Chris Lattner | 9fba49a | 2007-08-24 05:35:26 +0000 | [diff] [blame] | 1 | //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file was developed by Chris Lattner and is distributed under |
| 6 | // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "CodeGenFunction.h" |
| 15 | #include "CodeGenModule.h" |
| 16 | #include "clang/AST/AST.h" |
| 17 | #include "llvm/Constants.h" |
| 18 | #include "llvm/Function.h" |
| 19 | #include "llvm/Support/Compiler.h" |
| 20 | using namespace clang; |
| 21 | using namespace CodeGen; |
| 22 | using llvm::Value; |
| 23 | |
| 24 | //===----------------------------------------------------------------------===// |
| 25 | // Scalar Expression Emitter |
| 26 | //===----------------------------------------------------------------------===// |
| 27 | |
| 28 | struct BinOpInfo { |
| 29 | Value *LHS; |
| 30 | Value *RHS; |
Chris Lattner | 660e31d | 2007-08-24 21:00:35 +0000 | [diff] [blame^] | 31 | QualType Ty; // Computation Type. |
Chris Lattner | 9fba49a | 2007-08-24 05:35:26 +0000 | [diff] [blame] | 32 | const BinaryOperator *E; |
| 33 | }; |
| 34 | |
| 35 | namespace { |
| 36 | class VISIBILITY_HIDDEN ScalarExprEmitter |
| 37 | : public StmtVisitor<ScalarExprEmitter, Value*> { |
| 38 | CodeGenFunction &CGF; |
| 39 | llvm::LLVMBuilder &Builder; |
| 40 | public: |
| 41 | |
| 42 | ScalarExprEmitter(CodeGenFunction &cgf) : CGF(cgf), Builder(CGF.Builder) { |
| 43 | } |
| 44 | |
| 45 | |
| 46 | //===--------------------------------------------------------------------===// |
| 47 | // Utilities |
| 48 | //===--------------------------------------------------------------------===// |
| 49 | |
| 50 | const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } |
| 51 | LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } |
| 52 | |
| 53 | Value *EmitLoadOfLValue(LValue LV, QualType T) { |
| 54 | return CGF.EmitLoadOfLValue(LV, T).getVal(); |
| 55 | } |
| 56 | |
| 57 | /// EmitLoadOfLValue - Given an expression with complex type that represents a |
| 58 | /// value l-value, this method emits the address of the l-value, then loads |
| 59 | /// and returns the result. |
| 60 | Value *EmitLoadOfLValue(const Expr *E) { |
| 61 | // FIXME: Volatile |
| 62 | return EmitLoadOfLValue(EmitLValue(E), E->getType()); |
| 63 | } |
| 64 | |
| 65 | //===--------------------------------------------------------------------===// |
| 66 | // Visitor Methods |
| 67 | //===--------------------------------------------------------------------===// |
| 68 | |
| 69 | Value *VisitStmt(Stmt *S) { |
| 70 | S->dump(); |
| 71 | assert(0 && "Stmt can't have complex result type!"); |
| 72 | return 0; |
| 73 | } |
| 74 | Value *VisitExpr(Expr *S); |
| 75 | Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); } |
| 76 | |
| 77 | // Leaves. |
| 78 | Value *VisitIntegerLiteral(const IntegerLiteral *E) { |
| 79 | return llvm::ConstantInt::get(E->getValue()); |
| 80 | } |
| 81 | Value *VisitFloatingLiteral(const FloatingLiteral *E) { |
| 82 | return llvm::ConstantFP::get(ConvertType(E->getType()), E->getValue()); |
| 83 | } |
| 84 | Value *VisitCharacterLiteral(const CharacterLiteral *E) { |
| 85 | return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); |
| 86 | } |
| 87 | Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) { |
| 88 | return llvm::ConstantInt::get(ConvertType(E->getType()), |
| 89 | E->typesAreCompatible()); |
| 90 | } |
| 91 | Value *VisitSizeOfAlignOfTypeExpr(const SizeOfAlignOfTypeExpr *E) { |
| 92 | return EmitSizeAlignOf(E->getArgumentType(), E->getType(), E->isSizeOf()); |
| 93 | } |
| 94 | |
| 95 | // l-values. |
| 96 | Value *VisitDeclRefExpr(DeclRefExpr *E) { |
| 97 | if (const EnumConstantDecl *EC = dyn_cast<EnumConstantDecl>(E->getDecl())) |
| 98 | return llvm::ConstantInt::get(EC->getInitVal()); |
| 99 | return EmitLoadOfLValue(E); |
| 100 | } |
| 101 | Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); |
| 102 | Value *VisitMemberExpr(Expr *E) { return EmitLoadOfLValue(E); } |
| 103 | Value *VisitOCUVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } |
| 104 | Value *VisitStringLiteral(Expr *E) { return EmitLValue(E).getAddress(); } |
| 105 | Value *VisitPreDefinedExpr(Expr *E) { return EmitLValue(E).getAddress(); } |
| 106 | |
| 107 | // FIXME: CompoundLiteralExpr |
| 108 | Value *VisitImplicitCastExpr(const ImplicitCastExpr *E); |
| 109 | Value *VisitCastExpr(const CastExpr *E) { |
| 110 | return EmitCastExpr(E->getSubExpr(), E->getType()); |
| 111 | } |
| 112 | Value *EmitCastExpr(const Expr *E, QualType T); |
| 113 | |
| 114 | Value *VisitCallExpr(const CallExpr *E) { |
| 115 | return CGF.EmitCallExpr(E).getVal(); |
| 116 | } |
| 117 | |
| 118 | // Unary Operators. |
| 119 | Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre); |
| 120 | Value *VisitUnaryPostDec(const UnaryOperator *E) { |
| 121 | return VisitPrePostIncDec(E, false, false); |
| 122 | } |
| 123 | Value *VisitUnaryPostInc(const UnaryOperator *E) { |
| 124 | return VisitPrePostIncDec(E, true, false); |
| 125 | } |
| 126 | Value *VisitUnaryPreDec(const UnaryOperator *E) { |
| 127 | return VisitPrePostIncDec(E, false, true); |
| 128 | } |
| 129 | Value *VisitUnaryPreInc(const UnaryOperator *E) { |
| 130 | return VisitPrePostIncDec(E, true, true); |
| 131 | } |
| 132 | Value *VisitUnaryAddrOf(const UnaryOperator *E) { |
| 133 | return EmitLValue(E->getSubExpr()).getAddress(); |
| 134 | } |
| 135 | Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); } |
| 136 | Value *VisitUnaryPlus(const UnaryOperator *E) { |
| 137 | return Visit(E->getSubExpr()); |
| 138 | } |
| 139 | Value *VisitUnaryMinus (const UnaryOperator *E); |
| 140 | Value *VisitUnaryNot (const UnaryOperator *E); |
| 141 | Value *VisitUnaryLNot (const UnaryOperator *E); |
| 142 | Value *VisitUnarySizeOf (const UnaryOperator *E) { |
| 143 | return EmitSizeAlignOf(E->getSubExpr()->getType(), E->getType(), true); |
| 144 | } |
| 145 | Value *VisitUnaryAlignOf (const UnaryOperator *E) { |
| 146 | return EmitSizeAlignOf(E->getSubExpr()->getType(), E->getType(), false); |
| 147 | } |
| 148 | Value *EmitSizeAlignOf(QualType TypeToSize, QualType RetType, |
| 149 | bool isSizeOf); |
| 150 | // FIXME: Real,Imag. |
| 151 | Value *VisitUnaryExtension(const UnaryOperator *E) { |
| 152 | return Visit(E->getSubExpr()); |
| 153 | } |
| 154 | |
| 155 | // Binary Operators. |
Chris Lattner | 9fba49a | 2007-08-24 05:35:26 +0000 | [diff] [blame] | 156 | Value *EmitMul(const BinOpInfo &Ops) { |
| 157 | return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); |
| 158 | } |
| 159 | Value *EmitDiv(const BinOpInfo &Ops); |
| 160 | Value *EmitRem(const BinOpInfo &Ops); |
| 161 | Value *EmitAdd(const BinOpInfo &Ops); |
| 162 | Value *EmitSub(const BinOpInfo &Ops); |
| 163 | Value *EmitShl(const BinOpInfo &Ops); |
| 164 | Value *EmitShr(const BinOpInfo &Ops); |
| 165 | Value *EmitAnd(const BinOpInfo &Ops) { |
| 166 | return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); |
| 167 | } |
| 168 | Value *EmitXor(const BinOpInfo &Ops) { |
| 169 | return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); |
| 170 | } |
| 171 | Value *EmitOr (const BinOpInfo &Ops) { |
| 172 | return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); |
| 173 | } |
| 174 | |
Chris Lattner | 660e31d | 2007-08-24 21:00:35 +0000 | [diff] [blame^] | 175 | BinOpInfo EmitBinOps(const BinaryOperator *E); |
| 176 | Value *EmitCompoundAssign(const BinaryOperator *E, |
| 177 | Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); |
| 178 | |
| 179 | // Binary operators and binary compound assignment operators. |
| 180 | #define HANDLEBINOP(OP) \ |
| 181 | Value *VisitBin ## OP(const BinaryOperator *E) { \ |
| 182 | return Emit ## OP(EmitBinOps(E)); \ |
| 183 | } \ |
| 184 | Value *VisitBin ## OP ## Assign(const BinaryOperator *E) { \ |
| 185 | return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ |
| 186 | } |
| 187 | HANDLEBINOP(Mul); |
| 188 | HANDLEBINOP(Div); |
| 189 | HANDLEBINOP(Rem); |
| 190 | HANDLEBINOP(Add); |
| 191 | // (Sub) - Sub is handled specially below for ptr-ptr subtract. |
| 192 | HANDLEBINOP(Shl); |
| 193 | HANDLEBINOP(Shr); |
| 194 | HANDLEBINOP(And); |
| 195 | HANDLEBINOP(Xor); |
| 196 | HANDLEBINOP(Or); |
| 197 | #undef HANDLEBINOP |
| 198 | Value *VisitBinSub(const BinaryOperator *E); |
| 199 | Value *VisitBinSubAssign(const BinaryOperator *E) { |
| 200 | return EmitCompoundAssign(E, &ScalarExprEmitter::EmitSub); |
| 201 | } |
| 202 | |
Chris Lattner | 9fba49a | 2007-08-24 05:35:26 +0000 | [diff] [blame] | 203 | // Comparisons. |
| 204 | Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc, |
| 205 | unsigned SICmpOpc, unsigned FCmpOpc); |
| 206 | #define VISITCOMP(CODE, UI, SI, FP) \ |
| 207 | Value *VisitBin##CODE(const BinaryOperator *E) { \ |
| 208 | return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ |
| 209 | llvm::FCmpInst::FP); } |
| 210 | VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT); |
| 211 | VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT); |
| 212 | VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE); |
| 213 | VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE); |
| 214 | VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ); |
| 215 | VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE); |
| 216 | #undef VISITCOMP |
| 217 | |
| 218 | Value *VisitBinAssign (const BinaryOperator *E); |
| 219 | |
| 220 | Value *VisitBinLAnd (const BinaryOperator *E); |
| 221 | Value *VisitBinLOr (const BinaryOperator *E); |
| 222 | |
| 223 | // FIXME: Compound assignment operators. |
| 224 | Value *VisitBinComma (const BinaryOperator *E); |
| 225 | |
| 226 | // Other Operators. |
| 227 | Value *VisitConditionalOperator(const ConditionalOperator *CO); |
| 228 | Value *VisitChooseExpr(ChooseExpr *CE); |
| 229 | Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { |
| 230 | return CGF.EmitObjCStringLiteral(E); |
| 231 | } |
| 232 | }; |
| 233 | } // end anonymous namespace. |
| 234 | |
| 235 | //===----------------------------------------------------------------------===// |
| 236 | // Utilities |
| 237 | //===----------------------------------------------------------------------===// |
| 238 | |
| 239 | //===----------------------------------------------------------------------===// |
| 240 | // Visitor Methods |
| 241 | //===----------------------------------------------------------------------===// |
| 242 | |
| 243 | Value *ScalarExprEmitter::VisitExpr(Expr *E) { |
| 244 | fprintf(stderr, "Unimplemented scalar expr!\n"); |
| 245 | E->dump(); |
| 246 | if (E->getType()->isVoidType()) |
| 247 | return 0; |
| 248 | return llvm::UndefValue::get(CGF.ConvertType(E->getType())); |
| 249 | } |
| 250 | |
| 251 | Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { |
| 252 | // Emit subscript expressions in rvalue context's. For most cases, this just |
| 253 | // loads the lvalue formed by the subscript expr. However, we have to be |
| 254 | // careful, because the base of a vector subscript is occasionally an rvalue, |
| 255 | // so we can't get it as an lvalue. |
| 256 | if (!E->getBase()->getType()->isVectorType()) |
| 257 | return EmitLoadOfLValue(E); |
| 258 | |
| 259 | // Handle the vector case. The base must be a vector, the index must be an |
| 260 | // integer value. |
| 261 | Value *Base = Visit(E->getBase()); |
| 262 | Value *Idx = Visit(E->getIdx()); |
| 263 | |
| 264 | // FIXME: Convert Idx to i32 type. |
| 265 | return Builder.CreateExtractElement(Base, Idx, "vecext"); |
| 266 | } |
| 267 | |
| 268 | /// VisitImplicitCastExpr - Implicit casts are the same as normal casts, but |
| 269 | /// also handle things like function to pointer-to-function decay, and array to |
| 270 | /// pointer decay. |
| 271 | Value *ScalarExprEmitter::VisitImplicitCastExpr(const ImplicitCastExpr *E) { |
| 272 | const Expr *Op = E->getSubExpr(); |
| 273 | |
| 274 | // If this is due to array->pointer conversion, emit the array expression as |
| 275 | // an l-value. |
| 276 | if (Op->getType()->isArrayType()) { |
| 277 | // FIXME: For now we assume that all source arrays map to LLVM arrays. This |
| 278 | // will not true when we add support for VLAs. |
| 279 | llvm::Value *V = EmitLValue(Op).getAddress(); // Bitfields can't be arrays. |
| 280 | |
| 281 | assert(isa<llvm::PointerType>(V->getType()) && |
| 282 | isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType()) |
| 283 | ->getElementType()) && |
| 284 | "Doesn't support VLAs yet!"); |
| 285 | llvm::Constant *Idx0 = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0); |
| 286 | return Builder.CreateGEP(V, Idx0, Idx0, "arraydecay"); |
| 287 | } |
| 288 | |
| 289 | return EmitCastExpr(Op, E->getType()); |
| 290 | } |
| 291 | |
| 292 | |
| 293 | // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts |
| 294 | // have to handle a more broad range of conversions than explicit casts, as they |
| 295 | // handle things like function to ptr-to-function decay etc. |
| 296 | Value *ScalarExprEmitter::EmitCastExpr(const Expr *E, QualType DestTy) { |
| 297 | RValue Src = CGF.EmitAnyExpr(E); |
| 298 | |
| 299 | // If the destination is void, just evaluate the source. |
| 300 | if (DestTy->isVoidType()) |
| 301 | return 0; |
| 302 | |
| 303 | // FIXME: Refactor EmitConversion to not return an RValue. Sink it into this |
| 304 | // method. |
| 305 | return CGF.EmitConversion(Src, E->getType(), DestTy).getVal(); |
| 306 | } |
| 307 | |
| 308 | //===----------------------------------------------------------------------===// |
| 309 | // Unary Operators |
| 310 | //===----------------------------------------------------------------------===// |
| 311 | |
| 312 | Value *ScalarExprEmitter::VisitPrePostIncDec(const UnaryOperator *E, |
Chris Lattner | 855e3d7 | 2007-08-24 16:24:49 +0000 | [diff] [blame] | 313 | bool isInc, bool isPre) { |
Chris Lattner | 9fba49a | 2007-08-24 05:35:26 +0000 | [diff] [blame] | 314 | LValue LV = EmitLValue(E->getSubExpr()); |
| 315 | // FIXME: Handle volatile! |
| 316 | Value *InVal = CGF.EmitLoadOfLValue(LV/* false*/, |
| 317 | E->getSubExpr()->getType()).getVal(); |
| 318 | |
| 319 | int AmountVal = isInc ? 1 : -1; |
| 320 | |
| 321 | Value *NextVal; |
| 322 | if (isa<llvm::IntegerType>(InVal->getType())) |
| 323 | NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal); |
| 324 | else |
| 325 | NextVal = llvm::ConstantFP::get(InVal->getType(), AmountVal); |
| 326 | |
| 327 | // Add the inc/dec to the real part. |
| 328 | NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec"); |
| 329 | |
| 330 | // Store the updated result through the lvalue. |
| 331 | CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV, |
| 332 | E->getSubExpr()->getType()); |
| 333 | |
| 334 | // If this is a postinc, return the value read from memory, otherwise use the |
| 335 | // updated value. |
| 336 | return isPre ? NextVal : InVal; |
| 337 | } |
| 338 | |
| 339 | |
| 340 | Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { |
| 341 | Value *Op = Visit(E->getSubExpr()); |
| 342 | return Builder.CreateNeg(Op, "neg"); |
| 343 | } |
| 344 | |
| 345 | Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { |
| 346 | Value *Op = Visit(E->getSubExpr()); |
| 347 | return Builder.CreateNot(Op, "neg"); |
| 348 | } |
| 349 | |
| 350 | Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { |
| 351 | // Compare operand to zero. |
| 352 | Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); |
| 353 | |
| 354 | // Invert value. |
| 355 | // TODO: Could dynamically modify easy computations here. For example, if |
| 356 | // the operand is an icmp ne, turn into icmp eq. |
| 357 | BoolVal = Builder.CreateNot(BoolVal, "lnot"); |
| 358 | |
| 359 | // ZExt result to int. |
| 360 | return Builder.CreateZExt(BoolVal, CGF.LLVMIntTy, "lnot.ext"); |
| 361 | } |
| 362 | |
| 363 | /// EmitSizeAlignOf - Return the size or alignment of the 'TypeToSize' type as |
| 364 | /// an integer (RetType). |
| 365 | Value *ScalarExprEmitter::EmitSizeAlignOf(QualType TypeToSize, |
| 366 | QualType RetType,bool isSizeOf){ |
| 367 | /// FIXME: This doesn't handle VLAs yet! |
| 368 | std::pair<uint64_t, unsigned> Info = |
| 369 | CGF.getContext().getTypeInfo(TypeToSize, SourceLocation()); |
| 370 | |
| 371 | uint64_t Val = isSizeOf ? Info.first : Info.second; |
| 372 | Val /= 8; // Return size in bytes, not bits. |
| 373 | |
| 374 | assert(RetType->isIntegerType() && "Result type must be an integer!"); |
| 375 | |
| 376 | unsigned ResultWidth = CGF.getContext().getTypeSize(RetType,SourceLocation()); |
| 377 | return llvm::ConstantInt::get(llvm::APInt(ResultWidth, Val)); |
| 378 | } |
| 379 | |
| 380 | //===----------------------------------------------------------------------===// |
| 381 | // Binary Operators |
| 382 | //===----------------------------------------------------------------------===// |
| 383 | |
| 384 | BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { |
| 385 | BinOpInfo Result; |
| 386 | Result.LHS = Visit(E->getLHS()); |
| 387 | Result.RHS = Visit(E->getRHS()); |
Chris Lattner | 660e31d | 2007-08-24 21:00:35 +0000 | [diff] [blame^] | 388 | Result.Ty = E->getType(); |
Chris Lattner | 9fba49a | 2007-08-24 05:35:26 +0000 | [diff] [blame] | 389 | Result.E = E; |
| 390 | return Result; |
| 391 | } |
| 392 | |
Chris Lattner | 660e31d | 2007-08-24 21:00:35 +0000 | [diff] [blame^] | 393 | Value *ScalarExprEmitter::EmitCompoundAssign(const BinaryOperator *E, |
| 394 | Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { |
| 395 | QualType LHSTy = E->getLHS()->getType(), RHSTy = E->getRHS()->getType(); |
| 396 | |
| 397 | BinOpInfo OpInfo; |
| 398 | |
| 399 | // Load the LHS and RHS operands. |
| 400 | LValue LHSLV = EmitLValue(E->getLHS()); |
| 401 | OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy); |
| 402 | |
| 403 | // FIXME: It is possible for the RHS to be complex. |
| 404 | OpInfo.RHS = Visit(E->getRHS()); |
| 405 | |
| 406 | // Convert the LHS/RHS values to the computation type. |
| 407 | const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E); |
| 408 | QualType ComputeType = CAO->getComputationType(); |
| 409 | |
| 410 | // FIXME: it's possible for the computation type to be complex if the RHS |
| 411 | // is complex. Handle this! |
| 412 | OpInfo.LHS = CGF.EmitConversion(RValue::get(OpInfo.LHS), LHSTy, |
| 413 | ComputeType).getVal(); |
| 414 | |
| 415 | // Do not merge types for -= where the LHS is a pointer. |
| 416 | if (E->getOpcode() != BinaryOperator::SubAssign && |
| 417 | E->getLHS()->getType()->isPointerType()) { |
| 418 | OpInfo.RHS = CGF.EmitConversion(RValue::get(OpInfo.RHS), RHSTy, |
| 419 | ComputeType).getVal(); |
| 420 | } |
| 421 | OpInfo.Ty = ComputeType; |
| 422 | OpInfo.E = E; |
| 423 | |
| 424 | // Expand the binary operator. |
| 425 | Value *Result = (this->*Func)(OpInfo); |
| 426 | |
| 427 | // Truncate the result back to the LHS type. |
| 428 | Result = CGF.EmitConversion(RValue::get(Result), ComputeType, LHSTy).getVal(); |
| 429 | |
| 430 | // Store the result value into the LHS lvalue. |
| 431 | CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, E->getType()); |
| 432 | |
| 433 | return Result; |
| 434 | } |
| 435 | |
| 436 | |
Chris Lattner | 9fba49a | 2007-08-24 05:35:26 +0000 | [diff] [blame] | 437 | Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { |
| 438 | if (Ops.LHS->getType()->isFloatingPoint()) |
| 439 | return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); |
Chris Lattner | 660e31d | 2007-08-24 21:00:35 +0000 | [diff] [blame^] | 440 | else if (Ops.Ty->isUnsignedIntegerType()) |
Chris Lattner | 9fba49a | 2007-08-24 05:35:26 +0000 | [diff] [blame] | 441 | return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); |
| 442 | else |
| 443 | return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); |
| 444 | } |
| 445 | |
| 446 | Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { |
| 447 | // Rem in C can't be a floating point type: C99 6.5.5p2. |
Chris Lattner | 660e31d | 2007-08-24 21:00:35 +0000 | [diff] [blame^] | 448 | if (Ops.Ty->isUnsignedIntegerType()) |
Chris Lattner | 9fba49a | 2007-08-24 05:35:26 +0000 | [diff] [blame] | 449 | return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); |
| 450 | else |
| 451 | return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); |
| 452 | } |
| 453 | |
| 454 | |
| 455 | Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) { |
Chris Lattner | 660e31d | 2007-08-24 21:00:35 +0000 | [diff] [blame^] | 456 | if (!Ops.Ty->isPointerType()) |
Chris Lattner | 9fba49a | 2007-08-24 05:35:26 +0000 | [diff] [blame] | 457 | return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add"); |
Chris Lattner | 660e31d | 2007-08-24 21:00:35 +0000 | [diff] [blame^] | 458 | |
| 459 | // FIXME: What about a pointer to a VLA? |
Chris Lattner | 9fba49a | 2007-08-24 05:35:26 +0000 | [diff] [blame] | 460 | if (isa<llvm::PointerType>(Ops.LHS->getType())) // pointer + int |
| 461 | return Builder.CreateGEP(Ops.LHS, Ops.RHS, "add.ptr"); |
| 462 | // int + pointer |
| 463 | return Builder.CreateGEP(Ops.RHS, Ops.LHS, "add.ptr"); |
| 464 | } |
| 465 | |
| 466 | Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) { |
| 467 | if (!isa<llvm::PointerType>(Ops.LHS->getType())) |
| 468 | return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub"); |
| 469 | |
Chris Lattner | 660e31d | 2007-08-24 21:00:35 +0000 | [diff] [blame^] | 470 | // pointer - int |
| 471 | assert(!isa<llvm::PointerType>(Ops.RHS->getType()) && |
| 472 | "ptr-ptr shouldn't get here"); |
| 473 | // FIXME: The pointer could point to a VLA. |
| 474 | Value *NegatedRHS = Builder.CreateNeg(Ops.RHS, "sub.ptr.neg"); |
| 475 | return Builder.CreateGEP(Ops.LHS, NegatedRHS, "sub.ptr"); |
| 476 | } |
| 477 | |
| 478 | Value *ScalarExprEmitter::VisitBinSub(const BinaryOperator *E) { |
| 479 | // "X - Y" is different from "X -= Y" in one case: when Y is a pointer. In |
| 480 | // the compound assignment case it is invalid, so just handle it here. |
| 481 | if (!E->getRHS()->getType()->isPointerType()) |
| 482 | return EmitSub(EmitBinOps(E)); |
Chris Lattner | 9fba49a | 2007-08-24 05:35:26 +0000 | [diff] [blame] | 483 | |
| 484 | // pointer - pointer |
Chris Lattner | 660e31d | 2007-08-24 21:00:35 +0000 | [diff] [blame^] | 485 | Value *LHS = Visit(E->getLHS()); |
| 486 | Value *RHS = Visit(E->getRHS()); |
| 487 | |
| 488 | const PointerType *LHSPtrType = E->getLHS()->getType()->getAsPointerType(); |
| 489 | assert(LHSPtrType == E->getRHS()->getType()->getAsPointerType() && |
| 490 | "Can't subtract different pointer types"); |
| 491 | |
Chris Lattner | 9fba49a | 2007-08-24 05:35:26 +0000 | [diff] [blame] | 492 | QualType LHSElementType = LHSPtrType->getPointeeType(); |
Chris Lattner | 9fba49a | 2007-08-24 05:35:26 +0000 | [diff] [blame] | 493 | uint64_t ElementSize = CGF.getContext().getTypeSize(LHSElementType, |
| 494 | SourceLocation()) / 8; |
Chris Lattner | 660e31d | 2007-08-24 21:00:35 +0000 | [diff] [blame^] | 495 | |
| 496 | const llvm::Type *ResultType = ConvertType(E->getType()); |
| 497 | LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast"); |
| 498 | RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); |
| 499 | Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); |
Chris Lattner | 9fba49a | 2007-08-24 05:35:26 +0000 | [diff] [blame] | 500 | |
| 501 | // HACK: LLVM doesn't have an divide instruction that 'knows' there is no |
| 502 | // remainder. As such, we handle common power-of-two cases here to generate |
| 503 | // better code. |
| 504 | if (llvm::isPowerOf2_64(ElementSize)) { |
| 505 | Value *ShAmt = |
| 506 | llvm::ConstantInt::get(ResultType, llvm::Log2_64(ElementSize)); |
| 507 | return Builder.CreateAShr(BytesBetween, ShAmt, "sub.ptr.shr"); |
| 508 | } |
Chris Lattner | 660e31d | 2007-08-24 21:00:35 +0000 | [diff] [blame^] | 509 | |
Chris Lattner | 9fba49a | 2007-08-24 05:35:26 +0000 | [diff] [blame] | 510 | // Otherwise, do a full sdiv. |
| 511 | Value *BytesPerElt = llvm::ConstantInt::get(ResultType, ElementSize); |
| 512 | return Builder.CreateSDiv(BytesBetween, BytesPerElt, "sub.ptr.div"); |
| 513 | } |
| 514 | |
Chris Lattner | 660e31d | 2007-08-24 21:00:35 +0000 | [diff] [blame^] | 515 | |
Chris Lattner | 9fba49a | 2007-08-24 05:35:26 +0000 | [diff] [blame] | 516 | Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { |
| 517 | // LLVM requires the LHS and RHS to be the same type: promote or truncate the |
| 518 | // RHS to the same size as the LHS. |
| 519 | Value *RHS = Ops.RHS; |
| 520 | if (Ops.LHS->getType() != RHS->getType()) |
| 521 | RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); |
| 522 | |
| 523 | return Builder.CreateShl(Ops.LHS, RHS, "shl"); |
| 524 | } |
| 525 | |
| 526 | Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { |
| 527 | // LLVM requires the LHS and RHS to be the same type: promote or truncate the |
| 528 | // RHS to the same size as the LHS. |
| 529 | Value *RHS = Ops.RHS; |
| 530 | if (Ops.LHS->getType() != RHS->getType()) |
| 531 | RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); |
| 532 | |
Chris Lattner | 660e31d | 2007-08-24 21:00:35 +0000 | [diff] [blame^] | 533 | if (Ops.Ty->isUnsignedIntegerType()) |
Chris Lattner | 9fba49a | 2007-08-24 05:35:26 +0000 | [diff] [blame] | 534 | return Builder.CreateLShr(Ops.LHS, RHS, "shr"); |
| 535 | return Builder.CreateAShr(Ops.LHS, RHS, "shr"); |
| 536 | } |
| 537 | |
| 538 | Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc, |
| 539 | unsigned SICmpOpc, unsigned FCmpOpc) { |
| 540 | llvm::Value *Result; |
| 541 | QualType LHSTy = E->getLHS()->getType(); |
| 542 | if (!LHSTy->isComplexType()) { |
| 543 | Value *LHS = Visit(E->getLHS()); |
| 544 | Value *RHS = Visit(E->getRHS()); |
| 545 | |
| 546 | if (LHS->getType()->isFloatingPoint()) { |
| 547 | Result = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, |
| 548 | LHS, RHS, "cmp"); |
| 549 | } else if (LHSTy->isUnsignedIntegerType()) { |
| 550 | Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, |
| 551 | LHS, RHS, "cmp"); |
| 552 | } else { |
| 553 | // Signed integers and pointers. |
| 554 | Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc, |
| 555 | LHS, RHS, "cmp"); |
| 556 | } |
| 557 | } else { |
| 558 | // Complex Comparison: can only be an equality comparison. |
| 559 | CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS()); |
| 560 | CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS()); |
| 561 | |
| 562 | QualType CETy = |
| 563 | cast<ComplexType>(LHSTy.getCanonicalType())->getElementType(); |
| 564 | |
| 565 | llvm::Value *ResultR, *ResultI; |
| 566 | if (CETy->isRealFloatingType()) { |
| 567 | ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, |
| 568 | LHS.first, RHS.first, "cmp.r"); |
| 569 | ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, |
| 570 | LHS.second, RHS.second, "cmp.i"); |
| 571 | } else { |
| 572 | // Complex comparisons can only be equality comparisons. As such, signed |
| 573 | // and unsigned opcodes are the same. |
| 574 | ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, |
| 575 | LHS.first, RHS.first, "cmp.r"); |
| 576 | ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, |
| 577 | LHS.second, RHS.second, "cmp.i"); |
| 578 | } |
| 579 | |
| 580 | if (E->getOpcode() == BinaryOperator::EQ) { |
| 581 | Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); |
| 582 | } else { |
| 583 | assert(E->getOpcode() == BinaryOperator::NE && |
| 584 | "Complex comparison other than == or != ?"); |
| 585 | Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); |
| 586 | } |
| 587 | } |
| 588 | |
| 589 | // ZExt result to int. |
| 590 | return Builder.CreateZExt(Result, CGF.LLVMIntTy, "cmp.ext"); |
| 591 | } |
| 592 | |
| 593 | Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { |
| 594 | LValue LHS = EmitLValue(E->getLHS()); |
| 595 | Value *RHS = Visit(E->getRHS()); |
| 596 | |
| 597 | // Store the value into the LHS. |
| 598 | // FIXME: Volatility! |
| 599 | CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType()); |
| 600 | |
| 601 | // Return the RHS. |
| 602 | return RHS; |
| 603 | } |
| 604 | |
| 605 | Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { |
| 606 | Value *LHSCond = CGF.EvaluateExprAsBool(E->getLHS()); |
| 607 | |
| 608 | llvm::BasicBlock *ContBlock = new llvm::BasicBlock("land_cont"); |
| 609 | llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("land_rhs"); |
| 610 | |
| 611 | llvm::BasicBlock *OrigBlock = Builder.GetInsertBlock(); |
| 612 | Builder.CreateCondBr(LHSCond, RHSBlock, ContBlock); |
| 613 | |
| 614 | CGF.EmitBlock(RHSBlock); |
| 615 | Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); |
| 616 | |
| 617 | // Reaquire the RHS block, as there may be subblocks inserted. |
| 618 | RHSBlock = Builder.GetInsertBlock(); |
| 619 | CGF.EmitBlock(ContBlock); |
| 620 | |
| 621 | // Create a PHI node. If we just evaluted the LHS condition, the result is |
| 622 | // false. If we evaluated both, the result is the RHS condition. |
| 623 | llvm::PHINode *PN = Builder.CreatePHI(llvm::Type::Int1Ty, "land"); |
| 624 | PN->reserveOperandSpace(2); |
| 625 | PN->addIncoming(llvm::ConstantInt::getFalse(), OrigBlock); |
| 626 | PN->addIncoming(RHSCond, RHSBlock); |
| 627 | |
| 628 | // ZExt result to int. |
| 629 | return Builder.CreateZExt(PN, CGF.LLVMIntTy, "land.ext"); |
| 630 | } |
| 631 | |
| 632 | Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { |
| 633 | Value *LHSCond = CGF.EvaluateExprAsBool(E->getLHS()); |
| 634 | |
| 635 | llvm::BasicBlock *ContBlock = new llvm::BasicBlock("lor_cont"); |
| 636 | llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("lor_rhs"); |
| 637 | |
| 638 | llvm::BasicBlock *OrigBlock = Builder.GetInsertBlock(); |
| 639 | Builder.CreateCondBr(LHSCond, ContBlock, RHSBlock); |
| 640 | |
| 641 | CGF.EmitBlock(RHSBlock); |
| 642 | Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); |
| 643 | |
| 644 | // Reaquire the RHS block, as there may be subblocks inserted. |
| 645 | RHSBlock = Builder.GetInsertBlock(); |
| 646 | CGF.EmitBlock(ContBlock); |
| 647 | |
| 648 | // Create a PHI node. If we just evaluted the LHS condition, the result is |
| 649 | // true. If we evaluated both, the result is the RHS condition. |
| 650 | llvm::PHINode *PN = Builder.CreatePHI(llvm::Type::Int1Ty, "lor"); |
| 651 | PN->reserveOperandSpace(2); |
| 652 | PN->addIncoming(llvm::ConstantInt::getTrue(), OrigBlock); |
| 653 | PN->addIncoming(RHSCond, RHSBlock); |
| 654 | |
| 655 | // ZExt result to int. |
| 656 | return Builder.CreateZExt(PN, CGF.LLVMIntTy, "lor.ext"); |
| 657 | } |
| 658 | |
| 659 | Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { |
| 660 | CGF.EmitStmt(E->getLHS()); |
| 661 | return Visit(E->getRHS()); |
| 662 | } |
| 663 | |
| 664 | //===----------------------------------------------------------------------===// |
| 665 | // Other Operators |
| 666 | //===----------------------------------------------------------------------===// |
| 667 | |
| 668 | Value *ScalarExprEmitter:: |
| 669 | VisitConditionalOperator(const ConditionalOperator *E) { |
| 670 | llvm::BasicBlock *LHSBlock = new llvm::BasicBlock("cond.?"); |
| 671 | llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("cond.:"); |
| 672 | llvm::BasicBlock *ContBlock = new llvm::BasicBlock("cond.cont"); |
| 673 | |
| 674 | Value *Cond = CGF.EvaluateExprAsBool(E->getCond()); |
| 675 | Builder.CreateCondBr(Cond, LHSBlock, RHSBlock); |
| 676 | |
| 677 | CGF.EmitBlock(LHSBlock); |
| 678 | |
| 679 | // Handle the GNU extension for missing LHS. |
| 680 | Value *LHS = E->getLHS() ? Visit(E->getLHS()) : Cond; |
| 681 | Builder.CreateBr(ContBlock); |
| 682 | LHSBlock = Builder.GetInsertBlock(); |
| 683 | |
| 684 | CGF.EmitBlock(RHSBlock); |
| 685 | |
| 686 | Value *RHS = Visit(E->getRHS()); |
| 687 | Builder.CreateBr(ContBlock); |
| 688 | RHSBlock = Builder.GetInsertBlock(); |
| 689 | |
| 690 | CGF.EmitBlock(ContBlock); |
| 691 | |
| 692 | // Create a PHI node for the real part. |
| 693 | llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond"); |
| 694 | PN->reserveOperandSpace(2); |
| 695 | PN->addIncoming(LHS, LHSBlock); |
| 696 | PN->addIncoming(RHS, RHSBlock); |
| 697 | return PN; |
| 698 | } |
| 699 | |
| 700 | Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { |
| 701 | llvm::APSInt CondVal(32); |
| 702 | bool IsConst = E->getCond()->isIntegerConstantExpr(CondVal, CGF.getContext()); |
| 703 | assert(IsConst && "Condition of choose expr must be i-c-e"); IsConst=IsConst; |
| 704 | |
| 705 | // Emit the LHS or RHS as appropriate. |
| 706 | return Visit(CondVal != 0 ? E->getLHS() : E->getRHS()); |
| 707 | } |
| 708 | |
| 709 | //===----------------------------------------------------------------------===// |
| 710 | // Entry Point into this File |
| 711 | //===----------------------------------------------------------------------===// |
| 712 | |
| 713 | /// EmitComplexExpr - Emit the computation of the specified expression of |
| 714 | /// complex type, ignoring the result. |
| 715 | Value *CodeGenFunction::EmitScalarExpr(const Expr *E) { |
| 716 | assert(E && !hasAggregateLLVMType(E->getType()) && |
| 717 | "Invalid scalar expression to emit"); |
| 718 | |
| 719 | return ScalarExprEmitter(*this).Visit(const_cast<Expr*>(E)); |
| 720 | } |