualType ToType,
832 ASTContext &Context) {
833 QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
834 QualType CanonToPointee = Context.getCanonicalType(ToPointee);
835 unsigned Quals = CanonFromPointee.getCVRQualifiers();
836
837 // Exact qualifier match -> return the pointer type we're converting to.
838 if (CanonToPointee.getCVRQualifiers() == Quals) {
839 // ToType is exactly what we need. Return it.
840 if (ToType.getTypePtr())
841 return ToType;
842
843 // Build a pointer to ToPointee. It has the right qualifiers
844 // already.
845 return Context.getPointerType(ToPointee);
846 }
847
848 // Just build a canonical type that has the right qualifiers.
849 return Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
850}
851
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000852/// IsPointerConversion - Determines whether the conversion of the
853/// expression From, which has the (possibly adjusted) type FromType,
854/// can be converted to the type ToType via a pointer conversion (C++
855/// 4.10). If so, returns true and places the converted type (that
856/// might differ from ToType in its cv-qualifiers at some level) into
857/// ConvertedType.
Douglas Gregor071f2ae2008-11-27 00:15:41 +0000858///
Douglas Gregor7ca09762008-11-27 01:19:21 +0000859/// This routine also supports conversions to and from block pointers
860/// and conversions with Objective-C's 'id', 'id<protocols...>', and
861/// pointers to interfaces. FIXME: Once we've determined the
862/// appropriate overloading rules for Objective-C, we may want to
863/// split the Objective-C checks into a different routine; however,
864/// GCC seems to consider all of these conversions to be pointer
Douglas Gregor45920e82008-12-19 17:40:08 +0000865/// conversions, so for now they live here. IncompatibleObjC will be
866/// set if the conversion is an allowed Objective-C conversion that
867/// should result in a warning.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000868bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
Douglas Gregor45920e82008-12-19 17:40:08 +0000869 QualType& ConvertedType,
870 bool &IncompatibleObjC)
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000871{
Douglas Gregor45920e82008-12-19 17:40:08 +0000872 IncompatibleObjC = false;
Douglas Gregorc7887512008-12-19 19:13:09 +0000873 if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
874 return true;
Douglas Gregor45920e82008-12-19 17:40:08 +0000875
Douglas Gregor27b09ac2008-12-22 20:51:52 +0000876 // Conversion from a null pointer constant to any Objective-C pointer type.
877 if (Context.isObjCObjectPointerType(ToType) &&
878 From->isNullPointerConstant(Context)) {
879 ConvertedType = ToType;
880 return true;
881 }
882
Douglas Gregor071f2ae2008-11-27 00:15:41 +0000883 // Blocks: Block pointers can be converted to void*.
884 if (FromType->isBlockPointerType() && ToType->isPointerType() &&
885 ToType->getAsPointerType()->getPointeeType()->isVoidType()) {
886 ConvertedType = ToType;
887 return true;
888 }
889 // Blocks: A null pointer constant can be converted to a block
890 // pointer type.
891 if (ToType->isBlockPointerType() && From->isNullPointerConstant(Context)) {
892 ConvertedType = ToType;
893 return true;
894 }
895
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000896 const PointerType* ToTypePtr = ToType->getAsPointerType();
897 if (!ToTypePtr)
898 return false;
899
900 // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
901 if (From->isNullPointerConstant(Context)) {
902 ConvertedType = ToType;
903 return true;
904 }
Sebastian Redl07779722008-10-31 14:43:28 +0000905
Douglas Gregorcb7de522008-11-26 23:31:11 +0000906 // Beyond this point, both types need to be pointers.
907 const PointerType *FromTypePtr = FromType->getAsPointerType();
908 if (!FromTypePtr)
909 return false;
910
911 QualType FromPointeeType = FromTypePtr->getPointeeType();
912 QualType ToPointeeType = ToTypePtr->getPointeeType();
913
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000914 // An rvalue of type "pointer to cv T," where T is an object type,
915 // can be converted to an rvalue of type "pointer to cv void" (C++
916 // 4.10p2).
Douglas Gregorc7887512008-12-19 19:13:09 +0000917 if (FromPointeeType->isIncompleteOrObjectType() &&
918 ToPointeeType->isVoidType()) {
Douglas Gregorbf408182008-11-27 00:52:49 +0000919 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
920 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +0000921 ToType, Context);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000922 return true;
923 }
924
Douglas Gregorf9201e02009-02-11 23:02:49 +0000925 // When we're overloading in C, we allow a special kind of pointer
926 // conversion for compatible-but-not-identical pointee types.
927 if (!getLangOptions().CPlusPlus &&
928 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
929 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
930 ToPointeeType,
931 ToType, Context);
932 return true;
933 }
934
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000935 // C++ [conv.ptr]p3:
936 //
937 // An rvalue of type "pointer to cv D," where D is a class type,
938 // can be converted to an rvalue of type "pointer to cv B," where
939 // B is a base class (clause 10) of D. If B is an inaccessible
940 // (clause 11) or ambiguous (10.2) base class of D, a program that
941 // necessitates this conversion is ill-formed. The result of the
942 // conversion is a pointer to the base class sub-object of the
943 // derived class object. The null pointer value is converted to
944 // the null pointer value of the destination type.
945 //
Douglas Gregor94b1dd22008-10-24 04:54:22 +0000946 // Note that we do not check for ambiguity or inaccessibility
947 // here. That is handled by CheckPointerConversion.
Douglas Gregorf9201e02009-02-11 23:02:49 +0000948 if (getLangOptions().CPlusPlus &&
949 FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
Douglas Gregorcb7de522008-11-26 23:31:11 +0000950 IsDerivedFrom(FromPointeeType, ToPointeeType)) {
Douglas Gregorbf408182008-11-27 00:52:49 +0000951 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
952 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +0000953 ToType, Context);
954 return true;
955 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000956
Douglas Gregorc7887512008-12-19 19:13:09 +0000957 return false;
958}
959
960/// isObjCPointerConversion - Determines whether this is an
961/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
962/// with the same arguments and return values.
963bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
964 QualType& ConvertedType,
965 bool &IncompatibleObjC) {
966 if (!getLangOptions().ObjC1)
967 return false;
968
969 // Conversions with Objective-C's id<...>.
970 if ((FromType->isObjCQualifiedIdType() || ToType->isObjCQualifiedIdType()) &&
971 ObjCQualifiedIdTypesAreCompatible(ToType, FromType, /*compare=*/false)) {
972 ConvertedType = ToType;
973 return true;
974 }
975
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000976 // Beyond this point, both types need to be pointers or block pointers.
977 QualType ToPointeeType;
Douglas Gregorc7887512008-12-19 19:13:09 +0000978 const PointerType* ToTypePtr = ToType->getAsPointerType();
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000979 if (ToTypePtr)
980 ToPointeeType = ToTypePtr->getPointeeType();
981 else if (const BlockPointerType *ToBlockPtr = ToType->getAsBlockPointerType())
982 ToPointeeType = ToBlockPtr->getPointeeType();
983 else
Douglas Gregorc7887512008-12-19 19:13:09 +0000984 return false;
985
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000986 QualType FromPointeeType;
Douglas Gregorc7887512008-12-19 19:13:09 +0000987 const PointerType *FromTypePtr = FromType->getAsPointerType();
Douglas Gregor2a7e58d2008-12-23 00:53:59 +0000988 if (FromTypePtr)
989 FromPointeeType = FromTypePtr->getPointeeType();
990 else if (const BlockPointerType *FromBlockPtr
991 = FromType->getAsBlockPointerType())
992 FromPointeeType = FromBlockPtr->getPointeeType();
993 else
Douglas Gregorc7887512008-12-19 19:13:09 +0000994 return false;
995
Douglas Gregorcb7de522008-11-26 23:31:11 +0000996 // Objective C++: We're able to convert from a pointer to an
997 // interface to a pointer to a different interface.
998 const ObjCInterfaceType* FromIface = FromPointeeType->getAsObjCInterfaceType();
999 const ObjCInterfaceType* ToIface = ToPointeeType->getAsObjCInterfaceType();
1000 if (FromIface && ToIface &&
1001 Context.canAssignObjCInterfaces(ToIface, FromIface)) {
Douglas Gregor2a7e58d2008-12-23 00:53:59 +00001002 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
Douglas Gregorbf408182008-11-27 00:52:49 +00001003 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +00001004 ToType, Context);
1005 return true;
1006 }
1007
Douglas Gregor45920e82008-12-19 17:40:08 +00001008 if (FromIface && ToIface &&
1009 Context.canAssignObjCInterfaces(FromIface, ToIface)) {
1010 // Okay: this is some kind of implicit downcast of Objective-C
1011 // interfaces, which is permitted. However, we're going to
1012 // complain about it.
1013 IncompatibleObjC = true;
Douglas Gregor2a7e58d2008-12-23 00:53:59 +00001014 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
Douglas Gregor45920e82008-12-19 17:40:08 +00001015 ToPointeeType,
1016 ToType, Context);
1017 return true;
1018 }
1019
Douglas Gregorcb7de522008-11-26 23:31:11 +00001020 // Objective C++: We're able to convert between "id" and a pointer
1021 // to any interface (in both directions).
Steve Naroff389bf462009-02-12 17:52:19 +00001022 if ((FromIface && Context.isObjCIdStructType(ToPointeeType))
1023 || (ToIface && Context.isObjCIdStructType(FromPointeeType))) {
Douglas Gregorbf408182008-11-27 00:52:49 +00001024 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
1025 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +00001026 ToType, Context);
1027 return true;
1028 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001029
Douglas Gregordda78892008-12-18 23:43:31 +00001030 // Objective C++: Allow conversions between the Objective-C "id" and
1031 // "Class", in either direction.
Steve Naroff389bf462009-02-12 17:52:19 +00001032 if ((Context.isObjCIdStructType(FromPointeeType) &&
1033 Context.isObjCClassStructType(ToPointeeType)) ||
1034 (Context.isObjCClassStructType(FromPointeeType) &&
1035 Context.isObjCIdStructType(ToPointeeType))) {
Douglas Gregordda78892008-12-18 23:43:31 +00001036 ConvertedType = ToType;
1037 return true;
1038 }
1039
Douglas Gregorc7887512008-12-19 19:13:09 +00001040 // If we have pointers to pointers, recursively check whether this
1041 // is an Objective-C conversion.
1042 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
1043 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
1044 IncompatibleObjC)) {
1045 // We always complain about this conversion.
1046 IncompatibleObjC = true;
1047 ConvertedType = ToType;
1048 return true;
1049 }
1050
Douglas Gregor2a7e58d2008-12-23 00:53:59 +00001051 // If we have pointers to functions or blocks, check whether the only
Douglas Gregorc7887512008-12-19 19:13:09 +00001052 // differences in the argument and result types are in Objective-C
1053 // pointer conversions. If so, we permit the conversion (but
1054 // complain about it).
1055 const FunctionTypeProto *FromFunctionType
1056 = FromPointeeType->getAsFunctionTypeProto();
1057 const FunctionTypeProto *ToFunctionType
1058 = ToPointeeType->getAsFunctionTypeProto();
1059 if (FromFunctionType && ToFunctionType) {
1060 // If the function types are exactly the same, this isn't an
1061 // Objective-C pointer conversion.
1062 if (Context.getCanonicalType(FromPointeeType)
1063 == Context.getCanonicalType(ToPointeeType))
1064 return false;
1065
1066 // Perform the quick checks that will tell us whether these
1067 // function types are obviously different.
1068 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
1069 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
1070 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
1071 return false;
1072
1073 bool HasObjCConversion = false;
1074 if (Context.getCanonicalType(FromFunctionType->getResultType())
1075 == Context.getCanonicalType(ToFunctionType->getResultType())) {
1076 // Okay, the types match exactly. Nothing to do.
1077 } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
1078 ToFunctionType->getResultType(),
1079 ConvertedType, IncompatibleObjC)) {
1080 // Okay, we have an Objective-C pointer conversion.
1081 HasObjCConversion = true;
1082 } else {
1083 // Function types are too different. Abort.
1084 return false;
1085 }
1086
1087 // Check argument types.
1088 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
1089 ArgIdx != NumArgs; ++ArgIdx) {
1090 QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
1091 QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
1092 if (Context.getCanonicalType(FromArgType)
1093 == Context.getCanonicalType(ToArgType)) {
1094 // Okay, the types match exactly. Nothing to do.
1095 } else if (isObjCPointerConversion(FromArgType, ToArgType,
1096 ConvertedType, IncompatibleObjC)) {
1097 // Okay, we have an Objective-C pointer conversion.
1098 HasObjCConversion = true;
1099 } else {
1100 // Argument types are too different. Abort.
1101 return false;
1102 }
1103 }
1104
1105 if (HasObjCConversion) {
1106 // We had an Objective-C conversion. Allow this pointer
1107 // conversion, but complain about it.
1108 ConvertedType = ToType;
1109 IncompatibleObjC = true;
1110 return true;
1111 }
1112 }
1113
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001114 return false;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001115}
1116
Douglas Gregor94b1dd22008-10-24 04:54:22 +00001117/// CheckPointerConversion - Check the pointer conversion from the
1118/// expression From to the type ToType. This routine checks for
1119/// ambiguous (FIXME: or inaccessible) derived-to-base pointer
1120/// conversions for which IsPointerConversion has already returned
1121/// true. It returns true and produces a diagnostic if there was an
1122/// error, or returns false otherwise.
1123bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
1124 QualType FromType = From->getType();
1125
1126 if (const PointerType *FromPtrType = FromType->getAsPointerType())
1127 if (const PointerType *ToPtrType = ToType->getAsPointerType()) {
Douglas Gregor94b1dd22008-10-24 04:54:22 +00001128 QualType FromPointeeType = FromPtrType->getPointeeType(),
1129 ToPointeeType = ToPtrType->getPointeeType();
Douglas Gregordda78892008-12-18 23:43:31 +00001130
1131 // Objective-C++ conversions are always okay.
1132 // FIXME: We should have a different class of conversions for
1133 // the Objective-C++ implicit conversions.
Steve Naroff389bf462009-02-12 17:52:19 +00001134 if (Context.isObjCIdStructType(FromPointeeType) ||
1135 Context.isObjCIdStructType(ToPointeeType) ||
1136 Context.isObjCClassStructType(FromPointeeType) ||
1137 Context.isObjCClassStructType(ToPointeeType))
Douglas Gregordda78892008-12-18 23:43:31 +00001138 return false;
1139
Douglas Gregor94b1dd22008-10-24 04:54:22 +00001140 if (FromPointeeType->isRecordType() &&
1141 ToPointeeType->isRecordType()) {
1142 // We must have a derived-to-base conversion. Check an
1143 // ambiguous or inaccessible conversion.
Douglas Gregor0575d4a2008-10-24 16:17:19 +00001144 return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1145 From->getExprLoc(),
1146 From->getSourceRange());
Douglas Gregor94b1dd22008-10-24 04:54:22 +00001147 }
1148 }
1149
1150 return false;
1151}
1152
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001153/// IsMemberPointerConversion - Determines whether the conversion of the
1154/// expression From, which has the (possibly adjusted) type FromType, can be
1155/// converted to the type ToType via a member pointer conversion (C++ 4.11).
1156/// If so, returns true and places the converted type (that might differ from
1157/// ToType in its cv-qualifiers at some level) into ConvertedType.
1158bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
1159 QualType ToType, QualType &ConvertedType)
1160{
1161 const MemberPointerType *ToTypePtr = ToType->getAsMemberPointerType();
1162 if (!ToTypePtr)
1163 return false;
1164
1165 // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
1166 if (From->isNullPointerConstant(Context)) {
1167 ConvertedType = ToType;
1168 return true;
1169 }
1170
1171 // Otherwise, both types have to be member pointers.
1172 const MemberPointerType *FromTypePtr = FromType->getAsMemberPointerType();
1173 if (!FromTypePtr)
1174 return false;
1175
1176 // A pointer to member of B can be converted to a pointer to member of D,
1177 // where D is derived from B (C++ 4.11p2).
1178 QualType FromClass(FromTypePtr->getClass(), 0);
1179 QualType ToClass(ToTypePtr->getClass(), 0);
1180 // FIXME: What happens when these are dependent? Is this function even called?
1181
1182 if (IsDerivedFrom(ToClass, FromClass)) {
1183 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
1184 ToClass.getTypePtr());
1185 return true;
1186 }
1187
1188 return false;
1189}
1190
1191/// CheckMemberPointerConversion - Check the member pointer conversion from the
1192/// expression From to the type ToType. This routine checks for ambiguous or
1193/// virtual (FIXME: or inaccessible) base-to-derived member pointer conversions
1194/// for which IsMemberPointerConversion has already returned true. It returns
1195/// true and produces a diagnostic if there was an error, or returns false
1196/// otherwise.
1197bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType) {
1198 QualType FromType = From->getType();
Sebastian Redl21593ac2009-01-28 18:33:18 +00001199 const MemberPointerType *FromPtrType = FromType->getAsMemberPointerType();
1200 if (!FromPtrType)
1201 return false;
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001202
Sebastian Redl21593ac2009-01-28 18:33:18 +00001203 const MemberPointerType *ToPtrType = ToType->getAsMemberPointerType();
1204 assert(ToPtrType && "No member pointer cast has a target type "
1205 "that is not a member pointer.");
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001206
Sebastian Redl21593ac2009-01-28 18:33:18 +00001207 QualType FromClass = QualType(FromPtrType->getClass(), 0);
1208 QualType ToClass = QualType(ToPtrType->getClass(), 0);
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001209
Sebastian Redl21593ac2009-01-28 18:33:18 +00001210 // FIXME: What about dependent types?
1211 assert(FromClass->isRecordType() && "Pointer into non-class.");
1212 assert(ToClass->isRecordType() && "Pointer into non-class.");
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001213
Sebastian Redl21593ac2009-01-28 18:33:18 +00001214 BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1215 /*DetectVirtual=*/true);
1216 bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1217 assert(DerivationOkay &&
1218 "Should not have been called if derivation isn't OK.");
1219 (void)DerivationOkay;
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001220
Sebastian Redl21593ac2009-01-28 18:33:18 +00001221 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
1222 getUnqualifiedType())) {
1223 // Derivation is ambiguous. Redo the check to find the exact paths.
1224 Paths.clear();
1225 Paths.setRecordingPaths(true);
1226 bool StillOkay = IsDerivedFrom(ToClass, FromClass, Paths);
1227 assert(StillOkay && "Derivation changed due to quantum fluctuation.");
1228 (void)StillOkay;
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001229
Sebastian Redl21593ac2009-01-28 18:33:18 +00001230 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1231 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
1232 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
1233 return true;
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001234 }
Sebastian Redl21593ac2009-01-28 18:33:18 +00001235
1236 if (const CXXRecordType *VBase = Paths.getDetectedVirtual()) {
1237 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
1238 << FromClass << ToClass << QualType(VBase, 0)
1239 << From->getSourceRange();
1240 return true;
1241 }
1242
Sebastian Redl4433aaf2009-01-25 19:43:20 +00001243 return false;
1244}
1245
Douglas Gregor98cd5992008-10-21 23:43:52 +00001246/// IsQualificationConversion - Determines whether the conversion from
1247/// an rvalue of type FromType to ToType is a qualification conversion
1248/// (C++ 4.4).
1249bool
1250Sema::IsQualificationConversion(QualType FromType, QualType ToType)
1251{
1252 FromType = Context.getCanonicalType(FromType);
1253 ToType = Context.getCanonicalType(ToType);
1254
1255 // If FromType and ToType are the same type, this is not a
1256 // qualification conversion.
1257 if (FromType == ToType)
1258 return false;
Sebastian Redl21593ac2009-01-28 18:33:18 +00001259
Douglas Gregor98cd5992008-10-21 23:43:52 +00001260 // (C++ 4.4p4):
1261 // A conversion can add cv-qualifiers at levels other than the first
1262 // in multi-level pointers, subject to the following rules: [...]
1263 bool PreviousToQualsIncludeConst = true;
Douglas Gregor98cd5992008-10-21 23:43:52 +00001264 bool UnwrappedAnyPointer = false;
Douglas Gregor57373262008-10-22 14:17:15 +00001265 while (UnwrapSimilarPointerTypes(FromType, ToType)) {
Douglas Gregor98cd5992008-10-21 23:43:52 +00001266 // Within each iteration of the loop, we check the qualifiers to
1267 // determine if this still looks like a qualification
1268 // conversion. Then, if all is well, we unwrap one more level of
Douglas Gregorf8268ae2008-10-22 17:49:05 +00001269 // pointers or pointers-to-members and do it all again
Douglas Gregor98cd5992008-10-21 23:43:52 +00001270 // until there are no more pointers or pointers-to-members left to
1271 // unwrap.
Douglas Gregor57373262008-10-22 14:17:15 +00001272 UnwrappedAnyPointer = true;
Douglas Gregor98cd5992008-10-21 23:43:52 +00001273
1274 // -- for every j > 0, if const is in cv 1,j then const is in cv
1275 // 2,j, and similarly for volatile.
Douglas Gregor9b6e2d22008-10-22 00:38:21 +00001276 if (!ToType.isAtLeastAsQualifiedAs(FromType))
Douglas Gregor98cd5992008-10-21 23:43:52 +00001277 return false;
Douglas Gregor57373262008-10-22 14:17:15 +00001278
Douglas Gregor98cd5992008-10-21 23:43:52 +00001279 // -- if the cv 1,j and cv 2,j are different, then const is in
1280 // every cv for 0 < k < j.
1281 if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
Douglas Gregor57373262008-10-22 14:17:15 +00001282 && !PreviousToQualsIncludeConst)
Douglas Gregor98cd5992008-10-21 23:43:52 +00001283 return false;
Douglas Gregor57373262008-10-22 14:17:15 +00001284
Douglas Gregor98cd5992008-10-21 23:43:52 +00001285 // Keep track of whether all prior cv-qualifiers in the "to" type
1286 // include const.
1287 PreviousToQualsIncludeConst
1288 = PreviousToQualsIncludeConst && ToType.isConstQualified();
Douglas Gregor57373262008-10-22 14:17:15 +00001289 }
Douglas Gregor98cd5992008-10-21 23:43:52 +00001290
1291 // We are left with FromType and ToType being the pointee types
1292 // after unwrapping the original FromType and ToType the same number
1293 // of types. If we unwrapped any pointers, and if FromType and
1294 // ToType have the same unqualified type (since we checked
1295 // qualifiers above), then this is a qualification conversion.
1296 return UnwrappedAnyPointer &&
1297 FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
1298}
1299
Douglas Gregor734d9862009-01-30 23:27:23 +00001300/// Determines whether there is a user-defined conversion sequence
1301/// (C++ [over.ics.user]) that converts expression From to the type
1302/// ToType. If such a conversion exists, User will contain the
1303/// user-defined conversion sequence that performs such a conversion
1304/// and this routine will return true. Otherwise, this routine returns
1305/// false and User is unspecified.
1306///
1307/// \param AllowConversionFunctions true if the conversion should
1308/// consider conversion functions at all. If false, only constructors
1309/// will be considered.
1310///
1311/// \param AllowExplicit true if the conversion should consider C++0x
1312/// "explicit" conversion functions as well as non-explicit conversion
1313/// functions (C++0x [class.conv.fct]p2).
Douglas Gregor60d62c22008-10-31 16:23:19 +00001314bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
Douglas Gregor09f41cf2009-01-14 15:45:31 +00001315 UserDefinedConversionSequence& User,
Douglas Gregor734d9862009-01-30 23:27:23 +00001316 bool AllowConversionFunctions,
Douglas Gregor09f41cf2009-01-14 15:45:31 +00001317 bool AllowExplicit)
Douglas Gregor60d62c22008-10-31 16:23:19 +00001318{
1319 OverloadCandidateSet CandidateSet;
1320 if (const CXXRecordType *ToRecordType
1321 = dyn_cast_or_null<CXXRecordType>(ToType->getAsRecordType())) {
1322 // C++ [over.match.ctor]p1:
1323 // When objects of class type are direct-initialized (8.5), or
1324 // copy-initialized from an expression of the same or a
1325 // derived class type (8.5), overload resolution selects the
1326 // constructor. [...] For copy-initialization, the candidate
1327 // functions are all the converting constructors (12.3.1) of
1328 // that class. The argument list is the expression-list within
1329 // the parentheses of the initializer.
1330 CXXRecordDecl *ToRecordDecl = ToRecordType->getDecl();
Douglas Gregor9e7d9de2008-12-15 21:24:18 +00001331 DeclarationName ConstructorName
1332 = Context.DeclarationNames.getCXXConstructorName(
Douglas Gregore63ef482009-01-13 00:11:19 +00001333 Context.getCanonicalType(ToType).getUnqualifiedType());
Douglas Gregor3fc749d2008-12-23 00:26:44 +00001334 DeclContext::lookup_iterator Con, ConEnd;
Steve Naroff0701bbb2009-01-08 17:28:14 +00001335 for (llvm::tie(Con, ConEnd) = ToRecordDecl->lookup(ConstructorName);
Douglas Gregor3fc749d2008-12-23 00:26:44 +00001336 Con != ConEnd; ++Con) {
1337 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
Douglas Gregor60d62c22008-10-31 16:23:19 +00001338 if (Constructor->isConvertingConstructor())
Douglas Gregor225c41e2008-11-03 19:09:14 +00001339 AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
1340 /*SuppressUserConversions=*/true);
Douglas Gregor60d62c22008-10-31 16:23:19 +00001341 }
1342 }
1343
Douglas Gregor734d9862009-01-30 23:27:23 +00001344 if (!AllowConversionFunctions) {
1345 // Don't allow any conversion functions to enter the overload set.
1346 } else if (const CXXRecordType *FromRecordType
1347 = dyn_cast_or_null<CXXRecordType>(
1348 From->getType()->getAsRecordType())) {
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001349 // Add all of the conversion functions as candidates.
1350 // FIXME: Look for conversions in base classes!
1351 CXXRecordDecl *FromRecordDecl = FromRecordType->getDecl();
1352 OverloadedFunctionDecl *Conversions
1353 = FromRecordDecl->getConversionFunctions();
1354 for (OverloadedFunctionDecl::function_iterator Func
1355 = Conversions->function_begin();
1356 Func != Conversions->function_end(); ++Func) {
1357 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
Douglas Gregor09f41cf2009-01-14 15:45:31 +00001358 if (AllowExplicit || !Conv->isExplicit())
1359 AddConversionCandidate(Conv, From, ToType, CandidateSet);
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001360 }
1361 }
Douglas Gregor60d62c22008-10-31 16:23:19 +00001362
1363 OverloadCandidateSet::iterator Best;
1364 switch (BestViableFunction(CandidateSet, Best)) {
1365 case OR_Success:
1366 // Record the standard conversion we used and the conversion function.
Douglas Gregor60d62c22008-10-31 16:23:19 +00001367 if (CXXConstructorDecl *Constructor
1368 = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1369 // C++ [over.ics.user]p1:
1370 // If the user-defined conversion is specified by a
1371 // constructor (12.3.1), the initial standard conversion
1372 // sequence converts the source type to the type required by
1373 // the argument of the constructor.
1374 //
1375 // FIXME: What about ellipsis conversions?
1376 QualType ThisType = Constructor->getThisType(Context);
1377 User.Before = Best->Conversions[0].Standard;
1378 User.ConversionFunction = Constructor;
1379 User.After.setAsIdentityConversion();
1380 User.After.FromTypePtr
1381 = ThisType->getAsPointerType()->getPointeeType().getAsOpaquePtr();
1382 User.After.ToTypePtr = ToType.getAsOpaquePtr();
1383 return true;
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001384 } else if (CXXConversionDecl *Conversion
1385 = dyn_cast<CXXConversionDecl>(Best->Function)) {
1386 // C++ [over.ics.user]p1:
1387 //
1388 // [...] If the user-defined conversion is specified by a
1389 // conversion function (12.3.2), the initial standard
1390 // conversion sequence converts the source type to the
1391 // implicit object parameter of the conversion function.
1392 User.Before = Best->Conversions[0].Standard;
1393 User.ConversionFunction = Conversion;
1394
1395 // C++ [over.ics.user]p2:
1396 // The second standard conversion sequence converts the
1397 // result of the user-defined conversion to the target type
1398 // for the sequence. Since an implicit conversion sequence
1399 // is an initialization, the special rules for
1400 // initialization by user-defined conversion apply when
1401 // selecting the best user-defined conversion for a
1402 // user-defined conversion sequence (see 13.3.3 and
1403 // 13.3.3.1).
1404 User.After = Best->FinalConversion;
1405 return true;
Douglas Gregor60d62c22008-10-31 16:23:19 +00001406 } else {
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001407 assert(false && "Not a constructor or conversion function?");
Douglas Gregor60d62c22008-10-31 16:23:19 +00001408 return false;
1409 }
1410
1411 case OR_No_Viable_Function:
Douglas Gregor48f3bb92009-02-18 21:56:37 +00001412 case OR_Deleted:
Douglas Gregor60d62c22008-10-31 16:23:19 +00001413 // No conversion here! We're done.
1414 return false;
1415
1416 case OR_Ambiguous:
1417 // FIXME: See C++ [over.best.ics]p10 for the handling of
1418 // ambiguous conversion sequences.
1419 return false;
1420 }
1421
1422 return false;
1423}
1424
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001425/// CompareImplicitConversionSequences - Compare two implicit
1426/// conversion sequences to determine whether one is better than the
1427/// other or if they are indistinguishable (C++ 13.3.3.2).
1428ImplicitConversionSequence::CompareKind
1429Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1430 const ImplicitConversionSequence& ICS2)
1431{
1432 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1433 // conversion sequences (as defined in 13.3.3.1)
1434 // -- a standard conversion sequence (13.3.3.1.1) is a better
1435 // conversion sequence than a user-defined conversion sequence or
1436 // an ellipsis conversion sequence, and
1437 // -- a user-defined conversion sequence (13.3.3.1.2) is a better
1438 // conversion sequence than an ellipsis conversion sequence
1439 // (13.3.3.1.3).
1440 //
1441 if (ICS1.ConversionKind < ICS2.ConversionKind)
1442 return ImplicitConversionSequence::Better;
1443 else if (ICS2.ConversionKind < ICS1.ConversionKind)
1444 return ImplicitConversionSequence::Worse;
1445
1446 // Two implicit conversion sequences of the same form are
1447 // indistinguishable conversion sequences unless one of the
1448 // following rules apply: (C++ 13.3.3.2p3):
1449 if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1450 return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1451 else if (ICS1.ConversionKind ==
1452 ImplicitConversionSequence::UserDefinedConversion) {
1453 // User-defined conversion sequence U1 is a better conversion
1454 // sequence than another user-defined conversion sequence U2 if
1455 // they contain the same user-defined conversion function or
1456 // constructor and if the second standard conversion sequence of
1457 // U1 is better than the second standard conversion sequence of
1458 // U2 (C++ 13.3.3.2p3).
1459 if (ICS1.UserDefined.ConversionFunction ==
1460 ICS2.UserDefined.ConversionFunction)
1461 return CompareStandardConversionSequences(ICS1.UserDefined.After,
1462 ICS2.UserDefined.After);
1463 }
1464
1465 return ImplicitConversionSequence::Indistinguishable;
1466}
1467
1468/// CompareStandardConversionSequences - Compare two standard
1469/// conversion sequences to determine whether one is better than the
1470/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1471ImplicitConversionSequence::CompareKind
1472Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1473 const StandardConversionSequence& SCS2)
1474{
1475 // Standard conversion sequence S1 is a better conversion sequence
1476 // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1477
1478 // -- S1 is a proper subsequence of S2 (comparing the conversion
1479 // sequences in the canonical form defined by 13.3.3.1.1,
1480 // excluding any Lvalue Transformation; the identity conversion
1481 // sequence is considered to be a subsequence of any
1482 // non-identity conversion sequence) or, if not that,
1483 if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1484 // Neither is a proper subsequence of the other. Do nothing.
1485 ;
1486 else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1487 (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1488 (SCS1.Second == ICK_Identity &&
1489 SCS1.Third == ICK_Identity))
1490 // SCS1 is a proper subsequence of SCS2.
1491 return ImplicitConversionSequence::Better;
1492 else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1493 (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1494 (SCS2.Second == ICK_Identity &&
1495 SCS2.Third == ICK_Identity))
1496 // SCS2 is a proper subsequence of SCS1.
1497 return ImplicitConversionSequence::Worse;
1498
1499 // -- the rank of S1 is better than the rank of S2 (by the rules
1500 // defined below), or, if not that,
1501 ImplicitConversionRank Rank1 = SCS1.getRank();
1502 ImplicitConversionRank Rank2 = SCS2.getRank();
1503 if (Rank1 < Rank2)
1504 return ImplicitConversionSequence::Better;
1505 else if (Rank2 < Rank1)
1506 return ImplicitConversionSequence::Worse;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001507
Douglas Gregor57373262008-10-22 14:17:15 +00001508 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1509 // are indistinguishable unless one of the following rules
1510 // applies:
1511
1512 // A conversion that is not a conversion of a pointer, or
1513 // pointer to member, to bool is better than another conversion
1514 // that is such a conversion.
1515 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1516 return SCS2.isPointerConversionToBool()
1517 ? ImplicitConversionSequence::Better
1518 : ImplicitConversionSequence::Worse;
1519
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001520 // C++ [over.ics.rank]p4b2:
1521 //
1522 // If class B is derived directly or indirectly from class A,
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001523 // conversion of B* to A* is better than conversion of B* to
1524 // void*, and conversion of A* to void* is better than conversion
1525 // of B* to void*.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001526 bool SCS1ConvertsToVoid
1527 = SCS1.isPointerConversionToVoidPointer(Context);
1528 bool SCS2ConvertsToVoid
1529 = SCS2.isPointerConversionToVoidPointer(Context);
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001530 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1531 // Exactly one of the conversion sequences is a conversion to
1532 // a void pointer; it's the worse conversion.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001533 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1534 : ImplicitConversionSequence::Worse;
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001535 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1536 // Neither conversion sequence converts to a void pointer; compare
1537 // their derived-to-base conversions.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001538 if (ImplicitConversionSequence::CompareKind DerivedCK
1539 = CompareDerivedToBaseConversions(SCS1, SCS2))
1540 return DerivedCK;
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001541 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1542 // Both conversion sequences are conversions to void
1543 // pointers. Compare the source types to determine if there's an
1544 // inheritance relationship in their sources.
1545 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1546 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1547
1548 // Adjust the types we're converting from via the array-to-pointer
1549 // conversion, if we need to.
1550 if (SCS1.First == ICK_Array_To_Pointer)
1551 FromType1 = Context.getArrayDecayedType(FromType1);
1552 if (SCS2.First == ICK_Array_To_Pointer)
1553 FromType2 = Context.getArrayDecayedType(FromType2);
1554
1555 QualType FromPointee1
1556 = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1557 QualType FromPointee2
1558 = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1559
1560 if (IsDerivedFrom(FromPointee2, FromPointee1))
1561 return ImplicitConversionSequence::Better;
1562 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1563 return ImplicitConversionSequence::Worse;
Douglas Gregorcb7de522008-11-26 23:31:11 +00001564
1565 // Objective-C++: If one interface is more specific than the
1566 // other, it is the better one.
1567 const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1568 const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1569 if (FromIface1 && FromIface1) {
1570 if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1571 return ImplicitConversionSequence::Better;
1572 else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1573 return ImplicitConversionSequence::Worse;
1574 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001575 }
Douglas Gregor57373262008-10-22 14:17:15 +00001576
1577 // Compare based on qualification conversions (C++ 13.3.3.2p3,
1578 // bullet 3).
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001579 if (ImplicitConversionSequence::CompareKind QualCK
Douglas Gregor57373262008-10-22 14:17:15 +00001580 = CompareQualificationConversions(SCS1, SCS2))
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001581 return QualCK;
Douglas Gregor57373262008-10-22 14:17:15 +00001582
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001583 // C++ [over.ics.rank]p3b4:
1584 // -- S1 and S2 are reference bindings (8.5.3), and the types to
1585 // which the references refer are the same type except for
1586 // top-level cv-qualifiers, and the type to which the reference
1587 // initialized by S2 refers is more cv-qualified than the type
1588 // to which the reference initialized by S1 refers.
1589 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1590 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1591 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1592 T1 = Context.getCanonicalType(T1);
1593 T2 = Context.getCanonicalType(T2);
1594 if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1595 if (T2.isMoreQualifiedThan(T1))
1596 return ImplicitConversionSequence::Better;
1597 else if (T1.isMoreQualifiedThan(T2))
1598 return ImplicitConversionSequence::Worse;
1599 }
1600 }
Douglas Gregor57373262008-10-22 14:17:15 +00001601
1602 return ImplicitConversionSequence::Indistinguishable;
1603}
1604
1605/// CompareQualificationConversions - Compares two standard conversion
1606/// sequences to determine whether they can be ranked based on their
1607/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1608ImplicitConversionSequence::CompareKind
1609Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1610 const StandardConversionSequence& SCS2)
1611{
Douglas Gregorba7e2102008-10-22 15:04:37 +00001612 // C++ 13.3.3.2p3:
Douglas Gregor57373262008-10-22 14:17:15 +00001613 // -- S1 and S2 differ only in their qualification conversion and
1614 // yield similar types T1 and T2 (C++ 4.4), respectively, and the
1615 // cv-qualification signature of type T1 is a proper subset of
1616 // the cv-qualification signature of type T2, and S1 is not the
1617 // deprecated string literal array-to-pointer conversion (4.2).
1618 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1619 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1620 return ImplicitConversionSequence::Indistinguishable;
1621
1622 // FIXME: the example in the standard doesn't use a qualification
1623 // conversion (!)
1624 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1625 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1626 T1 = Context.getCanonicalType(T1);
1627 T2 = Context.getCanonicalType(T2);
1628
1629 // If the types are the same, we won't learn anything by unwrapped
1630 // them.
1631 if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1632 return ImplicitConversionSequence::Indistinguishable;
1633
1634 ImplicitConversionSequence::CompareKind Result
1635 = ImplicitConversionSequence::Indistinguishable;
1636 while (UnwrapSimilarPointerTypes(T1, T2)) {
1637 // Within each iteration of the loop, we check the qualifiers to
1638 // determine if this still looks like a qualification
1639 // conversion. Then, if all is well, we unwrap one more level of
Douglas Gregorf8268ae2008-10-22 17:49:05 +00001640 // pointers or pointers-to-members and do it all again
Douglas Gregor57373262008-10-22 14:17:15 +00001641 // until there are no more pointers or pointers-to-members left
1642 // to unwrap. This essentially mimics what
1643 // IsQualificationConversion does, but here we're checking for a
1644 // strict subset of qualifiers.
1645 if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1646 // The qualifiers are the same, so this doesn't tell us anything
1647 // about how the sequences rank.
1648 ;
1649 else if (T2.isMoreQualifiedThan(T1)) {
1650 // T1 has fewer qualifiers, so it could be the better sequence.
1651 if (Result == ImplicitConversionSequence::Worse)
1652 // Neither has qualifiers that are a subset of the other's
1653 // qualifiers.
1654 return ImplicitConversionSequence::Indistinguishable;
1655
1656 Result = ImplicitConversionSequence::Better;
1657 } else if (T1.isMoreQualifiedThan(T2)) {
1658 // T2 has fewer qualifiers, so it could be the better sequence.
1659 if (Result == ImplicitConversionSequence::Better)
1660 // Neither has qualifiers that are a subset of the other's
1661 // qualifiers.
1662 return ImplicitConversionSequence::Indistinguishable;
1663
1664 Result = ImplicitConversionSequence::Worse;
1665 } else {
1666 // Qualifiers are disjoint.
1667 return ImplicitConversionSequence::Indistinguishable;
1668 }
1669
1670 // If the types after this point are equivalent, we're done.
1671 if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1672 break;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001673 }
1674
Douglas Gregor57373262008-10-22 14:17:15 +00001675 // Check that the winning standard conversion sequence isn't using
1676 // the deprecated string literal array to pointer conversion.
1677 switch (Result) {
1678 case ImplicitConversionSequence::Better:
1679 if (SCS1.Deprecated)
1680 Result = ImplicitConversionSequence::Indistinguishable;
1681 break;
1682
1683 case ImplicitConversionSequence::Indistinguishable:
1684 break;
1685
1686 case ImplicitConversionSequence::Worse:
1687 if (SCS2.Deprecated)
1688 Result = ImplicitConversionSequence::Indistinguishable;
1689 break;
1690 }
1691
1692 return Result;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001693}
1694
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001695/// CompareDerivedToBaseConversions - Compares two standard conversion
1696/// sequences to determine whether they can be ranked based on their
Douglas Gregorcb7de522008-11-26 23:31:11 +00001697/// various kinds of derived-to-base conversions (C++
1698/// [over.ics.rank]p4b3). As part of these checks, we also look at
1699/// conversions between Objective-C interface types.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001700ImplicitConversionSequence::CompareKind
1701Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1702 const StandardConversionSequence& SCS2) {
1703 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1704 QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1705 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1706 QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1707
1708 // Adjust the types we're converting from via the array-to-pointer
1709 // conversion, if we need to.
1710 if (SCS1.First == ICK_Array_To_Pointer)
1711 FromType1 = Context.getArrayDecayedType(FromType1);
1712 if (SCS2.First == ICK_Array_To_Pointer)
1713 FromType2 = Context.getArrayDecayedType(FromType2);
1714
1715 // Canonicalize all of the types.
1716 FromType1 = Context.getCanonicalType(FromType1);
1717 ToType1 = Context.getCanonicalType(ToType1);
1718 FromType2 = Context.getCanonicalType(FromType2);
1719 ToType2 = Context.getCanonicalType(ToType2);
1720
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001721 // C++ [over.ics.rank]p4b3:
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001722 //
1723 // If class B is derived directly or indirectly from class A and
1724 // class C is derived directly or indirectly from B,
Douglas Gregorcb7de522008-11-26 23:31:11 +00001725 //
1726 // For Objective-C, we let A, B, and C also be Objective-C
1727 // interfaces.
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001728
1729 // Compare based on pointer conversions.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001730 if (SCS1.Second == ICK_Pointer_Conversion &&
Douglas Gregor7ca09762008-11-27 01:19:21 +00001731 SCS2.Second == ICK_Pointer_Conversion &&
1732 /*FIXME: Remove if Objective-C id conversions get their own rank*/
1733 FromType1->isPointerType() && FromType2->isPointerType() &&
1734 ToType1->isPointerType() && ToType2->isPointerType()) {
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001735 QualType FromPointee1
1736 = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1737 QualType ToPointee1
1738 = ToType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1739 QualType FromPointee2
1740 = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1741 QualType ToPointee2
1742 = ToType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
Douglas Gregorcb7de522008-11-26 23:31:11 +00001743
1744 const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1745 const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1746 const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType();
1747 const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType();
1748
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001749 // -- conversion of C* to B* is better than conversion of C* to A*,
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001750 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1751 if (IsDerivedFrom(ToPointee1, ToPointee2))
1752 return ImplicitConversionSequence::Better;
1753 else if (IsDerivedFrom(ToPointee2, ToPointee1))
1754 return ImplicitConversionSequence::Worse;
Douglas Gregorcb7de522008-11-26 23:31:11 +00001755
1756 if (ToIface1 && ToIface2) {
1757 if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1758 return ImplicitConversionSequence::Better;
1759 else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1760 return ImplicitConversionSequence::Worse;
1761 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001762 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001763
1764 // -- conversion of B* to A* is better than conversion of C* to A*,
1765 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1766 if (IsDerivedFrom(FromPointee2, FromPointee1))
1767 return ImplicitConversionSequence::Better;
1768 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1769 return ImplicitConversionSequence::Worse;
Douglas Gregorcb7de522008-11-26 23:31:11 +00001770
1771 if (FromIface1 && FromIface2) {
1772 if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1773 return ImplicitConversionSequence::Better;
1774 else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1775 return ImplicitConversionSequence::Worse;
1776 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001777 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001778 }
1779
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001780 // Compare based on reference bindings.
1781 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1782 SCS1.Second == ICK_Derived_To_Base) {
1783 // -- binding of an expression of type C to a reference of type
1784 // B& is better than binding an expression of type C to a
1785 // reference of type A&,
1786 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1787 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1788 if (IsDerivedFrom(ToType1, ToType2))
1789 return ImplicitConversionSequence::Better;
1790 else if (IsDerivedFrom(ToType2, ToType1))
1791 return ImplicitConversionSequence::Worse;
1792 }
1793
Douglas Gregor225c41e2008-11-03 19:09:14 +00001794 // -- binding of an expression of type B to a reference of type
1795 // A& is better than binding an expression of type C to a
1796 // reference of type A&,
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001797 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1798 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1799 if (IsDerivedFrom(FromType2, FromType1))
1800 return ImplicitConversionSequence::Better;
1801 else if (IsDerivedFrom(FromType1, FromType2))
1802 return ImplicitConversionSequence::Worse;
1803 }
1804 }
1805
1806
1807 // FIXME: conversion of A::* to B::* is better than conversion of
1808 // A::* to C::*,
1809
1810 // FIXME: conversion of B::* to C::* is better than conversion of
1811 // A::* to C::*, and
1812
Douglas Gregor225c41e2008-11-03 19:09:14 +00001813 if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1814 SCS1.Second == ICK_Derived_To_Base) {
1815 // -- conversion of C to B is better than conversion of C to A,
1816 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1817 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1818 if (IsDerivedFrom(ToType1, ToType2))
1819 return ImplicitConversionSequence::Better;
1820 else if (IsDerivedFrom(ToType2, ToType1))
1821 return ImplicitConversionSequence::Worse;
1822 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001823
Douglas Gregor225c41e2008-11-03 19:09:14 +00001824 // -- conversion of B to A is better than conversion of C to A.
1825 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1826 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1827 if (IsDerivedFrom(FromType2, FromType1))
1828 return ImplicitConversionSequence::Better;
1829 else if (IsDerivedFrom(FromType1, FromType2))
1830 return ImplicitConversionSequence::Worse;
1831 }
1832 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001833
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001834 return ImplicitConversionSequence::Indistinguishable;
1835}
1836
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001837/// TryCopyInitialization - Try to copy-initialize a value of type
1838/// ToType from the expression From. Return the implicit conversion
1839/// sequence required to pass this argument, which may be a bad
1840/// conversion sequence (meaning that the argument cannot be passed to
Douglas Gregor225c41e2008-11-03 19:09:14 +00001841/// a parameter of this type). If @p SuppressUserConversions, then we
1842/// do not permit any user-defined conversion sequences.
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001843ImplicitConversionSequence
Douglas Gregor225c41e2008-11-03 19:09:14 +00001844Sema::TryCopyInitialization(Expr *From, QualType ToType,
1845 bool SuppressUserConversions) {
Douglas Gregorf9201e02009-02-11 23:02:49 +00001846 if (ToType->isReferenceType()) {
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001847 ImplicitConversionSequence ICS;
Douglas Gregor225c41e2008-11-03 19:09:14 +00001848 CheckReferenceInit(From, ToType, &ICS, SuppressUserConversions);
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001849 return ICS;
1850 } else {
Douglas Gregor225c41e2008-11-03 19:09:14 +00001851 return TryImplicitConversion(From, ToType, SuppressUserConversions);
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001852 }
1853}
1854
1855/// PerformArgumentPassing - Pass the argument Arg into a parameter of
1856/// type ToType. Returns true (and emits a diagnostic) if there was
1857/// an error, returns false if the initialization succeeded.
1858bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
1859 const char* Flavor) {
1860 if (!getLangOptions().CPlusPlus) {
1861 // In C, argument passing is the same as performing an assignment.
1862 QualType FromType = From->getType();
1863 AssignConvertType ConvTy =
1864 CheckSingleAssignmentConstraints(ToType, From);
1865
1866 return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
1867 FromType, From, Flavor);
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001868 }
Chris Lattnerd9d22dd2008-11-24 05:29:24 +00001869
1870 if (ToType->isReferenceType())
1871 return CheckReferenceInit(From, ToType);
1872
Douglas Gregor45920e82008-12-19 17:40:08 +00001873 if (!PerformImplicitConversion(From, ToType, Flavor))
Chris Lattnerd9d22dd2008-11-24 05:29:24 +00001874 return false;
1875
1876 return Diag(From->getSourceRange().getBegin(),
1877 diag::err_typecheck_convert_incompatible)
1878 << ToType << From->getType() << Flavor << From->getSourceRange();
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001879}
1880
Douglas Gregor96176b32008-11-18 23:14:02 +00001881/// TryObjectArgumentInitialization - Try to initialize the object
1882/// parameter of the given member function (@c Method) from the
1883/// expression @p From.
1884ImplicitConversionSequence
1885Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
1886 QualType ClassType = Context.getTypeDeclType(Method->getParent());
1887 unsigned MethodQuals = Method->getTypeQualifiers();
1888 QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals);
1889
1890 // Set up the conversion sequence as a "bad" conversion, to allow us
1891 // to exit early.
1892 ImplicitConversionSequence ICS;
1893 ICS.Standard.setAsIdentityConversion();
1894 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1895
1896 // We need to have an object of class type.
1897 QualType FromType = From->getType();
1898 if (!FromType->isRecordType())
1899 return ICS;
1900
1901 // The implicit object parmeter is has the type "reference to cv X",
1902 // where X is the class of which the function is a member
1903 // (C++ [over.match.funcs]p4). However, when finding an implicit
1904 // conversion sequence for the argument, we are not allowed to
1905 // create temporaries or perform user-defined conversions
1906 // (C++ [over.match.funcs]p5). We perform a simplified version of
1907 // reference binding here, that allows class rvalues to bind to
1908 // non-constant references.
1909
1910 // First check the qualifiers. We don't care about lvalue-vs-rvalue
1911 // with the implicit object parameter (C++ [over.match.funcs]p5).
1912 QualType FromTypeCanon = Context.getCanonicalType(FromType);
1913 if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
1914 !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
1915 return ICS;
1916
1917 // Check that we have either the same type or a derived type. It
1918 // affects the conversion rank.
1919 QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
1920 if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
1921 ICS.Standard.Second = ICK_Identity;
1922 else if (IsDerivedFrom(FromType, ClassType))
1923 ICS.Standard.Second = ICK_Derived_To_Base;
1924 else
1925 return ICS;
1926
1927 // Success. Mark this as a reference binding.
1928 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1929 ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
1930 ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
1931 ICS.Standard.ReferenceBinding = true;
1932 ICS.Standard.DirectBinding = true;
1933 return ICS;
1934}
1935
1936/// PerformObjectArgumentInitialization - Perform initialization of
1937/// the implicit object parameter for the given Method with the given
1938/// expression.
1939bool
1940Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
1941 QualType ImplicitParamType
1942 = Method->getThisType(Context)->getAsPointerType()->getPointeeType();
1943 ImplicitConversionSequence ICS
1944 = TryObjectArgumentInitialization(From, Method);
1945 if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
1946 return Diag(From->getSourceRange().getBegin(),
Chris Lattnerfa25bbb2008-11-19 05:08:23 +00001947 diag::err_implicit_object_parameter_init)
Chris Lattnerd1625842008-11-24 06:25:27 +00001948 << ImplicitParamType << From->getType() << From->getSourceRange();
Douglas Gregor96176b32008-11-18 23:14:02 +00001949
1950 if (ICS.Standard.Second == ICK_Derived_To_Base &&
1951 CheckDerivedToBaseConversion(From->getType(), ImplicitParamType,
1952 From->getSourceRange().getBegin(),
1953 From->getSourceRange()))
1954 return true;
1955
1956 ImpCastExprToType(From, ImplicitParamType, /*isLvalue=*/true);
1957 return false;
1958}
1959
Douglas Gregor09f41cf2009-01-14 15:45:31 +00001960/// TryContextuallyConvertToBool - Attempt to contextually convert the
1961/// expression From to bool (C++0x [conv]p3).
1962ImplicitConversionSequence Sema::TryContextuallyConvertToBool(Expr *From) {
1963 return TryImplicitConversion(From, Context.BoolTy, false, true);
1964}
1965
1966/// PerformContextuallyConvertToBool - Perform a contextual conversion
1967/// of the expression From to bool (C++0x [conv]p3).
1968bool Sema::PerformContextuallyConvertToBool(Expr *&From) {
1969 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(From);
1970 if (!PerformImplicitConversion(From, Context.BoolTy, ICS, "converting"))
1971 return false;
1972
1973 return Diag(From->getSourceRange().getBegin(),
1974 diag::err_typecheck_bool_condition)
1975 << From->getType() << From->getSourceRange();
1976}
1977
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001978/// AddOverloadCandidate - Adds the given function to the set of
Douglas Gregor225c41e2008-11-03 19:09:14 +00001979/// candidate functions, using the given function call arguments. If
1980/// @p SuppressUserConversions, then don't allow user-defined
1981/// conversions via constructors or conversion operators.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001982void
1983Sema::AddOverloadCandidate(FunctionDecl *Function,
1984 Expr **Args, unsigned NumArgs,
Douglas Gregor225c41e2008-11-03 19:09:14 +00001985 OverloadCandidateSet& CandidateSet,
1986 bool SuppressUserConversions)
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001987{
1988 const FunctionTypeProto* Proto
1989 = dyn_cast<FunctionTypeProto>(Function->getType()->getAsFunctionType());
1990 assert(Proto && "Functions without a prototype cannot be overloaded");
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001991 assert(!isa<CXXConversionDecl>(Function) &&
1992 "Use AddConversionCandidate for conversion functions");
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001993
Douglas Gregor88a35142008-12-22 05:46:06 +00001994 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
1995 // If we get here, it's because we're calling a member function
1996 // that is named without a member access expression (e.g.,
1997 // "this->f") that was either written explicitly or created
1998 // implicitly. This can happen with a qualified call to a member
1999 // function, e.g., X::f(). We use a NULL object as the implied
2000 // object argument (C++ [over.call.func]p3).
2001 AddMethodCandidate(Method, 0, Args, NumArgs, CandidateSet,
2002 SuppressUserConversions);
2003 return;
2004 }
2005
2006
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002007 // Add this candidate
2008 CandidateSet.push_back(OverloadCandidate());
2009 OverloadCandidate& Candidate = CandidateSet.back();
2010 Candidate.Function = Function;
Douglas Gregor88a35142008-12-22 05:46:06 +00002011 Candidate.Viable = true;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002012 Candidate.IsSurrogate = false;
Douglas Gregor88a35142008-12-22 05:46:06 +00002013 Candidate.IgnoreObjectArgument = false;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002014
2015 unsigned NumArgsInProto = Proto->getNumArgs();
2016
2017 // (C++ 13.3.2p2): A candidate function having fewer than m
2018 // parameters is viable only if it has an ellipsis in its parameter
2019 // list (8.3.5).
2020 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2021 Candidate.Viable = false;
2022 return;
2023 }
2024
2025 // (C++ 13.3.2p2): A candidate function having more than m parameters
2026 // is viable only if the (m+1)st parameter has a default argument
2027 // (8.3.6). For the purposes of overload resolution, the
2028 // parameter list is truncated on the right, so that there are
2029 // exactly m parameters.
2030 unsigned MinRequiredArgs = Function->getMinRequiredArguments();
2031 if (NumArgs < MinRequiredArgs) {
2032 // Not enough arguments.
2033 Candidate.Viable = false;
2034 return;
2035 }
2036
2037 // Determine the implicit conversion sequences for each of the
2038 // arguments.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002039 Candidate.Conversions.resize(NumArgs);
2040 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2041 if (ArgIdx < NumArgsInProto) {
2042 // (C++ 13.3.2p3): for F to be a viable function, there shall
2043 // exist for each argument an implicit conversion sequence
2044 // (13.3.3.1) that converts that argument to the corresponding
2045 // parameter of F.
2046 QualType ParamType = Proto->getArgType(ArgIdx);
2047 Candidate.Conversions[ArgIdx]
Douglas Gregor225c41e2008-11-03 19:09:14 +00002048 = TryCopyInitialization(Args[ArgIdx], ParamType,
2049 SuppressUserConversions);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002050 if (Candidate.Conversions[ArgIdx].ConversionKind
Douglas Gregor96176b32008-11-18 23:14:02 +00002051 == ImplicitConversionSequence::BadConversion) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002052 Candidate.Viable = false;
Douglas Gregor96176b32008-11-18 23:14:02 +00002053 break;
2054 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002055 } else {
2056 // (C++ 13.3.2p2): For the purposes of overload resolution, any
2057 // argument for which there is no corresponding parameter is
2058 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2059 Candidate.Conversions[ArgIdx].ConversionKind
2060 = ImplicitConversionSequence::EllipsisConversion;
2061 }
2062 }
2063}
2064
Douglas Gregor96176b32008-11-18 23:14:02 +00002065/// AddMethodCandidate - Adds the given C++ member function to the set
2066/// of candidate functions, using the given function call arguments
2067/// and the object argument (@c Object). For example, in a call
2068/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
2069/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
2070/// allow user-defined conversions via constructors or conversion
2071/// operators.
2072void
2073Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
2074 Expr **Args, unsigned NumArgs,
2075 OverloadCandidateSet& CandidateSet,
2076 bool SuppressUserConversions)
2077{
2078 const FunctionTypeProto* Proto
2079 = dyn_cast<FunctionTypeProto>(Method->getType()->getAsFunctionType());
2080 assert(Proto && "Methods without a prototype cannot be overloaded");
2081 assert(!isa<CXXConversionDecl>(Method) &&
2082 "Use AddConversionCandidate for conversion functions");
2083
2084 // Add this candidate
2085 CandidateSet.push_back(OverloadCandidate());
2086 OverloadCandidate& Candidate = CandidateSet.back();
2087 Candidate.Function = Method;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002088 Candidate.IsSurrogate = false;
Douglas Gregor88a35142008-12-22 05:46:06 +00002089 Candidate.IgnoreObjectArgument = false;
Douglas Gregor96176b32008-11-18 23:14:02 +00002090
2091 unsigned NumArgsInProto = Proto->getNumArgs();
2092
2093 // (C++ 13.3.2p2): A candidate function having fewer than m
2094 // parameters is viable only if it has an ellipsis in its parameter
2095 // list (8.3.5).
2096 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2097 Candidate.Viable = false;
2098 return;
2099 }
2100
2101 // (C++ 13.3.2p2): A candidate function having more than m parameters
2102 // is viable only if the (m+1)st parameter has a default argument
2103 // (8.3.6). For the purposes of overload resolution, the
2104 // parameter list is truncated on the right, so that there are
2105 // exactly m parameters.
2106 unsigned MinRequiredArgs = Method->getMinRequiredArguments();
2107 if (NumArgs < MinRequiredArgs) {
2108 // Not enough arguments.
2109 Candidate.Viable = false;
2110 return;
2111 }
2112
2113 Candidate.Viable = true;
2114 Candidate.Conversions.resize(NumArgs + 1);
2115
Douglas Gregor88a35142008-12-22 05:46:06 +00002116 if (Method->isStatic() || !Object)
2117 // The implicit object argument is ignored.
2118 Candidate.IgnoreObjectArgument = true;
2119 else {
2120 // Determine the implicit conversion sequence for the object
2121 // parameter.
2122 Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
2123 if (Candidate.Conversions[0].ConversionKind
2124 == ImplicitConversionSequence::BadConversion) {
2125 Candidate.Viable = false;
2126 return;
2127 }
Douglas Gregor96176b32008-11-18 23:14:02 +00002128 }
2129
2130 // Determine the implicit conversion sequences for each of the
2131 // arguments.
2132 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2133 if (ArgIdx < NumArgsInProto) {
2134 // (C++ 13.3.2p3): for F to be a viable function, there shall
2135 // exist for each argument an implicit conversion sequence
2136 // (13.3.3.1) that converts that argument to the corresponding
2137 // parameter of F.
2138 QualType ParamType = Proto->getArgType(ArgIdx);
2139 Candidate.Conversions[ArgIdx + 1]
2140 = TryCopyInitialization(Args[ArgIdx], ParamType,
2141 SuppressUserConversions);
2142 if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2143 == ImplicitConversionSequence::BadConversion) {
2144 Candidate.Viable = false;
2145 break;
2146 }
2147 } else {
2148 // (C++ 13.3.2p2): For the purposes of overload resolution, any
2149 // argument for which there is no corresponding parameter is
2150 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2151 Candidate.Conversions[ArgIdx + 1].ConversionKind
2152 = ImplicitConversionSequence::EllipsisConversion;
2153 }
2154 }
2155}
2156
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002157/// AddConversionCandidate - Add a C++ conversion function as a
2158/// candidate in the candidate set (C++ [over.match.conv],
2159/// C++ [over.match.copy]). From is the expression we're converting from,
2160/// and ToType is the type that we're eventually trying to convert to
2161/// (which may or may not be the same type as the type that the
2162/// conversion function produces).
2163void
2164Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
2165 Expr *From, QualType ToType,
2166 OverloadCandidateSet& CandidateSet) {
2167 // Add this candidate
2168 CandidateSet.push_back(OverloadCandidate());
2169 OverloadCandidate& Candidate = CandidateSet.back();
2170 Candidate.Function = Conversion;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002171 Candidate.IsSurrogate = false;
Douglas Gregor88a35142008-12-22 05:46:06 +00002172 Candidate.IgnoreObjectArgument = false;
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002173 Candidate.FinalConversion.setAsIdentityConversion();
2174 Candidate.FinalConversion.FromTypePtr
2175 = Conversion->getConversionType().getAsOpaquePtr();
2176 Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
2177
Douglas Gregor96176b32008-11-18 23:14:02 +00002178 // Determine the implicit conversion sequence for the implicit
2179 // object parameter.
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002180 Candidate.Viable = true;
2181 Candidate.Conversions.resize(1);
Douglas Gregor96176b32008-11-18 23:14:02 +00002182 Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002183
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002184 if (Candidate.Conversions[0].ConversionKind
2185 == ImplicitConversionSequence::BadConversion) {
2186 Candidate.Viable = false;
2187 return;
2188 }
2189
2190 // To determine what the conversion from the result of calling the
2191 // conversion function to the type we're eventually trying to
2192 // convert to (ToType), we need to synthesize a call to the
2193 // conversion function and attempt copy initialization from it. This
2194 // makes sure that we get the right semantics with respect to
2195 // lvalues/rvalues and the type. Fortunately, we can allocate this
2196 // call on the stack and we don't need its arguments to be
2197 // well-formed.
2198 DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
2199 SourceLocation());
2200 ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002201 &ConversionRef, false);
Ted Kremenek668bf912009-02-09 20:51:47 +00002202
2203 // Note that it is safe to allocate CallExpr on the stack here because
2204 // there are 0 arguments (i.e., nothing is allocated using ASTContext's
2205 // allocator).
2206 CallExpr Call(Context, &ConversionFn, 0, 0,
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002207 Conversion->getConversionType().getNonReferenceType(),
2208 SourceLocation());
2209 ImplicitConversionSequence ICS = TryCopyInitialization(&Call, ToType, true);
2210 switch (ICS.ConversionKind) {
2211 case ImplicitConversionSequence::StandardConversion:
2212 Candidate.FinalConversion = ICS.Standard;
2213 break;
2214
2215 case ImplicitConversionSequence::BadConversion:
2216 Candidate.Viable = false;
2217 break;
2218
2219 default:
2220 assert(false &&
2221 "Can only end up with a standard conversion sequence or failure");
2222 }
2223}
2224
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002225/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
2226/// converts the given @c Object to a function pointer via the
2227/// conversion function @c Conversion, and then attempts to call it
2228/// with the given arguments (C++ [over.call.object]p2-4). Proto is
2229/// the type of function that we'll eventually be calling.
2230void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
2231 const FunctionTypeProto *Proto,
2232 Expr *Object, Expr **Args, unsigned NumArgs,
2233 OverloadCandidateSet& CandidateSet) {
2234 CandidateSet.push_back(OverloadCandidate());
2235 OverloadCandidate& Candidate = CandidateSet.back();
2236 Candidate.Function = 0;
2237 Candidate.Surrogate = Conversion;
2238 Candidate.Viable = true;
2239 Candidate.IsSurrogate = true;
Douglas Gregor88a35142008-12-22 05:46:06 +00002240 Candidate.IgnoreObjectArgument = false;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00002241 Candidate.Conversions.resize(NumArgs + 1);
2242
2243 // Determine the implicit conversion sequence for the implicit
2244 // object parameter.
2245 ImplicitConversionSequence ObjectInit
2246 = TryObjectArgumentInitialization(Object, Conversion);
2247 if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
2248 Candidate.Viable = false;
2249 return;
2250 }
2251
2252 // The first conversion is actually a user-defined conversion whose
2253 // first conversion is ObjectInit's standard conversion (which is
2254 // effectively a reference binding). Record it as such.
2255 Candidate.Conversions[0].ConversionKind
2256 = ImplicitConversionSequence::UserDefinedConversion;
2257 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
2258 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2259 Candidate.Conversions[0].UserDefined.After
2260 = Candidate.Conversions[0].UserDefined.Before;
2261 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2262
2263 // Find the
2264 unsigned NumArgsInProto = Proto->getNumArgs();
2265
2266 // (C++ 13.3.2p2): A candidate function having fewer than m
2267 // parameters is viable only if it has an ellipsis in its parameter
2268 // list (8.3.5).
2269 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2270 Candidate.Viable = false;
2271 return;
2272 }
2273
2274 // Function types don't have any default arguments, so just check if
2275 // we have enough arguments.
2276 if (NumArgs < NumArgsInProto) {
2277 // Not enough arguments.
2278 Candidate.Viable = false;
2279 return;
2280 }
2281
2282 // Determine the implicit conversion sequences for each of the
2283 // arguments.
2284 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2285 if (ArgIdx < NumArgsInProto) {
2286 // (C++ 13.3.2p3): for F to be a viable function, there shall
2287 // exist for each argument an implicit conversion sequence
2288 // (13.3.3.1) that converts that argument to the corresponding
2289 // parameter of F.
2290 QualType ParamType = Proto->getArgType(ArgIdx);
2291 Candidate.Conversions[ArgIdx + 1]
2292 = TryCopyInitialization(Args[ArgIdx], ParamType,
2293 /*SuppressUserConversions=*/false);
2294 if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2295 == ImplicitConversionSequence::BadConversion) {
2296 Candidate.Viable = false;
2297 break;
2298 }
2299 } else {
2300 // (C++ 13.3.2p2): For the purposes of overload resolution, any
2301 // argument for which there is no corresponding parameter is
2302 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2303 Candidate.Conversions[ArgIdx + 1].ConversionKind
2304 = ImplicitConversionSequence::EllipsisConversion;
2305 }
2306 }
2307}
2308
Douglas Gregor447b69e2008-11-19 03:25:36 +00002309/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
2310/// an acceptable non-member overloaded operator for a call whose
2311/// arguments have types T1 (and, if non-empty, T2). This routine
2312/// implements the check in C++ [over.match.oper]p3b2 concerning
2313/// enumeration types.
2314static bool
2315IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
2316 QualType T1, QualType T2,
2317 ASTContext &Context) {
2318 if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
2319 return true;
2320
2321 const FunctionTypeProto *Proto = Fn->getType()->getAsFunctionTypeProto();
2322 if (Proto->getNumArgs() < 1)
2323 return false;
2324
2325 if (T1->isEnumeralType()) {
2326 QualType ArgType = Proto->getArgType(0).getNonReferenceType();
2327 if (Context.getCanonicalType(T1).getUnqualifiedType()
2328 == Context.getCanonicalType(ArgType).getUnqualifiedType())
2329 return true;
2330 }
2331
2332 if (Proto->getNumArgs() < 2)
2333 return false;
2334
2335 if (!T2.isNull() && T2->isEnumeralType()) {
2336 QualType ArgType = Proto->getArgType(1).getNonReferenceType();
2337 if (Context.getCanonicalType(T2).getUnqualifiedType()
2338 == Context.getCanonicalType(ArgType).getUnqualifiedType())
2339 return true;
2340 }
2341
2342 return false;
2343}
2344
Douglas Gregor96176b32008-11-18 23:14:02 +00002345/// AddOperatorCandidates - Add the overloaded operator candidates for
2346/// the operator Op that was used in an operator expression such as "x
2347/// Op y". S is the scope in which the expression occurred (used for
2348/// name lookup of the operator), Args/NumArgs provides the operator
2349/// arguments, and CandidateSet will store the added overload
2350/// candidates. (C++ [over.match.oper]).
Douglas Gregorf680a0f2009-02-04 16:44:47 +00002351bool Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
2352 SourceLocation OpLoc,
Douglas Gregor96176b32008-11-18 23:14:02 +00002353 Expr **Args, unsigned NumArgs,
Douglas Gregorf680a0f2009-02-04 16:44:47 +00002354 OverloadCandidateSet& CandidateSet,
2355 SourceRange OpRange) {
Douglas Gregor96176b32008-11-18 23:14:02 +00002356 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2357
2358 // C++ [over.match.oper]p3:
2359 // For a unary operator @ with an operand of a type whose
2360 // cv-unqualified version is T1, and for a binary operator @ with
2361 // a left operand of a type whose cv-unqualified version is T1 and
2362 // a right operand of a type whose cv-unqualified version is T2,
2363 // three sets of candidate functions, designated member
2364 // candidates, non-member candidates and built-in candidates, are
2365 // constructed as follows:
2366 QualType T1 = Args[0]->getType();
2367 QualType T2;
2368 if (NumArgs > 1)
2369 T2 = Args[1]->getType();
2370
2371 // -- If T1 is a class type, the set of member candidates is the
2372 // result of the qualified lookup of T1::operator@
2373 // (13.3.1.1.1); otherwise, the set of member candidates is
2374 // empty.
2375 if (const RecordType *T1Rec = T1->getAsRecordType()) {
Douglas Gregor3fc749d2008-12-23 00:26:44 +00002376 DeclContext::lookup_const_iterator Oper, OperEnd;
Steve Naroff0701bbb2009-01-08 17:28:14 +00002377 for (llvm::tie(Oper, OperEnd) = T1Rec->getDecl()->lookup(OpName);
Douglas Gregor3fc749d2008-12-23 00:26:44 +00002378 Oper != OperEnd; ++Oper)
2379 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Args[0],
2380 Args+1, NumArgs - 1, CandidateSet,
Douglas Gregor96176b32008-11-18 23:14:02 +00002381 /*SuppressUserConversions=*/false);
Douglas Gregor96176b32008-11-18 23:14:02 +00002382 }
2383
2384 // -- The set of non-member candidates is the result of the
2385 // unqualified lookup of operator@ in the context of the
2386 // expression according to the usual rules for name lookup in
2387 // unqualified function calls (3.4.2) except that all member
2388 // functions are ignored. However, if no operand has a class
2389 // type, only those non-member functions in the lookup set
2390 // that have a first parameter of type T1 or “reference to
2391 // (possibly cv-qualified) T1”, when T1 is an enumeration
2392 // type, or (if there is a right operand) a second parameter
2393 // of type T2 or “reference to (possibly cv-qualified) T2”,
2394 // when T2 is an enumeration type, are candidate functions.
Douglas Gregorf680a0f2009-02-04 16:44:47 +00002395 LookupResult Operators = LookupName(S, OpName, LookupOperatorName);
2396
2397 if (Operators.isAmbiguous())
2398 return DiagnoseAmbiguousLookup(Operators, OpName, OpLoc, OpRange);
2399 else if (Operators) {
2400 for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end();
2401 Op != OpEnd; ++Op) {
2402 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Op))
2403 if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
2404 AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
2405 /*SuppressUserConversions=*/false);
Douglas Gregor96176b32008-11-18 23:14:02 +00002406 }
Douglas Gregor96176b32008-11-18 23:14:02 +00002407 }
2408
Douglas Gregorf680a0f2009-02-04 16:44:47 +00002409 // Since the set of non-member candidates corresponds to
2410 // *unqualified* lookup of the operator name, we also perform
2411 // argument-dependent lookup (C++ [basic.lookup.argdep]).
2412 AddArgumentDependentLookupCandidates(OpName, Args, NumArgs, CandidateSet);
2413
Douglas Gregor96176b32008-11-18 23:14:02 +00002414 // Add builtin overload candidates (C++ [over.built]).
Douglas Gregor74253732008-11-19 15:42:04 +00002415 AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
Douglas Gregorf680a0f2009-02-04 16:44:47 +00002416
2417 return false;
Douglas Gregor96176b32008-11-18 23:14:02 +00002418}
2419
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002420/// AddBuiltinCandidate - Add a candidate for a built-in
2421/// operator. ResultTy and ParamTys are the result and parameter types
2422/// of the built-in candidate, respectively. Args and NumArgs are the
Douglas Gregor88b4bf22009-01-13 00:52:54 +00002423/// arguments being passed to the candidate. IsAssignmentOperator
2424/// should be true when this built-in candidate is an assignment
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002425/// operator. NumContextualBoolArguments is the number of arguments
2426/// (at the beginning of the argument list) that will be contextually
2427/// converted to bool.
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002428void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2429 Expr **Args, unsigned NumArgs,
Douglas Gregor88b4bf22009-01-13 00:52:54 +00002430 OverloadCandidateSet& CandidateSet,
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002431 bool IsAssignmentOperator,
2432 unsigned NumContextualBoolArguments) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002433 // Add this candidate
2434 CandidateSet.push_back(OverloadCandidate());
2435 OverloadCandidate& Candidate = CandidateSet.back();
2436 Candidate.Function = 0;
Douglas Gregorc9467cf2008-12-12 02:00:36 +00002437 Candidate.IsSurrogate = false;
Douglas Gregor88a35142008-12-22 05:46:06 +00002438 Candidate.IgnoreObjectArgument = false;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002439 Candidate.BuiltinTypes.ResultTy = ResultTy;
2440 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2441 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2442
2443 // Determine the implicit conversion sequences for each of the
2444 // arguments.
2445 Candidate.Viable = true;
2446 Candidate.Conversions.resize(NumArgs);
2447 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
Douglas Gregor88b4bf22009-01-13 00:52:54 +00002448 // C++ [over.match.oper]p4:
2449 // For the built-in assignment operators, conversions of the
2450 // left operand are restricted as follows:
2451 // -- no temporaries are introduced to hold the left operand, and
2452 // -- no user-defined conversions are applied to the left
2453 // operand to achieve a type match with the left-most
2454 // parameter of a built-in candidate.
2455 //
2456 // We block these conversions by turning off user-defined
2457 // conversions, since that is the only way that initialization of
2458 // a reference to a non-class type can occur from something that
2459 // is not of the same type.
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002460 if (ArgIdx < NumContextualBoolArguments) {
2461 assert(ParamTys[ArgIdx] == Context.BoolTy &&
2462 "Contextual conversion to bool requires bool type");
2463 Candidate.Conversions[ArgIdx] = TryContextuallyConvertToBool(Args[ArgIdx]);
2464 } else {
2465 Candidate.Conversions[ArgIdx]
2466 = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx],
2467 ArgIdx == 0 && IsAssignmentOperator);
2468 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002469 if (Candidate.Conversions[ArgIdx].ConversionKind
Douglas Gregor96176b32008-11-18 23:14:02 +00002470 == ImplicitConversionSequence::BadConversion) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002471 Candidate.Viable = false;
Douglas Gregor96176b32008-11-18 23:14:02 +00002472 break;
2473 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002474 }
2475}
2476
2477/// BuiltinCandidateTypeSet - A set of types that will be used for the
2478/// candidate operator functions for built-in operators (C++
2479/// [over.built]). The types are separated into pointer types and
2480/// enumeration types.
2481class BuiltinCandidateTypeSet {
2482 /// TypeSet - A set of types.
Douglas Gregorbf3af052008-11-13 20:12:29 +00002483 typedef llvm::SmallPtrSet<void*, 8> TypeSet;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002484
2485 /// PointerTypes - The set of pointer types that will be used in the
2486 /// built-in candidates.
2487 TypeSet PointerTypes;
2488
2489 /// EnumerationTypes - The set of enumeration types that will be
2490 /// used in the built-in candidates.
2491 TypeSet EnumerationTypes;
2492
2493 /// Context - The AST context in which we will build the type sets.
2494 ASTContext &Context;
2495
2496 bool AddWithMoreQualifiedTypeVariants(QualType Ty);
2497
2498public:
2499 /// iterator - Iterates through the types that are part of the set.
Douglas Gregorbf3af052008-11-13 20:12:29 +00002500 class iterator {
2501 TypeSet::iterator Base;
2502
2503 public:
2504 typedef QualType value_type;
2505 typedef QualType reference;
2506 typedef QualType pointer;
2507 typedef std::ptrdiff_t difference_type;
2508 typedef std::input_iterator_tag iterator_category;
2509
2510 iterator(TypeSet::iterator B) : Base(B) { }
2511
2512 iterator& operator++() {
2513 ++Base;
2514 return *this;
2515 }
2516
2517 iterator operator++(int) {
2518 iterator tmp(*this);
2519 ++(*this);
2520 return tmp;
2521 }
2522
2523 reference operator*() const {
2524 return QualType::getFromOpaquePtr(*Base);
2525 }
2526
2527 pointer operator->() const {
2528 return **this;
2529 }
2530
2531 friend bool operator==(iterator LHS, iterator RHS) {
2532 return LHS.Base == RHS.Base;
2533 }
2534
2535 friend bool operator!=(iterator LHS, iterator RHS) {
2536 return LHS.Base != RHS.Base;
2537 }
2538 };
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002539
2540 BuiltinCandidateTypeSet(ASTContext &Context) : Context(Context) { }
2541
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002542 void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions,
2543 bool AllowExplicitConversions);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002544
2545 /// pointer_begin - First pointer type found;
2546 iterator pointer_begin() { return PointerTypes.begin(); }
2547
2548 /// pointer_end - Last pointer type found;
2549 iterator pointer_end() { return PointerTypes.end(); }
2550
2551 /// enumeration_begin - First enumeration type found;
2552 iterator enumeration_begin() { return EnumerationTypes.begin(); }
2553
2554 /// enumeration_end - Last enumeration type found;
2555 iterator enumeration_end() { return EnumerationTypes.end(); }
2556};
2557
2558/// AddWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
2559/// the set of pointer types along with any more-qualified variants of
2560/// that type. For example, if @p Ty is "int const *", this routine
2561/// will add "int const *", "int const volatile *", "int const
2562/// restrict *", and "int const volatile restrict *" to the set of
2563/// pointer types. Returns true if the add of @p Ty itself succeeded,
2564/// false otherwise.
2565bool BuiltinCandidateTypeSet::AddWithMoreQualifiedTypeVariants(QualType Ty) {
2566 // Insert this type.
Douglas Gregorbf3af052008-11-13 20:12:29 +00002567 if (!PointerTypes.insert(Ty.getAsOpaquePtr()))
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002568 return false;
2569
2570 if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2571 QualType PointeeTy = PointerTy->getPointeeType();
2572 // FIXME: Optimize this so that we don't keep trying to add the same types.
2573
2574 // FIXME: Do we have to add CVR qualifiers at *all* levels to deal
2575 // with all pointer conversions that don't cast away constness?
2576 if (!PointeeTy.isConstQualified())
2577 AddWithMoreQualifiedTypeVariants
2578 (Context.getPointerType(PointeeTy.withConst()));
2579 if (!PointeeTy.isVolatileQualified())
2580 AddWithMoreQualifiedTypeVariants
2581 (Context.getPointerType(PointeeTy.withVolatile()));
2582 if (!PointeeTy.isRestrictQualified())
2583 AddWithMoreQualifiedTypeVariants
2584 (Context.getPointerType(PointeeTy.withRestrict()));
2585 }
2586
2587 return true;
2588}
2589
2590/// AddTypesConvertedFrom - Add each of the types to which the type @p
2591/// Ty can be implicit converted to the given set of @p Types. We're
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002592/// primarily interested in pointer types and enumeration types.
2593/// AllowUserConversions is true if we should look at the conversion
2594/// functions of a class type, and AllowExplicitConversions if we
2595/// should also include the explicit conversion functions of a class
2596/// type.
2597void
2598BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
2599 bool AllowUserConversions,
2600 bool AllowExplicitConversions) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002601 // Only deal with canonical types.
2602 Ty = Context.getCanonicalType(Ty);
2603
2604 // Look through reference types; they aren't part of the type of an
2605 // expression for the purposes of conversions.
2606 if (const ReferenceType *RefTy = Ty->getAsReferenceType())
2607 Ty = RefTy->getPointeeType();
2608
2609 // We don't care about qualifiers on the type.
2610 Ty = Ty.getUnqualifiedType();
2611
2612 if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2613 QualType PointeeTy = PointerTy->getPointeeType();
2614
2615 // Insert our type, and its more-qualified variants, into the set
2616 // of types.
2617 if (!AddWithMoreQualifiedTypeVariants(Ty))
2618 return;
2619
2620 // Add 'cv void*' to our set of types.
2621 if (!Ty->isVoidType()) {
2622 QualType QualVoid
2623 = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2624 AddWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid));
2625 }
2626
2627 // If this is a pointer to a class type, add pointers to its bases
2628 // (with the same level of cv-qualification as the original
2629 // derived class, of course).
2630 if (const RecordType *PointeeRec = PointeeTy->getAsRecordType()) {
2631 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
2632 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2633 Base != ClassDecl->bases_end(); ++Base) {
2634 QualType BaseTy = Context.getCanonicalType(Base->getType());
2635 BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2636
2637 // Add the pointer type, recursively, so that we get all of
2638 // the indirect base classes, too.
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002639 AddTypesConvertedFrom(Context.getPointerType(BaseTy), false, false);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002640 }
2641 }
2642 } else if (Ty->isEnumeralType()) {
Douglas Gregorbf3af052008-11-13 20:12:29 +00002643 EnumerationTypes.insert(Ty.getAsOpaquePtr());
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002644 } else if (AllowUserConversions) {
2645 if (const RecordType *TyRec = Ty->getAsRecordType()) {
2646 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
2647 // FIXME: Visit conversion functions in the base classes, too.
2648 OverloadedFunctionDecl *Conversions
2649 = ClassDecl->getConversionFunctions();
2650 for (OverloadedFunctionDecl::function_iterator Func
2651 = Conversions->function_begin();
2652 Func != Conversions->function_end(); ++Func) {
2653 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002654 if (AllowExplicitConversions || !Conv->isExplicit())
2655 AddTypesConvertedFrom(Conv->getConversionType(), false, false);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002656 }
2657 }
2658 }
2659}
2660
Douglas Gregor74253732008-11-19 15:42:04 +00002661/// AddBuiltinOperatorCandidates - Add the appropriate built-in
2662/// operator overloads to the candidate set (C++ [over.built]), based
2663/// on the operator @p Op and the arguments given. For example, if the
2664/// operator is a binary '+', this routine might add "int
2665/// operator+(int, int)" to cover integer addition.
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002666void
Douglas Gregor74253732008-11-19 15:42:04 +00002667Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
2668 Expr **Args, unsigned NumArgs,
2669 OverloadCandidateSet& CandidateSet) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002670 // The set of "promoted arithmetic types", which are the arithmetic
2671 // types are that preserved by promotion (C++ [over.built]p2). Note
2672 // that the first few of these types are the promoted integral
2673 // types; these types need to be first.
2674 // FIXME: What about complex?
2675 const unsigned FirstIntegralType = 0;
2676 const unsigned LastIntegralType = 13;
2677 const unsigned FirstPromotedIntegralType = 7,
2678 LastPromotedIntegralType = 13;
2679 const unsigned FirstPromotedArithmeticType = 7,
2680 LastPromotedArithmeticType = 16;
2681 const unsigned NumArithmeticTypes = 16;
2682 QualType ArithmeticTypes[NumArithmeticTypes] = {
2683 Context.BoolTy, Context.CharTy, Context.WCharTy,
2684 Context.SignedCharTy, Context.ShortTy,
2685 Context.UnsignedCharTy, Context.UnsignedShortTy,
2686 Context.IntTy, Context.LongTy, Context.LongLongTy,
2687 Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
2688 Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
2689 };
2690
2691 // Find all of the types that the arguments can convert to, but only
2692 // if the operator we're looking at has built-in operator candidates
2693 // that make use of these types.
2694 BuiltinCandidateTypeSet CandidateTypes(Context);
2695 if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
2696 Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
Douglas Gregor74253732008-11-19 15:42:04 +00002697 Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002698 Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
Douglas Gregor74253732008-11-19 15:42:04 +00002699 Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
2700 (Op == OO_Star && NumArgs == 1)) {
2701 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
Douglas Gregor09f41cf2009-01-14 15:45:31 +00002702 CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType(),
2703 true,
2704 (Op == OO_Exclaim ||
2705 Op == OO_AmpAmp ||
2706 Op == OO_PipePipe));
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002707 }
2708
2709 bool isComparison = false;
2710 switch (Op) {
2711 case OO_None:
2712 case NUM_OVERLOADED_OPERATORS:
2713 assert(false && "Expected an overloaded operator");
2714 break;
2715
Douglas Gregor74253732008-11-19 15:42:04 +00002716 case OO_Star: // '*' is either unary or binary
2717 if (NumArgs == 1)
2718 goto UnaryStar;
2719 else
2720 goto BinaryStar;
2721 break;
2722
2723 case OO_Plus: // '+' is either unary or binary
2724 if (NumArgs == 1)
2725 goto UnaryPlus;
2726 else
2727 goto BinaryPlus;
2728 break;
2729
2730 case OO_Minus: // '-' is either unary or binary
2731 if (NumArgs == 1)
2732 goto UnaryMinus;
2733 else
2734 goto BinaryMinus;
2735 break;
2736
2737 case OO_Amp: // '&' is either unary or binary
2738 if (NumArgs == 1)
2739 goto UnaryAmp;
2740 else
2741 goto BinaryAmp;
2742
2743 case OO_PlusPlus:
2744 case OO_MinusMinus:
2745 // C++ [over.built]p3:
2746 //
2747 // For every pair (T, VQ), where T is an arithmetic type, and VQ
2748 // is either volatile or empty, there exist candidate operator
2749 // functions of the form
2750 //
2751 // VQ T& operator++(VQ T&);
2752 // T operator++(VQ T&, int);
2753 //
2754 // C++ [over.built]p4:
2755 //
2756 // For every pair (T, VQ), where T is an arithmetic type other
2757 // than bool, and VQ is either volatile or empty, there exist
2758 // candidate operator functions of the form
2759 //
2760 // VQ T& operator--(VQ T&);
2761 // T operator--(VQ T&, int);
2762 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
2763 Arith < NumArithmeticTypes; ++Arith) {
2764 QualType ArithTy = ArithmeticTypes[Arith];
2765 QualType ParamTypes[2]
2766 = { Context.getReferenceType(ArithTy), Context.IntTy };
2767
2768 // Non-volatile version.
2769 if (NumArgs == 1)
2770 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2771 else
2772 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2773
2774 // Volatile version
2775 ParamTypes[0] = Context.getReferenceType(ArithTy.withVolatile());
2776 if (NumArgs == 1)
2777 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2778 else
2779 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2780 }
2781
2782 // C++ [over.built]p5:
2783 //
2784 // For every pair (T, VQ), where T is a cv-qualified or
2785 // cv-unqualified object type, and VQ is either volatile or
2786 // empty, there exist candidate operator functions of the form
2787 //
2788 // T*VQ& operator++(T*VQ&);
2789 // T*VQ& operator--(T*VQ&);
2790 // T* operator++(T*VQ&, int);
2791 // T* operator--(T*VQ&, int);
2792 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2793 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2794 // Skip pointer types that aren't pointers to object types.
Douglas Gregorcb7de522008-11-26 23:31:11 +00002795 if (!(*Ptr)->getAsPointerType()->getPointeeType()->isIncompleteOrObjectType())
Douglas Gregor74253732008-11-19 15:42:04 +00002796 continue;
2797
2798 QualType ParamTypes[2] = {
2799 Context.getReferenceType(*Ptr), Context.IntTy
2800 };
2801
2802 // Without volatile
2803 if (NumArgs == 1)
2804 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2805 else
2806 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2807
2808 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2809 // With volatile
2810 ParamTypes[0] = Context.getReferenceType((*Ptr).withVolatile());
2811 if (NumArgs == 1)
2812 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2813 else
2814 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2815 }
2816 }
2817 break;
2818
2819 UnaryStar:
2820 // C++ [over.built]p6:
2821 // For every cv-qualified or cv-unqualified object type T, there
2822 // exist candidate operator functions of the form
2823 //
2824 // T& operator*(T*);
2825 //
2826 // C++ [over.built]p7:
2827 // For every function type T, there exist candidate operator
2828 // functions of the form
2829 // T& operator*(T*);
2830 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2831 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2832 QualType ParamTy = *Ptr;
2833 QualType PointeeTy = ParamTy->getAsPointerType()->getPointeeType();
2834 AddBuiltinCandidate(Context.getReferenceType(PointeeTy),
2835 &ParamTy, Args, 1, CandidateSet);
2836 }
2837 break;
2838
2839 UnaryPlus:
2840 // C++ [over.built]p8:
2841 // For every type T, there exist candidate operator functions of
2842 // the form
2843 //
2844 // T* operator+(T*);
2845 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2846 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2847 QualType ParamTy = *Ptr;
2848 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2849 }
2850
2851 // Fall through
2852
2853 UnaryMinus:
2854 // C++ [over.built]p9:
2855 // For every promoted arithmetic type T, there exist candidate
2856 // operator functions of the form
2857 //
2858 // T operator+(T);
2859 // T operator-(T);
2860 for (unsigned Arith = FirstPromotedArithmeticType;
2861 Arith < LastPromotedArithmeticType; ++Arith) {
2862 QualType ArithTy = ArithmeticTypes[Arith];
2863 AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
2864 }
2865 break;
2866
2867 case OO_Tilde:
2868 // C++ [over.built]p10:
2869 // For every promoted integral type T, there exist candidate
2870 // operator functions of the form
2871 //
2872 // T operator~(T);
2873 for (unsigned Int = FirstPromotedIntegralType;
2874 Int < LastPromotedIntegralType; ++Int) {
2875 QualType IntTy = ArithmeticTypes[Int];
2876 AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
2877 }
2878 break;
2879
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002880 case OO_New:
2881 case OO_Delete:
2882 case OO_Array_New:
2883 case OO_Array_Delete:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002884 case OO_Call:
Douglas Gregor74253732008-11-19 15:42:04 +00002885 assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002886 break;
2887
2888 case OO_Comma:
Douglas Gregor74253732008-11-19 15:42:04 +00002889 UnaryAmp:
2890 case OO_Arrow:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002891 // C++ [over.match.oper]p3:
2892 // -- For the operator ',', the unary operator '&', or the
2893 // operator '->', the built-in candidates set is empty.
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002894 break;
2895
2896 case OO_Less:
2897 case OO_Greater:
2898 case OO_LessEqual:
2899 case OO_GreaterEqual:
2900 case OO_EqualEqual:
2901 case OO_ExclaimEqual:
2902 // C++ [over.built]p15:
2903 //
2904 // For every pointer or enumeration type T, there exist
2905 // candidate operator functions of the form
2906 //
2907 // bool operator<(T, T);
2908 // bool operator>(T, T);
2909 // bool operator<=(T, T);
2910 // bool operator>=(T, T);
2911 // bool operator==(T, T);
2912 // bool operator!=(T, T);
2913 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2914 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2915 QualType ParamTypes[2] = { *Ptr, *Ptr };
2916 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2917 }
2918 for (BuiltinCandidateTypeSet::iterator Enum
2919 = CandidateTypes.enumeration_begin();
2920 Enum != CandidateTypes.enumeration_end(); ++Enum) {
2921 QualType ParamTypes[2] = { *Enum, *Enum };
2922 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2923 }
2924
2925 // Fall through.
2926 isComparison = true;
2927
Douglas Gregor74253732008-11-19 15:42:04 +00002928 BinaryPlus:
2929 BinaryMinus:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002930 if (!isComparison) {
2931 // We didn't fall through, so we must have OO_Plus or OO_Minus.
2932
2933 // C++ [over.built]p13:
2934 //
2935 // For every cv-qualified or cv-unqualified object type T
2936 // there exist candidate operator functions of the form
2937 //
2938 // T* operator+(T*, ptrdiff_t);
2939 // T& operator[](T*, ptrdiff_t); [BELOW]
2940 // T* operator-(T*, ptrdiff_t);
2941 // T* operator+(ptrdiff_t, T*);
2942 // T& operator[](ptrdiff_t, T*); [BELOW]
2943 //
2944 // C++ [over.built]p14:
2945 //
2946 // For every T, where T is a pointer to object type, there
2947 // exist candidate operator functions of the form
2948 //
2949 // ptrdiff_t operator-(T, T);
2950 for (BuiltinCandidateTypeSet::iterator Ptr
2951 = CandidateTypes.pointer_begin();
2952 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2953 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
2954
2955 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
2956 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2957
2958 if (Op == OO_Plus) {
2959 // T* operator+(ptrdiff_t, T*);
2960 ParamTypes[0] = ParamTypes[1];
2961 ParamTypes[1] = *Ptr;
2962 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2963 } else {
2964 // ptrdiff_t operator-(T, T);
2965 ParamTypes[1] = *Ptr;
2966 AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
2967 Args, 2, CandidateSet);
2968 }
2969 }
2970 }
2971 // Fall through
2972
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002973 case OO_Slash:
Douglas Gregor74253732008-11-19 15:42:04 +00002974 BinaryStar:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002975 // C++ [over.built]p12:
2976 //
2977 // For every pair of promoted arithmetic types L and R, there
2978 // exist candidate operator functions of the form
2979 //
2980 // LR operator*(L, R);
2981 // LR operator/(L, R);
2982 // LR operator+(L, R);
2983 // LR operator-(L, R);
2984 // bool operator<(L, R);
2985 // bool operator>(L, R);
2986 // bool operator<=(L, R);
2987 // bool operator>=(L, R);
2988 // bool operator==(L, R);
2989 // bool operator!=(L, R);
2990 //
2991 // where LR is the result of the usual arithmetic conversions
2992 // between types L and R.
2993 for (unsigned Left = FirstPromotedArithmeticType;
2994 Left < LastPromotedArithmeticType; ++Left) {
2995 for (unsigned Right = FirstPromotedArithmeticType;
2996 Right < LastPromotedArithmeticType; ++Right) {
2997 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
2998 QualType Result
2999 = isComparison? Context.BoolTy
3000 : UsualArithmeticConversionsType(LandR[0], LandR[1]);
3001 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3002 }
3003 }
3004 break;
3005
3006 case OO_Percent:
Douglas Gregor74253732008-11-19 15:42:04 +00003007 BinaryAmp:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003008 case OO_Caret:
3009 case OO_Pipe:
3010 case OO_LessLess:
3011 case OO_GreaterGreater:
3012 // C++ [over.built]p17:
3013 //
3014 // For every pair of promoted integral types L and R, there
3015 // exist candidate operator functions of the form
3016 //
3017 // LR operator%(L, R);
3018 // LR operator&(L, R);
3019 // LR operator^(L, R);
3020 // LR operator|(L, R);
3021 // L operator<<(L, R);
3022 // L operator>>(L, R);
3023 //
3024 // where LR is the result of the usual arithmetic conversions
3025 // between types L and R.
3026 for (unsigned Left = FirstPromotedIntegralType;
3027 Left < LastPromotedIntegralType; ++Left) {
3028 for (unsigned Right = FirstPromotedIntegralType;
3029 Right < LastPromotedIntegralType; ++Right) {
3030 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
3031 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
3032 ? LandR[0]
3033 : UsualArithmeticConversionsType(LandR[0], LandR[1]);
3034 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
3035 }
3036 }
3037 break;
3038
3039 case OO_Equal:
3040 // C++ [over.built]p20:
3041 //
3042 // For every pair (T, VQ), where T is an enumeration or
3043 // (FIXME:) pointer to member type and VQ is either volatile or
3044 // empty, there exist candidate operator functions of the form
3045 //
3046 // VQ T& operator=(VQ T&, T);
3047 for (BuiltinCandidateTypeSet::iterator Enum
3048 = CandidateTypes.enumeration_begin();
3049 Enum != CandidateTypes.enumeration_end(); ++Enum) {
3050 QualType ParamTypes[2];
3051
3052 // T& operator=(T&, T)
3053 ParamTypes[0] = Context.getReferenceType(*Enum);
3054 ParamTypes[1] = *Enum;
Douglas Gregor88b4bf22009-01-13 00:52:54 +00003055 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
Douglas Gregor09f41cf2009-01-14 15:45:31 +00003056 /*IsAssignmentOperator=*/false);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003057
Douglas Gregor74253732008-11-19 15:42:04 +00003058 if (!Context.getCanonicalType(*Enum).isVolatileQualified()) {
3059 // volatile T& operator=(volatile T&, T)
3060 ParamTypes[0] = Context.getReferenceType((*Enum).withVolatile());
3061 ParamTypes[1] = *Enum;
Douglas Gregor88b4bf22009-01-13 00:52:54 +00003062 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
Douglas Gregor09f41cf2009-01-14 15:45:31 +00003063 /*IsAssignmentOperator=*/false);
Douglas Gregor74253732008-11-19 15:42:04 +00003064 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003065 }
3066 // Fall through.
3067
3068 case OO_PlusEqual:
3069 case OO_MinusEqual:
3070 // C++ [over.built]p19:
3071 //
3072 // For every pair (T, VQ), where T is any type and VQ is either
3073 // volatile or empty, there exist candidate operator functions
3074 // of the form
3075 //
3076 // T*VQ& operator=(T*VQ&, T*);
3077 //
3078 // C++ [over.built]p21:
3079 //
3080 // For every pair (T, VQ), where T is a cv-qualified or
3081 // cv-unqualified object type and VQ is either volatile or
3082 // empty, there exist candidate operator functions of the form
3083 //
3084 // T*VQ& operator+=(T*VQ&, ptrdiff_t);
3085 // T*VQ& operator-=(T*VQ&, ptrdiff_t);
3086 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3087 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3088 QualType ParamTypes[2];
3089 ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
3090
3091 // non-volatile version
3092 ParamTypes[0] = Context.getReferenceType(*Ptr);
Douglas Gregor88b4bf22009-01-13 00:52:54 +00003093 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3094 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003095
Douglas Gregor74253732008-11-19 15:42:04 +00003096 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
3097 // volatile version
3098 ParamTypes[0] = Context.getReferenceType((*Ptr).withVolatile());
Douglas Gregor88b4bf22009-01-13 00:52:54 +00003099 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3100 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregor74253732008-11-19 15:42:04 +00003101 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003102 }
3103 // Fall through.
3104
3105 case OO_StarEqual:
3106 case OO_SlashEqual:
3107 // C++ [over.built]p18:
3108 //
3109 // For every triple (L, VQ, R), where L is an arithmetic type,
3110 // VQ is either volatile or empty, and R is a promoted
3111 // arithmetic type, there exist candidate operator functions of
3112 // the form
3113 //
3114 // VQ L& operator=(VQ L&, R);
3115 // VQ L& operator*=(VQ L&, R);
3116 // VQ L& operator/=(VQ L&, R);
3117 // VQ L& operator+=(VQ L&, R);
3118 // VQ L& operator-=(VQ L&, R);
3119 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
3120 for (unsigned Right = FirstPromotedArithmeticType;
3121 Right < LastPromotedArithmeticType; ++Right) {
3122 QualType ParamTypes[2];
3123 ParamTypes[1] = ArithmeticTypes[Right];
3124
3125 // Add this built-in operator as a candidate (VQ is empty).
3126 ParamTypes[0] = Context.getReferenceType(ArithmeticTypes[Left]);
Douglas Gregor88b4bf22009-01-13 00:52:54 +00003127 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3128 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003129
3130 // Add this built-in operator as a candidate (VQ is 'volatile').
3131 ParamTypes[0] = ArithmeticTypes[Left].withVolatile();
3132 ParamTypes[0] = Context.getReferenceType(ParamTypes[0]);
Douglas Gregor88b4bf22009-01-13 00:52:54 +00003133 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet,
3134 /*IsAssigmentOperator=*/Op == OO_Equal);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003135 }
3136 }
3137 break;
3138
3139 case OO_PercentEqual:
3140 case OO_LessLessEqual:
3141 case OO_GreaterGreaterEqual:
3142 case OO_AmpEqual:
3143 case OO_CaretEqual:
3144 case OO_PipeEqual:
3145 // C++ [over.built]p22:
3146 //
3147 // For every triple (L, VQ, R), where L is an integral type, VQ
3148 // is either volatile or empty, and R is a promoted integral
3149 // type, there exist candidate operator functions of the form
3150 //
3151 // VQ L& operator%=(VQ L&, R);
3152 // VQ L& operator<<=(VQ L&, R);
3153 // VQ L& operator>>=(VQ L&, R);
3154 // VQ L& operator&=(VQ L&, R);
3155 // VQ L& operator^=(VQ L&, R);
3156 // VQ L& operator|=(VQ L&, R);
3157 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
3158 for (unsigned Right = FirstPromotedIntegralType;
3159 Right < LastPromotedIntegralType; ++Right) {
3160 QualType ParamTypes[2];
3161 ParamTypes[1] = ArithmeticTypes[Right];
3162
3163 // Add this built-in operator as a candidate (VQ is empty).
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003164 ParamTypes[0] = Context.getReferenceType(ArithmeticTypes[Left]);
3165 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3166
3167 // Add this built-in operator as a candidate (VQ is 'volatile').
3168 ParamTypes[0] = ArithmeticTypes[Left];
3169 ParamTypes[0].addVolatile();
3170 ParamTypes[0] = Context.getReferenceType(ParamTypes[0]);
3171 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
3172 }
3173 }
3174 break;
3175
Douglas Gregor74253732008-11-19 15:42:04 +00003176 case OO_Exclaim: {
3177 // C++ [over.operator]p23:
3178 //
3179 // There also exist candidate operator functions of the form
3180 //
3181 // bool operator!(bool);
3182 // bool operator&&(bool, bool); [BELOW]
3183 // bool operator||(bool, bool); [BELOW]
3184 QualType ParamTy = Context.BoolTy;
Douglas Gregor09f41cf2009-01-14 15:45:31 +00003185 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet,
3186 /*IsAssignmentOperator=*/false,
3187 /*NumContextualBoolArguments=*/1);
Douglas Gregor74253732008-11-19 15:42:04 +00003188 break;
3189 }
3190
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003191 case OO_AmpAmp:
3192 case OO_PipePipe: {
3193 // C++ [over.operator]p23:
3194 //
3195 // There also exist candidate operator functions of the form
3196 //
Douglas Gregor74253732008-11-19 15:42:04 +00003197 // bool operator!(bool); [ABOVE]
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003198 // bool operator&&(bool, bool);
3199 // bool operator||(bool, bool);
3200 QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
Douglas Gregor09f41cf2009-01-14 15:45:31 +00003201 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet,
3202 /*IsAssignmentOperator=*/false,
3203 /*NumContextualBoolArguments=*/2);
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003204 break;
3205 }
3206
3207 case OO_Subscript:
3208 // C++ [over.built]p13:
3209 //
3210 // For every cv-qualified or cv-unqualified object type T there
3211 // exist candidate operator functions of the form
3212 //
3213 // T* operator+(T*, ptrdiff_t); [ABOVE]
3214 // T& operator[](T*, ptrdiff_t);
3215 // T* operator-(T*, ptrdiff_t); [ABOVE]
3216 // T* operator+(ptrdiff_t, T*); [ABOVE]
3217 // T& operator[](ptrdiff_t, T*);
3218 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
3219 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
3220 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
3221 QualType PointeeType = (*Ptr)->getAsPointerType()->getPointeeType();
3222 QualType ResultTy = Context.getReferenceType(PointeeType);
3223
3224 // T& operator[](T*, ptrdiff_t)
3225 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3226
3227 // T& operator[](ptrdiff_t, T*);
3228 ParamTypes[0] = ParamTypes[1];
3229 ParamTypes[1] = *Ptr;
3230 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
3231 }
3232 break;
3233
3234 case OO_ArrowStar:
3235 // FIXME: No support for pointer-to-members yet.
3236 break;
3237 }
3238}
3239
Douglas Gregorfa047642009-02-04 00:32:51 +00003240/// \brief Add function candidates found via argument-dependent lookup
3241/// to the set of overloading candidates.
3242///
3243/// This routine performs argument-dependent name lookup based on the
3244/// given function name (which may also be an operator name) and adds
3245/// all of the overload candidates found by ADL to the overload
3246/// candidate set (C++ [basic.lookup.argdep]).
3247void
3248Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
3249 Expr **Args, unsigned NumArgs,
3250 OverloadCandidateSet& CandidateSet) {
3251 // Find all of the associated namespaces and classes based on the
3252 // arguments we have.
3253 AssociatedNamespaceSet AssociatedNamespaces;
3254 AssociatedClassSet AssociatedClasses;
3255 FindAssociatedClassesAndNamespaces(Args, NumArgs,
3256 AssociatedNamespaces, AssociatedClasses);
3257
3258 // C++ [basic.lookup.argdep]p3:
3259 //
3260 // Let X be the lookup set produced by unqualified lookup (3.4.1)
3261 // and let Y be the lookup set produced by argument dependent
3262 // lookup (defined as follows). If X contains [...] then Y is
3263 // empty. Otherwise Y is the set of declarations found in the
3264 // namespaces associated with the argument types as described
3265 // below. The set of declarations found by the lookup of the name
3266 // is the union of X and Y.
3267 //
3268 // Here, we compute Y and add its members to the overloaded
3269 // candidate set.
3270 llvm::SmallPtrSet<FunctionDecl *, 16> KnownCandidates;
3271 for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(),
3272 NSEnd = AssociatedNamespaces.end();
3273 NS != NSEnd; ++NS) {
3274 // When considering an associated namespace, the lookup is the
3275 // same as the lookup performed when the associated namespace is
3276 // used as a qualifier (3.4.3.2) except that:
3277 //
3278 // -- Any using-directives in the associated namespace are
3279 // ignored.
3280 //
3281 // -- FIXME: Any namespace-scope friend functions declared in
3282 // associated classes are visible within their respective
3283 // namespaces even if they are not visible during an ordinary
3284 // lookup (11.4).
3285 DeclContext::lookup_iterator I, E;
3286 for (llvm::tie(I, E) = (*NS)->lookup(Name); I != E; ++I) {
3287 FunctionDecl *Func = dyn_cast<FunctionDecl>(*I);
3288 if (!Func)
3289 break;
3290
3291 if (KnownCandidates.empty()) {
3292 // Record all of the function candidates that we've already
3293 // added to the overload set, so that we don't add those same
3294 // candidates a second time.
3295 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3296 CandEnd = CandidateSet.end();
3297 Cand != CandEnd; ++Cand)
3298 KnownCandidates.insert(Cand->Function);
3299 }
3300
3301 // If we haven't seen this function before, add it as a
3302 // candidate.
3303 if (KnownCandidates.insert(Func))
3304 AddOverloadCandidate(Func, Args, NumArgs, CandidateSet);
3305 }
3306 }
3307}
3308
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003309/// isBetterOverloadCandidate - Determines whether the first overload
3310/// candidate is a better candidate than the second (C++ 13.3.3p1).
3311bool
3312Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
3313 const OverloadCandidate& Cand2)
3314{
3315 // Define viable functions to be better candidates than non-viable
3316 // functions.
3317 if (!Cand2.Viable)
3318 return Cand1.Viable;
3319 else if (!Cand1.Viable)
3320 return false;
3321
Douglas Gregor88a35142008-12-22 05:46:06 +00003322 // C++ [over.match.best]p1:
3323 //
3324 // -- if F is a static member function, ICS1(F) is defined such
3325 // that ICS1(F) is neither better nor worse than ICS1(G) for
3326 // any function G, and, symmetrically, ICS1(G) is neither
3327 // better nor worse than ICS1(F).
3328 unsigned StartArg = 0;
3329 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
3330 StartArg = 1;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003331
3332 // (C++ 13.3.3p1): a viable function F1 is defined to be a better
3333 // function than another viable function F2 if for all arguments i,
3334 // ICSi(F1) is not a worse conversion sequence than ICSi(F2), and
3335 // then...
3336 unsigned NumArgs = Cand1.Conversions.size();
3337 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
3338 bool HasBetterConversion = false;
Douglas Gregor88a35142008-12-22 05:46:06 +00003339 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003340 switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
3341 Cand2.Conversions[ArgIdx])) {
3342 case ImplicitConversionSequence::Better:
3343 // Cand1 has a better conversion sequence.
3344 HasBetterConversion = true;
3345 break;
3346
3347 case ImplicitConversionSequence::Worse:
3348 // Cand1 can't be better than Cand2.
3349 return false;
3350
3351 case ImplicitConversionSequence::Indistinguishable:
3352 // Do nothing.
3353 break;
3354 }
3355 }
3356
3357 if (HasBetterConversion)
3358 return true;
3359
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003360 // FIXME: Several other bullets in (C++ 13.3.3p1) need to be
3361 // implemented, but they require template support.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003362
Douglas Gregorf1991ea2008-11-07 22:36:19 +00003363 // C++ [over.match.best]p1b4:
3364 //
3365 // -- the context is an initialization by user-defined conversion
3366 // (see 8.5, 13.3.1.5) and the standard conversion sequence
3367 // from the return type of F1 to the destination type (i.e.,
3368 // the type of the entity being initialized) is a better
3369 // conversion sequence than the standard conversion sequence
3370 // from the return type of F2 to the destination type.
Douglas Gregor447b69e2008-11-19 03:25:36 +00003371 if (Cand1.Function && Cand2.Function &&
3372 isa<CXXConversionDecl>(Cand1.Function) &&
Douglas Gregorf1991ea2008-11-07 22:36:19 +00003373 isa<CXXConversionDecl>(Cand2.Function)) {
3374 switch (CompareStandardConversionSequences(Cand1.FinalConversion,
3375 Cand2.FinalConversion)) {
3376 case ImplicitConversionSequence::Better:
3377 // Cand1 has a better conversion sequence.
3378 return true;
3379
3380 case ImplicitConversionSequence::Worse:
3381 // Cand1 can't be better than Cand2.
3382 return false;
3383
3384 case ImplicitConversionSequence::Indistinguishable:
3385 // Do nothing
3386 break;
3387 }
3388 }
3389
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003390 return false;
3391}
3392
3393/// BestViableFunction - Computes the best viable function (C++ 13.3.3)
3394/// within an overload candidate set. If overloading is successful,
3395/// the result will be OR_Success and Best will be set to point to the
3396/// best viable function within the candidate set. Otherwise, one of
3397/// several kinds of errors will be returned; see
3398/// Sema::OverloadingResult.
3399Sema::OverloadingResult
3400Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
3401 OverloadCandidateSet::iterator& Best)
3402{
3403 // Find the best viable function.
3404 Best = CandidateSet.end();
3405 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3406 Cand != CandidateSet.end(); ++Cand) {
3407 if (Cand->Viable) {
3408 if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
3409 Best = Cand;
3410 }
3411 }
3412
3413 // If we didn't find any viable functions, abort.
3414 if (Best == CandidateSet.end())
3415 return OR_No_Viable_Function;
3416
3417 // Make sure that this function is better than every other viable
3418 // function. If not, we have an ambiguity.
3419 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3420 Cand != CandidateSet.end(); ++Cand) {
3421 if (Cand->Viable &&
3422 Cand != Best &&
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003423 !isBetterOverloadCandidate(*Best, *Cand)) {
3424 Best = CandidateSet.end();
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003425 return OR_Ambiguous;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003426 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003427 }
3428
3429 // Best is the best viable function.
Douglas Gregor48f3bb92009-02-18 21:56:37 +00003430 if (Best->Function &&
3431 (Best->Function->isDeleted() ||
3432 Best->Function->getAttr<UnavailableAttr>()))
3433 return OR_Deleted;
3434
3435 // If Best refers to a function that is either deleted (C++0x) or
3436 // unavailable (Clang extension) report an error.
3437
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003438 return OR_Success;
3439}
3440
3441/// PrintOverloadCandidates - When overload resolution fails, prints
3442/// diagnostic messages containing the candidates in the candidate
3443/// set. If OnlyViable is true, only viable candidates will be printed.
3444void
3445Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
3446 bool OnlyViable)
3447{
3448 OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3449 LastCand = CandidateSet.end();
3450 for (; Cand != LastCand; ++Cand) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003451 if (Cand->Viable || !OnlyViable) {
3452 if (Cand->Function) {
Douglas Gregor48f3bb92009-02-18 21:56:37 +00003453 if (Cand->Function->isDeleted() ||
3454 Cand->Function->getAttr<UnavailableAttr>()) {
3455 // Deleted or "unavailable" function.
3456 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate_deleted)
3457 << Cand->Function->isDeleted();
3458 } else {
3459 // Normal function
3460 // FIXME: Give a better reason!
3461 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
3462 }
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003463 } else if (Cand->IsSurrogate) {
Douglas Gregor621b3932008-11-21 02:54:28 +00003464 // Desugar the type of the surrogate down to a function type,
3465 // retaining as many typedefs as possible while still showing
3466 // the function type (and, therefore, its parameter types).
3467 QualType FnType = Cand->Surrogate->getConversionType();
3468 bool isReference = false;
3469 bool isPointer = false;
3470 if (const ReferenceType *FnTypeRef = FnType->getAsReferenceType()) {
3471 FnType = FnTypeRef->getPointeeType();
3472 isReference = true;
3473 }
3474 if (const PointerType *FnTypePtr = FnType->getAsPointerType()) {
3475 FnType = FnTypePtr->getPointeeType();
3476 isPointer = true;
3477 }
3478 // Desugar down to a function type.
3479 FnType = QualType(FnType->getAsFunctionType(), 0);
3480 // Reconstruct the pointer/reference as appropriate.
3481 if (isPointer) FnType = Context.getPointerType(FnType);
3482 if (isReference) FnType = Context.getReferenceType(FnType);
3483
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003484 Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
Chris Lattnerd1625842008-11-24 06:25:27 +00003485 << FnType;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003486 } else {
3487 // FIXME: We need to get the identifier in here
3488 // FIXME: Do we want the error message to point at the
3489 // operator? (built-ins won't have a location)
3490 QualType FnType
3491 = Context.getFunctionType(Cand->BuiltinTypes.ResultTy,
3492 Cand->BuiltinTypes.ParamTypes,
3493 Cand->Conversions.size(),
3494 false, 0);
3495
Chris Lattnerd1625842008-11-24 06:25:27 +00003496 Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003497 }
3498 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003499 }
3500}
3501
Douglas Gregor904eed32008-11-10 20:40:00 +00003502/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
3503/// an overloaded function (C++ [over.over]), where @p From is an
3504/// expression with overloaded function type and @p ToType is the type
3505/// we're trying to resolve to. For example:
3506///
3507/// @code
3508/// int f(double);
3509/// int f(int);
3510///
3511/// int (*pfd)(double) = f; // selects f(double)
3512/// @endcode
3513///
3514/// This routine returns the resulting FunctionDecl if it could be
3515/// resolved, and NULL otherwise. When @p Complain is true, this
3516/// routine will emit diagnostics if there is an error.
3517FunctionDecl *
Sebastian Redl33b399a2009-02-04 21:23:32 +00003518Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
Douglas Gregor904eed32008-11-10 20:40:00 +00003519 bool Complain) {
3520 QualType FunctionType = ToType;
Sebastian Redl33b399a2009-02-04 21:23:32 +00003521 bool IsMember = false;
Douglas Gregor904eed32008-11-10 20:40:00 +00003522 if (const PointerLikeType *ToTypePtr = ToType->getAsPointerLikeType())
3523 FunctionType = ToTypePtr->getPointeeType();
Sebastian Redl33b399a2009-02-04 21:23:32 +00003524 else if (const MemberPointerType *MemTypePtr =
3525 ToType->getAsMemberPointerType()) {
3526 FunctionType = MemTypePtr->getPointeeType();
3527 IsMember = true;
3528 }
Douglas Gregor904eed32008-11-10 20:40:00 +00003529
3530 // We only look at pointers or references to functions.
3531 if (!FunctionType->isFunctionType())
3532 return 0;
3533
3534 // Find the actual overloaded function declaration.
3535 OverloadedFunctionDecl *Ovl = 0;
3536
3537 // C++ [over.over]p1:
3538 // [...] [Note: any redundant set of parentheses surrounding the
3539 // overloaded function name is ignored (5.1). ]
3540 Expr *OvlExpr = From->IgnoreParens();
3541
3542 // C++ [over.over]p1:
3543 // [...] The overloaded function name can be preceded by the &
3544 // operator.
3545 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
3546 if (UnOp->getOpcode() == UnaryOperator::AddrOf)
3547 OvlExpr = UnOp->getSubExpr()->IgnoreParens();
3548 }
3549
3550 // Try to dig out the overloaded function.
3551 if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr))
3552 Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
3553
3554 // If there's no overloaded function declaration, we're done.
3555 if (!Ovl)
3556 return 0;
3557
3558 // Look through all of the overloaded functions, searching for one
3559 // whose type matches exactly.
3560 // FIXME: When templates or using declarations come along, we'll actually
3561 // have to deal with duplicates, partial ordering, etc. For now, we
3562 // can just do a simple search.
3563 FunctionType = Context.getCanonicalType(FunctionType.getUnqualifiedType());
3564 for (OverloadedFunctionDecl::function_iterator Fun = Ovl->function_begin();
3565 Fun != Ovl->function_end(); ++Fun) {
3566 // C++ [over.over]p3:
3567 // Non-member functions and static member functions match
Sebastian Redl0defd762009-02-05 12:33:33 +00003568 // targets of type "pointer-to-function" or "reference-to-function."
3569 // Nonstatic member functions match targets of
Sebastian Redl33b399a2009-02-04 21:23:32 +00003570 // type "pointer-to-member-function."
3571 // Note that according to DR 247, the containing class does not matter.
3572 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun)) {
3573 // Skip non-static functions when converting to pointer, and static
3574 // when converting to member pointer.
3575 if (Method->isStatic() == IsMember)
Douglas Gregor904eed32008-11-10 20:40:00 +00003576 continue;
Sebastian Redl33b399a2009-02-04 21:23:32 +00003577 } else if (IsMember)
3578 continue;
Douglas Gregor904eed32008-11-10 20:40:00 +00003579
3580 if (FunctionType == Context.getCanonicalType((*Fun)->getType()))
3581 return *Fun;
3582 }
3583
3584 return 0;
3585}
3586
Douglas Gregorf6b89692008-11-26 05:54:23 +00003587/// ResolveOverloadedCallFn - Given the call expression that calls Fn
Douglas Gregorfa047642009-02-04 00:32:51 +00003588/// (which eventually refers to the declaration Func) and the call
3589/// arguments Args/NumArgs, attempt to resolve the function call down
3590/// to a specific function. If overload resolution succeeds, returns
3591/// the function declaration produced by overload
Douglas Gregor0a396682008-11-26 06:01:48 +00003592/// resolution. Otherwise, emits diagnostics, deletes all of the
Douglas Gregorf6b89692008-11-26 05:54:23 +00003593/// arguments and Fn, and returns NULL.
Douglas Gregorfa047642009-02-04 00:32:51 +00003594FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, NamedDecl *Callee,
Douglas Gregor17330012009-02-04 15:01:18 +00003595 DeclarationName UnqualifiedName,
Douglas Gregor0a396682008-11-26 06:01:48 +00003596 SourceLocation LParenLoc,
3597 Expr **Args, unsigned NumArgs,
3598 SourceLocation *CommaLocs,
Douglas Gregorfa047642009-02-04 00:32:51 +00003599 SourceLocation RParenLoc,
Douglas Gregor17330012009-02-04 15:01:18 +00003600 bool &ArgumentDependentLookup) {
Douglas Gregorf6b89692008-11-26 05:54:23 +00003601 OverloadCandidateSet CandidateSet;
Douglas Gregor17330012009-02-04 15:01:18 +00003602
3603 // Add the functions denoted by Callee to the set of candidate
3604 // functions. While we're doing so, track whether argument-dependent
3605 // lookup still applies, per:
3606 //
3607 // C++0x [basic.lookup.argdep]p3:
3608 // Let X be the lookup set produced by unqualified lookup (3.4.1)
3609 // and let Y be the lookup set produced by argument dependent
3610 // lookup (defined as follows). If X contains
3611 //
3612 // -- a declaration of a class member, or
3613 //
3614 // -- a block-scope function declaration that is not a
3615 // using-declaration, or
3616 //
3617 // -- a declaration that is neither a function or a function
3618 // template
3619 //
3620 // then Y is empty.
Douglas Gregorfa047642009-02-04 00:32:51 +00003621 if (OverloadedFunctionDecl *Ovl
Douglas Gregor17330012009-02-04 15:01:18 +00003622 = dyn_cast_or_null<OverloadedFunctionDecl>(Callee)) {
3623 for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
3624 FuncEnd = Ovl->function_end();
3625 Func != FuncEnd; ++Func) {
3626 AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet);
3627
3628 if ((*Func)->getDeclContext()->isRecord() ||
3629 (*Func)->getDeclContext()->isFunctionOrMethod())
3630 ArgumentDependentLookup = false;
3631 }
3632 } else if (FunctionDecl *Func = dyn_cast_or_null<FunctionDecl>(Callee)) {
3633 AddOverloadCandidate(Func, Args, NumArgs, CandidateSet);
3634
3635 if (Func->getDeclContext()->isRecord() ||
3636 Func->getDeclContext()->isFunctionOrMethod())
3637 ArgumentDependentLookup = false;
3638 }
3639
3640 if (Callee)
3641 UnqualifiedName = Callee->getDeclName();
3642
Douglas Gregorfa047642009-02-04 00:32:51 +00003643 if (ArgumentDependentLookup)
Douglas Gregor17330012009-02-04 15:01:18 +00003644 AddArgumentDependentLookupCandidates(UnqualifiedName, Args, NumArgs,
Douglas Gregorfa047642009-02-04 00:32:51 +00003645 CandidateSet);
3646
Douglas Gregorf6b89692008-11-26 05:54:23 +00003647 OverloadCandidateSet::iterator Best;
3648 switch (BestViableFunction(CandidateSet, Best)) {
Douglas Gregor0a396682008-11-26 06:01:48 +00003649 case OR_Success:
3650 return Best->Function;
Douglas Gregorf6b89692008-11-26 05:54:23 +00003651
3652 case OR_No_Viable_Function:
Chris Lattner4330d652009-02-17 07:29:20 +00003653 Diag(Fn->getSourceRange().getBegin(),
Douglas Gregorf6b89692008-11-26 05:54:23 +00003654 diag::err_ovl_no_viable_function_in_call)
Chris Lattner4330d652009-02-17 07:29:20 +00003655 << UnqualifiedName << Fn->getSourceRange();
Douglas Gregorf6b89692008-11-26 05:54:23 +00003656 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3657 break;
3658
3659 case OR_Ambiguous:
3660 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
Douglas Gregor17330012009-02-04 15:01:18 +00003661 << UnqualifiedName << Fn->getSourceRange();
Douglas Gregorf6b89692008-11-26 05:54:23 +00003662 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3663 break;
Douglas Gregor48f3bb92009-02-18 21:56:37 +00003664
3665 case OR_Deleted:
3666 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
3667 << Best->Function->isDeleted()
3668 << UnqualifiedName
3669 << Fn->getSourceRange();
3670 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3671 break;
Douglas Gregorf6b89692008-11-26 05:54:23 +00003672 }
3673
3674 // Overload resolution failed. Destroy all of the subexpressions and
3675 // return NULL.
3676 Fn->Destroy(Context);
3677 for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
3678 Args[Arg]->Destroy(Context);
3679 return 0;
3680}
3681
Douglas Gregor88a35142008-12-22 05:46:06 +00003682/// BuildCallToMemberFunction - Build a call to a member
3683/// function. MemExpr is the expression that refers to the member
3684/// function (and includes the object parameter), Args/NumArgs are the
3685/// arguments to the function call (not including the object
3686/// parameter). The caller needs to validate that the member
3687/// expression refers to a member function or an overloaded member
3688/// function.
3689Sema::ExprResult
3690Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
3691 SourceLocation LParenLoc, Expr **Args,
3692 unsigned NumArgs, SourceLocation *CommaLocs,
3693 SourceLocation RParenLoc) {
3694 // Dig out the member expression. This holds both the object
3695 // argument and the member function we're referring to.
3696 MemberExpr *MemExpr = 0;
3697 if (ParenExpr *ParenE = dyn_cast<ParenExpr>(MemExprE))
3698 MemExpr = dyn_cast<MemberExpr>(ParenE->getSubExpr());
3699 else
3700 MemExpr = dyn_cast<MemberExpr>(MemExprE);
3701 assert(MemExpr && "Building member call without member expression");
3702
3703 // Extract the object argument.
3704 Expr *ObjectArg = MemExpr->getBase();
3705 if (MemExpr->isArrow())
Ted Kremenek8189cde2009-02-07 01:47:29 +00003706 ObjectArg = new (Context) UnaryOperator(ObjectArg, UnaryOperator::Deref,
3707 ObjectArg->getType()->getAsPointerType()->getPointeeType(),
Douglas Gregor611a8c42009-02-19 00:52:42 +00003708 ObjectArg->getLocStart());
Douglas Gregor88a35142008-12-22 05:46:06 +00003709 CXXMethodDecl *Method = 0;
3710 if (OverloadedFunctionDecl *Ovl
3711 = dyn_cast<OverloadedFunctionDecl>(MemExpr->getMemberDecl())) {
3712 // Add overload candidates
3713 OverloadCandidateSet CandidateSet;
3714 for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
3715 FuncEnd = Ovl->function_end();
3716 Func != FuncEnd; ++Func) {
3717 assert(isa<CXXMethodDecl>(*Func) && "Function is not a method");
3718 Method = cast<CXXMethodDecl>(*Func);
3719 AddMethodCandidate(Method, ObjectArg, Args, NumArgs, CandidateSet,
3720 /*SuppressUserConversions=*/false);
3721 }
3722
3723 OverloadCandidateSet::iterator Best;
3724 switch (BestViableFunction(CandidateSet, Best)) {
3725 case OR_Success:
3726 Method = cast<CXXMethodDecl>(Best->Function);
3727 break;
3728
3729 case OR_No_Viable_Function:
3730 Diag(MemExpr->getSourceRange().getBegin(),
3731 diag::err_ovl_no_viable_member_function_in_call)
Chris Lattner4330d652009-02-17 07:29:20 +00003732 << Ovl->getDeclName() << MemExprE->getSourceRange();
Douglas Gregor88a35142008-12-22 05:46:06 +00003733 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3734 // FIXME: Leaking incoming expressions!
3735 return true;
3736
3737 case OR_Ambiguous:
3738 Diag(MemExpr->getSourceRange().getBegin(),
3739 diag::err_ovl_ambiguous_member_call)
3740 << Ovl->getDeclName() << MemExprE->getSourceRange();
3741 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3742 // FIXME: Leaking incoming expressions!
3743 return true;
Douglas Gregor48f3bb92009-02-18 21:56:37 +00003744
3745 case OR_Deleted:
3746 Diag(MemExpr->getSourceRange().getBegin(),
3747 diag::err_ovl_deleted_member_call)
3748 << Best->Function->isDeleted()
3749 << Ovl->getDeclName() << MemExprE->getSourceRange();
3750 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3751 // FIXME: Leaking incoming expressions!
3752 return true;
Douglas Gregor88a35142008-12-22 05:46:06 +00003753 }
3754
3755 FixOverloadedFunctionReference(MemExpr, Method);
3756 } else {
3757 Method = dyn_cast<CXXMethodDecl>(MemExpr->getMemberDecl());
3758 }
3759
3760 assert(Method && "Member call to something that isn't a method?");
Ted Kremenek8189cde2009-02-07 01:47:29 +00003761 ExprOwningPtr<CXXMemberCallExpr>
Ted Kremenek668bf912009-02-09 20:51:47 +00003762 TheCall(this, new (Context) CXXMemberCallExpr(Context, MemExpr, Args,
3763 NumArgs,
Douglas Gregor88a35142008-12-22 05:46:06 +00003764 Method->getResultType().getNonReferenceType(),
3765 RParenLoc));
3766
3767 // Convert the object argument (for a non-static member function call).
3768 if (!Method->isStatic() &&
3769 PerformObjectArgumentInitialization(ObjectArg, Method))
3770 return true;
3771 MemExpr->setBase(ObjectArg);
3772
3773 // Convert the rest of the arguments
3774 const FunctionTypeProto *Proto = cast<FunctionTypeProto>(Method->getType());
3775 if (ConvertArgumentsForCall(&*TheCall, MemExpr, Method, Proto, Args, NumArgs,
3776 RParenLoc))
3777 return true;
3778
Sebastian Redl0eb23302009-01-19 00:08:26 +00003779 return CheckFunctionCall(Method, TheCall.take()).release();
Douglas Gregor88a35142008-12-22 05:46:06 +00003780}
3781
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003782/// BuildCallToObjectOfClassType - Build a call to an object of class
3783/// type (C++ [over.call.object]), which can end up invoking an
3784/// overloaded function call operator (@c operator()) or performing a
3785/// user-defined conversion on the object argument.
Douglas Gregor88a35142008-12-22 05:46:06 +00003786Sema::ExprResult
Douglas Gregor5c37de72008-12-06 00:22:45 +00003787Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
3788 SourceLocation LParenLoc,
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003789 Expr **Args, unsigned NumArgs,
3790 SourceLocation *CommaLocs,
3791 SourceLocation RParenLoc) {
3792 assert(Object->getType()->isRecordType() && "Requires object type argument");
3793 const RecordType *Record = Object->getType()->getAsRecordType();
3794
3795 // C++ [over.call.object]p1:
3796 // If the primary-expression E in the function call syntax
3797 // evaluates to a class object of type “cv T”, then the set of
3798 // candidate functions includes at least the function call
3799 // operators of T. The function call operators of T are obtained by
3800 // ordinary lookup of the name operator() in the context of
3801 // (E).operator().
3802 OverloadCandidateSet CandidateSet;
Douglas Gregor44b43212008-12-11 16:49:14 +00003803 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
Douglas Gregor3fc749d2008-12-23 00:26:44 +00003804 DeclContext::lookup_const_iterator Oper, OperEnd;
Steve Naroff0701bbb2009-01-08 17:28:14 +00003805 for (llvm::tie(Oper, OperEnd) = Record->getDecl()->lookup(OpName);
Douglas Gregor3fc749d2008-12-23 00:26:44 +00003806 Oper != OperEnd; ++Oper)
3807 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Object, Args, NumArgs,
3808 CandidateSet, /*SuppressUserConversions=*/false);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003809
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003810 // C++ [over.call.object]p2:
3811 // In addition, for each conversion function declared in T of the
3812 // form
3813 //
3814 // operator conversion-type-id () cv-qualifier;
3815 //
3816 // where cv-qualifier is the same cv-qualification as, or a
3817 // greater cv-qualification than, cv, and where conversion-type-id
Douglas Gregora967a6f2008-11-20 13:33:37 +00003818 // denotes the type "pointer to function of (P1,...,Pn) returning
3819 // R", or the type "reference to pointer to function of
3820 // (P1,...,Pn) returning R", or the type "reference to function
3821 // of (P1,...,Pn) returning R", a surrogate call function [...]
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003822 // is also considered as a candidate function. Similarly,
3823 // surrogate call functions are added to the set of candidate
3824 // functions for each conversion function declared in an
3825 // accessible base class provided the function is not hidden
3826 // within T by another intervening declaration.
3827 //
3828 // FIXME: Look in base classes for more conversion operators!
3829 OverloadedFunctionDecl *Conversions
3830 = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
Douglas Gregor621b3932008-11-21 02:54:28 +00003831 for (OverloadedFunctionDecl::function_iterator
3832 Func = Conversions->function_begin(),
3833 FuncEnd = Conversions->function_end();
3834 Func != FuncEnd; ++Func) {
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003835 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
3836
3837 // Strip the reference type (if any) and then the pointer type (if
3838 // any) to get down to what might be a function type.
3839 QualType ConvType = Conv->getConversionType().getNonReferenceType();
3840 if (const PointerType *ConvPtrType = ConvType->getAsPointerType())
3841 ConvType = ConvPtrType->getPointeeType();
3842
3843 if (const FunctionTypeProto *Proto = ConvType->getAsFunctionTypeProto())
3844 AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
3845 }
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003846
3847 // Perform overload resolution.
3848 OverloadCandidateSet::iterator Best;
3849 switch (BestViableFunction(CandidateSet, Best)) {
3850 case OR_Success:
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003851 // Overload resolution succeeded; we'll build the appropriate call
3852 // below.
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003853 break;
3854
3855 case OR_No_Viable_Function:
Sebastian Redle4c452c2008-11-22 13:44:36 +00003856 Diag(Object->getSourceRange().getBegin(),
3857 diag::err_ovl_no_viable_object_call)
Chris Lattner4330d652009-02-17 07:29:20 +00003858 << Object->getType() << Object->getSourceRange();
Sebastian Redle4c452c2008-11-22 13:44:36 +00003859 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003860 break;
3861
3862 case OR_Ambiguous:
3863 Diag(Object->getSourceRange().getBegin(),
3864 diag::err_ovl_ambiguous_object_call)
Chris Lattnerd1625842008-11-24 06:25:27 +00003865 << Object->getType() << Object->getSourceRange();
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003866 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3867 break;
Douglas Gregor48f3bb92009-02-18 21:56:37 +00003868
3869 case OR_Deleted:
3870 Diag(Object->getSourceRange().getBegin(),
3871 diag::err_ovl_deleted_object_call)
3872 << Best->Function->isDeleted()
3873 << Object->getType() << Object->getSourceRange();
3874 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3875 break;
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003876 }
3877
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003878 if (Best == CandidateSet.end()) {
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003879 // We had an error; delete all of the subexpressions and return
3880 // the error.
Ted Kremenek8189cde2009-02-07 01:47:29 +00003881 Object->Destroy(Context);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003882 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
Ted Kremenek8189cde2009-02-07 01:47:29 +00003883 Args[ArgIdx]->Destroy(Context);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003884 return true;
3885 }
3886
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003887 if (Best->Function == 0) {
3888 // Since there is no function declaration, this is one of the
3889 // surrogate candidates. Dig out the conversion function.
3890 CXXConversionDecl *Conv
3891 = cast<CXXConversionDecl>(
3892 Best->Conversions[0].UserDefined.ConversionFunction);
3893
3894 // We selected one of the surrogate functions that converts the
3895 // object parameter to a function pointer. Perform the conversion
3896 // on the object argument, then let ActOnCallExpr finish the job.
3897 // FIXME: Represent the user-defined conversion in the AST!
Sebastian Redl0eb23302009-01-19 00:08:26 +00003898 ImpCastExprToType(Object,
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003899 Conv->getConversionType().getNonReferenceType(),
3900 Conv->getConversionType()->isReferenceType());
Sebastian Redl0eb23302009-01-19 00:08:26 +00003901 return ActOnCallExpr(S, ExprArg(*this, Object), LParenLoc,
3902 MultiExprArg(*this, (ExprTy**)Args, NumArgs),
3903 CommaLocs, RParenLoc).release();
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003904 }
3905
3906 // We found an overloaded operator(). Build a CXXOperatorCallExpr
3907 // that calls this method, using Object for the implicit object
3908 // parameter and passing along the remaining arguments.
3909 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003910 const FunctionTypeProto *Proto = Method->getType()->getAsFunctionTypeProto();
3911
3912 unsigned NumArgsInProto = Proto->getNumArgs();
3913 unsigned NumArgsToCheck = NumArgs;
3914
3915 // Build the full argument list for the method call (the
3916 // implicit object parameter is placed at the beginning of the
3917 // list).
3918 Expr **MethodArgs;
3919 if (NumArgs < NumArgsInProto) {
3920 NumArgsToCheck = NumArgsInProto;
3921 MethodArgs = new Expr*[NumArgsInProto + 1];
3922 } else {
3923 MethodArgs = new Expr*[NumArgs + 1];
3924 }
3925 MethodArgs[0] = Object;
3926 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3927 MethodArgs[ArgIdx + 1] = Args[ArgIdx];
3928
Ted Kremenek8189cde2009-02-07 01:47:29 +00003929 Expr *NewFn = new (Context) DeclRefExpr(Method, Method->getType(),
3930 SourceLocation());
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003931 UsualUnaryConversions(NewFn);
3932
3933 // Once we've built TheCall, all of the expressions are properly
3934 // owned.
3935 QualType ResultTy = Method->getResultType().getNonReferenceType();
Ted Kremenek8189cde2009-02-07 01:47:29 +00003936 ExprOwningPtr<CXXOperatorCallExpr>
Ted Kremenek668bf912009-02-09 20:51:47 +00003937 TheCall(this, new (Context) CXXOperatorCallExpr(Context, NewFn, MethodArgs,
Ted Kremenek8189cde2009-02-07 01:47:29 +00003938 NumArgs + 1,
3939 ResultTy, RParenLoc));
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003940 delete [] MethodArgs;
3941
Douglas Gregor518fda12009-01-13 05:10:00 +00003942 // We may have default arguments. If so, we need to allocate more
3943 // slots in the call for them.
3944 if (NumArgs < NumArgsInProto)
Ted Kremenek8189cde2009-02-07 01:47:29 +00003945 TheCall->setNumArgs(Context, NumArgsInProto + 1);
Douglas Gregor518fda12009-01-13 05:10:00 +00003946 else if (NumArgs > NumArgsInProto)
3947 NumArgsToCheck = NumArgsInProto;
3948
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003949 // Initialize the implicit object parameter.
Douglas Gregor518fda12009-01-13 05:10:00 +00003950 if (PerformObjectArgumentInitialization(Object, Method))
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003951 return true;
3952 TheCall->setArg(0, Object);
3953
3954 // Check the argument types.
3955 for (unsigned i = 0; i != NumArgsToCheck; i++) {
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003956 Expr *Arg;
Douglas Gregor518fda12009-01-13 05:10:00 +00003957 if (i < NumArgs) {
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003958 Arg = Args[i];
Douglas Gregor518fda12009-01-13 05:10:00 +00003959
3960 // Pass the argument.
3961 QualType ProtoArgType = Proto->getArgType(i);
3962 if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
3963 return true;
3964 } else {
Ted Kremenek8189cde2009-02-07 01:47:29 +00003965 Arg = new (Context) CXXDefaultArgExpr(Method->getParamDecl(i));
Douglas Gregor518fda12009-01-13 05:10:00 +00003966 }
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003967
3968 TheCall->setArg(i + 1, Arg);
3969 }
3970
3971 // If this is a variadic call, handle args passed through "...".
3972 if (Proto->isVariadic()) {
3973 // Promote the arguments (C99 6.5.2.2p7).
3974 for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
3975 Expr *Arg = Args[i];
Anders Carlsson906fed02009-01-13 05:48:52 +00003976
Anders Carlssondce5e2c2009-01-16 16:48:51 +00003977 DefaultVariadicArgumentPromotion(Arg, VariadicMethod);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003978 TheCall->setArg(i + 1, Arg);
3979 }
3980 }
3981
Sebastian Redl0eb23302009-01-19 00:08:26 +00003982 return CheckFunctionCall(Method, TheCall.take()).release();
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003983}
3984
Douglas Gregor8ba10742008-11-20 16:27:02 +00003985/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
3986/// (if one exists), where @c Base is an expression of class type and
3987/// @c Member is the name of the member we're trying to find.
3988Action::ExprResult
Douglas Gregor3fc749d2008-12-23 00:26:44 +00003989Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
Douglas Gregor8ba10742008-11-20 16:27:02 +00003990 SourceLocation MemberLoc,
3991 IdentifierInfo &Member) {
3992 assert(Base->getType()->isRecordType() && "left-hand side must have class type");
3993
3994 // C++ [over.ref]p1:
3995 //
3996 // [...] An expression x->m is interpreted as (x.operator->())->m
3997 // for a class object x of type T if T::operator->() exists and if
3998 // the operator is selected as the best match function by the
3999 // overload resolution mechanism (13.3).
4000 // FIXME: look in base classes.
4001 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
4002 OverloadCandidateSet CandidateSet;
4003 const RecordType *BaseRecord = Base->getType()->getAsRecordType();
Douglas Gregor3fc749d2008-12-23 00:26:44 +00004004
4005 DeclContext::lookup_const_iterator Oper, OperEnd;
Steve Naroff0701bbb2009-01-08 17:28:14 +00004006 for (llvm::tie(Oper, OperEnd) = BaseRecord->getDecl()->lookup(OpName);
Douglas Gregor3fc749d2008-12-23 00:26:44 +00004007 Oper != OperEnd; ++Oper)
4008 AddMethodCandidate(cast<CXXMethodDecl>(*Oper), Base, 0, 0, CandidateSet,
Douglas Gregor8ba10742008-11-20 16:27:02 +00004009 /*SuppressUserConversions=*/false);
Douglas Gregor8ba10742008-11-20 16:27:02 +00004010
Ted Kremenek8189cde2009-02-07 01:47:29 +00004011 ExprOwningPtr<Expr> BasePtr(this, Base);
Douglas Gregorfc195ef2008-11-21 03:04:22 +00004012
Douglas Gregor8ba10742008-11-20 16:27:02 +00004013 // Perform overload resolution.
4014 OverloadCandidateSet::iterator Best;
4015 switch (BestViableFunction(CandidateSet, Best)) {
4016 case OR_Success:
4017 // Overload resolution succeeded; we'll build the call below.
4018 break;
4019
4020 case OR_No_Viable_Function:
4021 if (CandidateSet.empty())
4022 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
Chris Lattnerd1625842008-11-24 06:25:27 +00004023 << BasePtr->getType() << BasePtr->getSourceRange();
Douglas Gregor8ba10742008-11-20 16:27:02 +00004024 else
4025 Diag(OpLoc, diag::err_ovl_no_viable_oper)
Chris Lattner4330d652009-02-17 07:29:20 +00004026 << "operator->" << BasePtr->getSourceRange();
Douglas Gregor8ba10742008-11-20 16:27:02 +00004027 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
Douglas Gregor8ba10742008-11-20 16:27:02 +00004028 return true;
4029
4030 case OR_Ambiguous:
4031 Diag(OpLoc, diag::err_ovl_ambiguous_oper)
Chris Lattnerd1625842008-11-24 06:25:27 +00004032 << "operator->" << BasePtr->getSourceRange();
Douglas Gregor8ba10742008-11-20 16:27:02 +00004033 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
Douglas Gregor8ba10742008-11-20 16:27:02 +00004034 return true;
Douglas Gregor48f3bb92009-02-18 21:56:37 +00004035
4036 case OR_Deleted:
4037 Diag(OpLoc, diag::err_ovl_deleted_oper)
4038 << Best->Function->isDeleted()
4039 << "operator->" << BasePtr->getSourceRange();
4040 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4041 return true;
Douglas Gregor8ba10742008-11-20 16:27:02 +00004042 }
4043
4044 // Convert the object parameter.
4045 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
Douglas Gregorfc195ef2008-11-21 03:04:22 +00004046 if (PerformObjectArgumentInitialization(Base, Method))
Douglas Gregor8ba10742008-11-20 16:27:02 +00004047 return true;
Douglas Gregorfc195ef2008-11-21 03:04:22 +00004048
4049 // No concerns about early exits now.
4050 BasePtr.take();
Douglas Gregor8ba10742008-11-20 16:27:02 +00004051
4052 // Build the operator call.
Ted Kremenek8189cde2009-02-07 01:47:29 +00004053 Expr *FnExpr = new (Context) DeclRefExpr(Method, Method->getType(),
4054 SourceLocation());
Douglas Gregor8ba10742008-11-20 16:27:02 +00004055 UsualUnaryConversions(FnExpr);
Ted Kremenek668bf912009-02-09 20:51:47 +00004056 Base = new (Context) CXXOperatorCallExpr(Context, FnExpr, &Base, 1,
Douglas Gregor8ba10742008-11-20 16:27:02 +00004057 Method->getResultType().getNonReferenceType(),
4058 OpLoc);
Sebastian Redl0eb23302009-01-19 00:08:26 +00004059 return ActOnMemberReferenceExpr(S, ExprArg(*this, Base), OpLoc, tok::arrow,
4060 MemberLoc, Member).release();
Douglas Gregor8ba10742008-11-20 16:27:02 +00004061}
4062
Douglas Gregor904eed32008-11-10 20:40:00 +00004063/// FixOverloadedFunctionReference - E is an expression that refers to
4064/// a C++ overloaded function (possibly with some parentheses and
4065/// perhaps a '&' around it). We have resolved the overloaded function
4066/// to the function declaration Fn, so patch up the expression E to
4067/// refer (possibly indirectly) to Fn.
4068void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
4069 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
4070 FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
4071 E->setType(PE->getSubExpr()->getType());
4072 } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
4073 assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
4074 "Can only take the address of an overloaded function");
Douglas Gregorb86b0572009-02-11 01:18:59 +00004075 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
4076 if (Method->isStatic()) {
4077 // Do nothing: static member functions aren't any different
4078 // from non-member functions.
4079 }
4080 else if (QualifiedDeclRefExpr *DRE
4081 = dyn_cast<QualifiedDeclRefExpr>(UnOp->getSubExpr())) {
4082 // We have taken the address of a pointer to member
4083 // function. Perform the computation here so that we get the
4084 // appropriate pointer to member type.
4085 DRE->setDecl(Fn);
4086 DRE->setType(Fn->getType());
4087 QualType ClassType
4088 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
4089 E->setType(Context.getMemberPointerType(Fn->getType(),
4090 ClassType.getTypePtr()));
4091 return;
4092 }
4093 }
Douglas Gregor904eed32008-11-10 20:40:00 +00004094 FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
Douglas Gregora35284b2009-02-11 00:19:33 +00004095 E->setType(Context.getPointerType(UnOp->getSubExpr()->getType()));
Douglas Gregor904eed32008-11-10 20:40:00 +00004096 } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
4097 assert(isa<OverloadedFunctionDecl>(DR->getDecl()) &&
4098 "Expected overloaded function");
4099 DR->setDecl(Fn);
4100 E->setType(Fn->getType());
Douglas Gregor88a35142008-12-22 05:46:06 +00004101 } else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(E)) {
4102 MemExpr->setMemberDecl(Fn);
4103 E->setType(Fn->getType());
Douglas Gregor904eed32008-11-10 20:40:00 +00004104 } else {
4105 assert(false && "Invalid reference to overloaded function");
4106 }
4107}
4108
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00004109} // end namespace clang