blob: d14d74cb8277aa7cacd9d208d377a9dc07550851 [file] [log] [blame]
Douglas Gregord2baafd2008-10-21 16:13:35 +00001//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
Douglas Gregorbb461502008-10-24 04:54:22 +000015#include "SemaInherit.h"
Douglas Gregord2baafd2008-10-21 16:13:35 +000016#include "clang/Basic/Diagnostic.h"
Douglas Gregor70d26122008-11-12 17:17:38 +000017#include "clang/Lex/Preprocessor.h"
Douglas Gregord2baafd2008-10-21 16:13:35 +000018#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
Douglas Gregor10f3c502008-11-19 21:05:33 +000020#include "clang/AST/ExprCXX.h"
Douglas Gregor70d26122008-11-12 17:17:38 +000021#include "clang/AST/TypeOrdering.h"
Douglas Gregor3d4492e2008-11-13 20:12:29 +000022#include "llvm/ADT/SmallPtrSet.h"
Douglas Gregord2baafd2008-10-21 16:13:35 +000023#include "llvm/Support/Compiler.h"
24#include <algorithm>
25
26namespace clang {
27
28/// GetConversionCategory - Retrieve the implicit conversion
29/// category corresponding to the given implicit conversion kind.
30ImplicitConversionCategory
31GetConversionCategory(ImplicitConversionKind Kind) {
32 static const ImplicitConversionCategory
33 Category[(int)ICK_Num_Conversion_Kinds] = {
34 ICC_Identity,
35 ICC_Lvalue_Transformation,
36 ICC_Lvalue_Transformation,
37 ICC_Lvalue_Transformation,
38 ICC_Qualification_Adjustment,
39 ICC_Promotion,
40 ICC_Promotion,
41 ICC_Conversion,
42 ICC_Conversion,
43 ICC_Conversion,
44 ICC_Conversion,
45 ICC_Conversion,
Douglas Gregor2aecd1f2008-10-29 02:00:59 +000046 ICC_Conversion,
Douglas Gregord2baafd2008-10-21 16:13:35 +000047 ICC_Conversion
48 };
49 return Category[(int)Kind];
50}
51
52/// GetConversionRank - Retrieve the implicit conversion rank
53/// corresponding to the given implicit conversion kind.
54ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
55 static const ImplicitConversionRank
56 Rank[(int)ICK_Num_Conversion_Kinds] = {
57 ICR_Exact_Match,
58 ICR_Exact_Match,
59 ICR_Exact_Match,
60 ICR_Exact_Match,
61 ICR_Exact_Match,
62 ICR_Promotion,
63 ICR_Promotion,
64 ICR_Conversion,
65 ICR_Conversion,
66 ICR_Conversion,
67 ICR_Conversion,
68 ICR_Conversion,
Douglas Gregor2aecd1f2008-10-29 02:00:59 +000069 ICR_Conversion,
Douglas Gregord2baafd2008-10-21 16:13:35 +000070 ICR_Conversion
71 };
72 return Rank[(int)Kind];
73}
74
75/// GetImplicitConversionName - Return the name of this kind of
76/// implicit conversion.
77const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
78 static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
79 "No conversion",
80 "Lvalue-to-rvalue",
81 "Array-to-pointer",
82 "Function-to-pointer",
83 "Qualification",
84 "Integral promotion",
85 "Floating point promotion",
86 "Integral conversion",
87 "Floating conversion",
88 "Floating-integral conversion",
89 "Pointer conversion",
90 "Pointer-to-member conversion",
Douglas Gregor2aecd1f2008-10-29 02:00:59 +000091 "Boolean conversion",
92 "Derived-to-base conversion"
Douglas Gregord2baafd2008-10-21 16:13:35 +000093 };
94 return Name[Kind];
95}
96
Douglas Gregorb72e9da2008-10-31 16:23:19 +000097/// StandardConversionSequence - Set the standard conversion
98/// sequence to the identity conversion.
99void StandardConversionSequence::setAsIdentityConversion() {
100 First = ICK_Identity;
101 Second = ICK_Identity;
102 Third = ICK_Identity;
103 Deprecated = false;
104 ReferenceBinding = false;
105 DirectBinding = false;
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000106 CopyConstructor = 0;
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000107}
108
Douglas Gregord2baafd2008-10-21 16:13:35 +0000109/// getRank - Retrieve the rank of this standard conversion sequence
110/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
111/// implicit conversions.
112ImplicitConversionRank StandardConversionSequence::getRank() const {
113 ImplicitConversionRank Rank = ICR_Exact_Match;
114 if (GetConversionRank(First) > Rank)
115 Rank = GetConversionRank(First);
116 if (GetConversionRank(Second) > Rank)
117 Rank = GetConversionRank(Second);
118 if (GetConversionRank(Third) > Rank)
119 Rank = GetConversionRank(Third);
120 return Rank;
121}
122
123/// isPointerConversionToBool - Determines whether this conversion is
124/// a conversion of a pointer or pointer-to-member to bool. This is
125/// used as part of the ranking of standard conversion sequences
126/// (C++ 13.3.3.2p4).
127bool StandardConversionSequence::isPointerConversionToBool() const
128{
129 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
130 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
131
132 // Note that FromType has not necessarily been transformed by the
133 // array-to-pointer or function-to-pointer implicit conversions, so
134 // check for their presence as well as checking whether FromType is
135 // a pointer.
136 if (ToType->isBooleanType() &&
137 (FromType->isPointerType() ||
138 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
139 return true;
140
141 return false;
142}
143
Douglas Gregor14046502008-10-23 00:40:37 +0000144/// isPointerConversionToVoidPointer - Determines whether this
145/// conversion is a conversion of a pointer to a void pointer. This is
146/// used as part of the ranking of standard conversion sequences (C++
147/// 13.3.3.2p4).
148bool
149StandardConversionSequence::
150isPointerConversionToVoidPointer(ASTContext& Context) const
151{
152 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
153 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
154
155 // Note that FromType has not necessarily been transformed by the
156 // array-to-pointer implicit conversion, so check for its presence
157 // and redo the conversion to get a pointer.
158 if (First == ICK_Array_To_Pointer)
159 FromType = Context.getArrayDecayedType(FromType);
160
161 if (Second == ICK_Pointer_Conversion)
162 if (const PointerType* ToPtrType = ToType->getAsPointerType())
163 return ToPtrType->getPointeeType()->isVoidType();
164
165 return false;
166}
167
Douglas Gregord2baafd2008-10-21 16:13:35 +0000168/// DebugPrint - Print this standard conversion sequence to standard
169/// error. Useful for debugging overloading issues.
170void StandardConversionSequence::DebugPrint() const {
171 bool PrintedSomething = false;
172 if (First != ICK_Identity) {
173 fprintf(stderr, "%s", GetImplicitConversionName(First));
174 PrintedSomething = true;
175 }
176
177 if (Second != ICK_Identity) {
178 if (PrintedSomething) {
179 fprintf(stderr, " -> ");
180 }
181 fprintf(stderr, "%s", GetImplicitConversionName(Second));
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000182
183 if (CopyConstructor) {
184 fprintf(stderr, " (by copy constructor)");
185 } else if (DirectBinding) {
186 fprintf(stderr, " (direct reference binding)");
187 } else if (ReferenceBinding) {
188 fprintf(stderr, " (reference binding)");
189 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000190 PrintedSomething = true;
191 }
192
193 if (Third != ICK_Identity) {
194 if (PrintedSomething) {
195 fprintf(stderr, " -> ");
196 }
197 fprintf(stderr, "%s", GetImplicitConversionName(Third));
198 PrintedSomething = true;
199 }
200
201 if (!PrintedSomething) {
202 fprintf(stderr, "No conversions required");
203 }
204}
205
206/// DebugPrint - Print this user-defined conversion sequence to standard
207/// error. Useful for debugging overloading issues.
208void UserDefinedConversionSequence::DebugPrint() const {
209 if (Before.First || Before.Second || Before.Third) {
210 Before.DebugPrint();
211 fprintf(stderr, " -> ");
212 }
Chris Lattner271d4c22008-11-24 05:29:24 +0000213 fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
Douglas Gregord2baafd2008-10-21 16:13:35 +0000214 if (After.First || After.Second || After.Third) {
215 fprintf(stderr, " -> ");
216 After.DebugPrint();
217 }
218}
219
220/// DebugPrint - Print this implicit conversion sequence to standard
221/// error. Useful for debugging overloading issues.
222void ImplicitConversionSequence::DebugPrint() const {
223 switch (ConversionKind) {
224 case StandardConversion:
225 fprintf(stderr, "Standard conversion: ");
226 Standard.DebugPrint();
227 break;
228 case UserDefinedConversion:
229 fprintf(stderr, "User-defined conversion: ");
230 UserDefined.DebugPrint();
231 break;
232 case EllipsisConversion:
233 fprintf(stderr, "Ellipsis conversion");
234 break;
235 case BadConversion:
236 fprintf(stderr, "Bad conversion");
237 break;
238 }
239
240 fprintf(stderr, "\n");
241}
242
243// IsOverload - Determine whether the given New declaration is an
244// overload of the Old declaration. This routine returns false if New
245// and Old cannot be overloaded, e.g., if they are functions with the
246// same signature (C++ 1.3.10) or if the Old declaration isn't a
247// function (or overload set). When it does return false and Old is an
248// OverloadedFunctionDecl, MatchedDecl will be set to point to the
249// FunctionDecl that New cannot be overloaded with.
250//
251// Example: Given the following input:
252//
253// void f(int, float); // #1
254// void f(int, int); // #2
255// int f(int, int); // #3
256//
257// When we process #1, there is no previous declaration of "f",
258// so IsOverload will not be used.
259//
260// When we process #2, Old is a FunctionDecl for #1. By comparing the
261// parameter types, we see that #1 and #2 are overloaded (since they
262// have different signatures), so this routine returns false;
263// MatchedDecl is unchanged.
264//
265// When we process #3, Old is an OverloadedFunctionDecl containing #1
266// and #2. We compare the signatures of #3 to #1 (they're overloaded,
267// so we do nothing) and then #3 to #2. Since the signatures of #3 and
268// #2 are identical (return types of functions are not part of the
269// signature), IsOverload returns false and MatchedDecl will be set to
270// point to the FunctionDecl for #2.
271bool
272Sema::IsOverload(FunctionDecl *New, Decl* OldD,
273 OverloadedFunctionDecl::function_iterator& MatchedDecl)
274{
275 if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
276 // Is this new function an overload of every function in the
277 // overload set?
278 OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
279 FuncEnd = Ovl->function_end();
280 for (; Func != FuncEnd; ++Func) {
281 if (!IsOverload(New, *Func, MatchedDecl)) {
282 MatchedDecl = Func;
283 return false;
284 }
285 }
286
287 // This function overloads every function in the overload set.
288 return true;
289 } else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
290 // Is the function New an overload of the function Old?
291 QualType OldQType = Context.getCanonicalType(Old->getType());
292 QualType NewQType = Context.getCanonicalType(New->getType());
293
294 // Compare the signatures (C++ 1.3.10) of the two functions to
295 // determine whether they are overloads. If we find any mismatch
296 // in the signature, they are overloads.
297
298 // If either of these functions is a K&R-style function (no
299 // prototype), then we consider them to have matching signatures.
300 if (isa<FunctionTypeNoProto>(OldQType.getTypePtr()) ||
301 isa<FunctionTypeNoProto>(NewQType.getTypePtr()))
302 return false;
303
304 FunctionTypeProto* OldType = cast<FunctionTypeProto>(OldQType.getTypePtr());
305 FunctionTypeProto* NewType = cast<FunctionTypeProto>(NewQType.getTypePtr());
306
307 // The signature of a function includes the types of its
308 // parameters (C++ 1.3.10), which includes the presence or absence
309 // of the ellipsis; see C++ DR 357).
310 if (OldQType != NewQType &&
311 (OldType->getNumArgs() != NewType->getNumArgs() ||
312 OldType->isVariadic() != NewType->isVariadic() ||
313 !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
314 NewType->arg_type_begin())))
315 return true;
316
317 // If the function is a class member, its signature includes the
318 // cv-qualifiers (if any) on the function itself.
319 //
320 // As part of this, also check whether one of the member functions
321 // is static, in which case they are not overloads (C++
322 // 13.1p2). While not part of the definition of the signature,
323 // this check is important to determine whether these functions
324 // can be overloaded.
325 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
326 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
327 if (OldMethod && NewMethod &&
328 !OldMethod->isStatic() && !NewMethod->isStatic() &&
Douglas Gregora7b56a32008-11-21 15:36:28 +0000329 OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
Douglas Gregord2baafd2008-10-21 16:13:35 +0000330 return true;
331
332 // The signatures match; this is not an overload.
333 return false;
334 } else {
335 // (C++ 13p1):
336 // Only function declarations can be overloaded; object and type
337 // declarations cannot be overloaded.
338 return false;
339 }
340}
341
Douglas Gregor81c29152008-10-29 00:13:59 +0000342/// TryImplicitConversion - Attempt to perform an implicit conversion
343/// from the given expression (Expr) to the given type (ToType). This
344/// function returns an implicit conversion sequence that can be used
345/// to perform the initialization. Given
Douglas Gregord2baafd2008-10-21 16:13:35 +0000346///
347/// void f(float f);
348/// void g(int i) { f(i); }
349///
350/// this routine would produce an implicit conversion sequence to
351/// describe the initialization of f from i, which will be a standard
352/// conversion sequence containing an lvalue-to-rvalue conversion (C++
353/// 4.1) followed by a floating-integral conversion (C++ 4.9).
354//
355/// Note that this routine only determines how the conversion can be
356/// performed; it does not actually perform the conversion. As such,
357/// it will not produce any diagnostics if no conversion is available,
358/// but will instead return an implicit conversion sequence of kind
359/// "BadConversion".
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000360///
361/// If @p SuppressUserConversions, then user-defined conversions are
362/// not permitted.
Douglas Gregord2baafd2008-10-21 16:13:35 +0000363ImplicitConversionSequence
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000364Sema::TryImplicitConversion(Expr* From, QualType ToType,
365 bool SuppressUserConversions)
Douglas Gregord2baafd2008-10-21 16:13:35 +0000366{
367 ImplicitConversionSequence ICS;
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000368 if (IsStandardConversion(From, ToType, ICS.Standard))
369 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000370 else if (!SuppressUserConversions &&
371 IsUserDefinedConversion(From, ToType, ICS.UserDefined)) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000372 ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
Douglas Gregore640ab62008-11-03 17:51:48 +0000373 // C++ [over.ics.user]p4:
374 // A conversion of an expression of class type to the same class
375 // type is given Exact Match rank, and a conversion of an
376 // expression of class type to a base class of that type is
377 // given Conversion rank, in spite of the fact that a copy
378 // constructor (i.e., a user-defined conversion function) is
379 // called for those cases.
380 if (CXXConstructorDecl *Constructor
381 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
382 if (Constructor->isCopyConstructor(Context)) {
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000383 // Turn this into a "standard" conversion sequence, so that it
384 // gets ranked with standard conversion sequences.
Douglas Gregore640ab62008-11-03 17:51:48 +0000385 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
386 ICS.Standard.setAsIdentityConversion();
387 ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
388 ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000389 ICS.Standard.CopyConstructor = Constructor;
Douglas Gregore640ab62008-11-03 17:51:48 +0000390 if (IsDerivedFrom(From->getType().getUnqualifiedType(),
391 ToType.getUnqualifiedType()))
392 ICS.Standard.Second = ICK_Derived_To_Base;
393 }
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000394 }
Douglas Gregore640ab62008-11-03 17:51:48 +0000395 } else
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000396 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000397
398 return ICS;
399}
400
401/// IsStandardConversion - Determines whether there is a standard
402/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
403/// expression From to the type ToType. Standard conversion sequences
404/// only consider non-class types; for conversions that involve class
405/// types, use TryImplicitConversion. If a conversion exists, SCS will
406/// contain the standard conversion sequence required to perform this
407/// conversion and this routine will return true. Otherwise, this
408/// routine will return false and the value of SCS is unspecified.
409bool
410Sema::IsStandardConversion(Expr* From, QualType ToType,
411 StandardConversionSequence &SCS)
412{
Douglas Gregord2baafd2008-10-21 16:13:35 +0000413 QualType FromType = From->getType();
414
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000415 // There are no standard conversions for class types, so abort early.
416 if (FromType->isRecordType() || ToType->isRecordType())
417 return false;
418
419 // Standard conversions (C++ [conv])
Douglas Gregor70d26122008-11-12 17:17:38 +0000420 SCS.setAsIdentityConversion();
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000421 SCS.Deprecated = false;
422 SCS.FromTypePtr = FromType.getAsOpaquePtr();
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000423 SCS.CopyConstructor = 0;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000424
425 // The first conversion can be an lvalue-to-rvalue conversion,
426 // array-to-pointer conversion, or function-to-pointer conversion
427 // (C++ 4p1).
428
429 // Lvalue-to-rvalue conversion (C++ 4.1):
430 // An lvalue (3.10) of a non-function, non-array type T can be
431 // converted to an rvalue.
432 Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
433 if (argIsLvalue == Expr::LV_Valid &&
Douglas Gregor45014fd2008-11-10 20:40:00 +0000434 !FromType->isFunctionType() && !FromType->isArrayType() &&
435 !FromType->isOverloadType()) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000436 SCS.First = ICK_Lvalue_To_Rvalue;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000437
438 // If T is a non-class type, the type of the rvalue is the
439 // cv-unqualified version of T. Otherwise, the type of the rvalue
440 // is T (C++ 4.1p1).
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000441 FromType = FromType.getUnqualifiedType();
Douglas Gregord2baafd2008-10-21 16:13:35 +0000442 }
443 // Array-to-pointer conversion (C++ 4.2)
444 else if (FromType->isArrayType()) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000445 SCS.First = ICK_Array_To_Pointer;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000446
447 // An lvalue or rvalue of type "array of N T" or "array of unknown
448 // bound of T" can be converted to an rvalue of type "pointer to
449 // T" (C++ 4.2p1).
450 FromType = Context.getArrayDecayedType(FromType);
451
452 if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
453 // This conversion is deprecated. (C++ D.4).
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000454 SCS.Deprecated = true;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000455
456 // For the purpose of ranking in overload resolution
457 // (13.3.3.1.1), this conversion is considered an
458 // array-to-pointer conversion followed by a qualification
459 // conversion (4.4). (C++ 4.2p2)
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000460 SCS.Second = ICK_Identity;
461 SCS.Third = ICK_Qualification;
462 SCS.ToTypePtr = ToType.getAsOpaquePtr();
463 return true;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000464 }
465 }
466 // Function-to-pointer conversion (C++ 4.3).
467 else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000468 SCS.First = ICK_Function_To_Pointer;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000469
470 // An lvalue of function type T can be converted to an rvalue of
471 // type "pointer to T." The result is a pointer to the
472 // function. (C++ 4.3p1).
473 FromType = Context.getPointerType(FromType);
Douglas Gregord2baafd2008-10-21 16:13:35 +0000474 }
Douglas Gregor45014fd2008-11-10 20:40:00 +0000475 // Address of overloaded function (C++ [over.over]).
476 else if (FunctionDecl *Fn
477 = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
478 SCS.First = ICK_Function_To_Pointer;
479
480 // We were able to resolve the address of the overloaded function,
481 // so we can convert to the type of that function.
482 FromType = Fn->getType();
483 if (ToType->isReferenceType())
484 FromType = Context.getReferenceType(FromType);
485 else
486 FromType = Context.getPointerType(FromType);
487 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000488 // We don't require any conversions for the first step.
489 else {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000490 SCS.First = ICK_Identity;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000491 }
492
493 // The second conversion can be an integral promotion, floating
494 // point promotion, integral conversion, floating point conversion,
495 // floating-integral conversion, pointer conversion,
496 // pointer-to-member conversion, or boolean conversion (C++ 4p1).
497 if (Context.getCanonicalType(FromType).getUnqualifiedType() ==
498 Context.getCanonicalType(ToType).getUnqualifiedType()) {
499 // The unqualified versions of the types are the same: there's no
500 // conversion to do.
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000501 SCS.Second = ICK_Identity;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000502 }
503 // Integral promotion (C++ 4.5).
504 else if (IsIntegralPromotion(From, FromType, ToType)) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000505 SCS.Second = ICK_Integral_Promotion;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000506 FromType = ToType.getUnqualifiedType();
507 }
508 // Floating point promotion (C++ 4.6).
509 else if (IsFloatingPointPromotion(FromType, ToType)) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000510 SCS.Second = ICK_Floating_Promotion;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000511 FromType = ToType.getUnqualifiedType();
512 }
513 // Integral conversions (C++ 4.7).
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000514 // FIXME: isIntegralType shouldn't be true for enums in C++.
Douglas Gregord2baafd2008-10-21 16:13:35 +0000515 else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000516 (ToType->isIntegralType() && !ToType->isEnumeralType())) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000517 SCS.Second = ICK_Integral_Conversion;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000518 FromType = ToType.getUnqualifiedType();
519 }
520 // Floating point conversions (C++ 4.8).
521 else if (FromType->isFloatingType() && ToType->isFloatingType()) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000522 SCS.Second = ICK_Floating_Conversion;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000523 FromType = ToType.getUnqualifiedType();
524 }
525 // Floating-integral conversions (C++ 4.9).
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000526 // FIXME: isIntegralType shouldn't be true for enums in C++.
Douglas Gregord2baafd2008-10-21 16:13:35 +0000527 else if ((FromType->isFloatingType() &&
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000528 ToType->isIntegralType() && !ToType->isBooleanType() &&
529 !ToType->isEnumeralType()) ||
Douglas Gregord2baafd2008-10-21 16:13:35 +0000530 ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
531 ToType->isFloatingType())) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000532 SCS.Second = ICK_Floating_Integral;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000533 FromType = ToType.getUnqualifiedType();
534 }
535 // Pointer conversions (C++ 4.10).
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000536 else if (IsPointerConversion(From, FromType, ToType, FromType)) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000537 SCS.Second = ICK_Pointer_Conversion;
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000538 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000539 // FIXME: Pointer to member conversions (4.11).
540 // Boolean conversions (C++ 4.12).
541 // FIXME: pointer-to-member type
542 else if (ToType->isBooleanType() &&
543 (FromType->isArithmeticType() ||
544 FromType->isEnumeralType() ||
545 FromType->isPointerType())) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000546 SCS.Second = ICK_Boolean_Conversion;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000547 FromType = Context.BoolTy;
548 } else {
549 // No second conversion required.
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000550 SCS.Second = ICK_Identity;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000551 }
552
Douglas Gregor81c29152008-10-29 00:13:59 +0000553 QualType CanonFrom;
554 QualType CanonTo;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000555 // The third conversion can be a qualification conversion (C++ 4p1).
Douglas Gregor6573cfd2008-10-21 23:43:52 +0000556 if (IsQualificationConversion(FromType, ToType)) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000557 SCS.Third = ICK_Qualification;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000558 FromType = ToType;
Douglas Gregor81c29152008-10-29 00:13:59 +0000559 CanonFrom = Context.getCanonicalType(FromType);
560 CanonTo = Context.getCanonicalType(ToType);
Douglas Gregord2baafd2008-10-21 16:13:35 +0000561 } else {
562 // No conversion required
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000563 SCS.Third = ICK_Identity;
564
565 // C++ [over.best.ics]p6:
566 // [...] Any difference in top-level cv-qualification is
567 // subsumed by the initialization itself and does not constitute
568 // a conversion. [...]
Douglas Gregor81c29152008-10-29 00:13:59 +0000569 CanonFrom = Context.getCanonicalType(FromType);
570 CanonTo = Context.getCanonicalType(ToType);
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000571 if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
Douglas Gregor81c29152008-10-29 00:13:59 +0000572 CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
573 FromType = ToType;
574 CanonFrom = CanonTo;
575 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000576 }
577
578 // If we have not converted the argument type to the parameter type,
579 // this is a bad conversion sequence.
Douglas Gregor81c29152008-10-29 00:13:59 +0000580 if (CanonFrom != CanonTo)
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000581 return false;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000582
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000583 SCS.ToTypePtr = FromType.getAsOpaquePtr();
584 return true;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000585}
586
587/// IsIntegralPromotion - Determines whether the conversion from the
588/// expression From (whose potentially-adjusted type is FromType) to
589/// ToType is an integral promotion (C++ 4.5). If so, returns true and
590/// sets PromotedType to the promoted type.
591bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
592{
593 const BuiltinType *To = ToType->getAsBuiltinType();
Sebastian Redl12aee862008-11-04 15:59:10 +0000594 // All integers are built-in.
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000595 if (!To) {
596 return false;
597 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000598
599 // An rvalue of type char, signed char, unsigned char, short int, or
600 // unsigned short int can be converted to an rvalue of type int if
601 // int can represent all the values of the source type; otherwise,
602 // the source rvalue can be converted to an rvalue of type unsigned
603 // int (C++ 4.5p1).
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000604 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000605 if (// We can promote any signed, promotable integer type to an int
606 (FromType->isSignedIntegerType() ||
607 // We can promote any unsigned integer type whose size is
608 // less than int to an int.
609 (!FromType->isSignedIntegerType() &&
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000610 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000611 return To->getKind() == BuiltinType::Int;
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000612 }
613
Douglas Gregord2baafd2008-10-21 16:13:35 +0000614 return To->getKind() == BuiltinType::UInt;
615 }
616
617 // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
618 // can be converted to an rvalue of the first of the following types
619 // that can represent all the values of its underlying type: int,
620 // unsigned int, long, or unsigned long (C++ 4.5p2).
621 if ((FromType->isEnumeralType() || FromType->isWideCharType())
622 && ToType->isIntegerType()) {
623 // Determine whether the type we're converting from is signed or
624 // unsigned.
625 bool FromIsSigned;
626 uint64_t FromSize = Context.getTypeSize(FromType);
627 if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
628 QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
629 FromIsSigned = UnderlyingType->isSignedIntegerType();
630 } else {
631 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
632 FromIsSigned = true;
633 }
634
635 // The types we'll try to promote to, in the appropriate
636 // order. Try each of these types.
637 QualType PromoteTypes[4] = {
638 Context.IntTy, Context.UnsignedIntTy,
639 Context.LongTy, Context.UnsignedLongTy
640 };
Douglas Gregor849ea9c2008-11-19 03:25:36 +0000641 for (int Idx = 0; Idx < 4; ++Idx) {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000642 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
643 if (FromSize < ToSize ||
644 (FromSize == ToSize &&
645 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
646 // We found the type that we can promote to. If this is the
647 // type we wanted, we have a promotion. Otherwise, no
648 // promotion.
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000649 return Context.getCanonicalType(ToType).getUnqualifiedType()
Douglas Gregord2baafd2008-10-21 16:13:35 +0000650 == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
651 }
652 }
653 }
654
655 // An rvalue for an integral bit-field (9.6) can be converted to an
656 // rvalue of type int if int can represent all the values of the
657 // bit-field; otherwise, it can be converted to unsigned int if
658 // unsigned int can represent all the values of the bit-field. If
659 // the bit-field is larger yet, no integral promotion applies to
660 // it. If the bit-field has an enumerated type, it is treated as any
661 // other value of that type for promotion purposes (C++ 4.5p3).
662 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(From)) {
663 using llvm::APSInt;
664 FieldDecl *MemberDecl = MemRef->getMemberDecl();
665 APSInt BitWidth;
666 if (MemberDecl->isBitField() &&
667 FromType->isIntegralType() && !FromType->isEnumeralType() &&
668 From->isIntegerConstantExpr(BitWidth, Context)) {
669 APSInt ToSize(Context.getTypeSize(ToType));
670
671 // Are we promoting to an int from a bitfield that fits in an int?
672 if (BitWidth < ToSize ||
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000673 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000674 return To->getKind() == BuiltinType::Int;
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000675 }
676
Douglas Gregord2baafd2008-10-21 16:13:35 +0000677 // Are we promoting to an unsigned int from an unsigned bitfield
678 // that fits into an unsigned int?
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000679 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000680 return To->getKind() == BuiltinType::UInt;
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000681 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000682
683 return false;
684 }
685 }
686
687 // An rvalue of type bool can be converted to an rvalue of type int,
688 // with false becoming zero and true becoming one (C++ 4.5p4).
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000689 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000690 return true;
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000691 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000692
693 return false;
694}
695
696/// IsFloatingPointPromotion - Determines whether the conversion from
697/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
698/// returns true and sets PromotedType to the promoted type.
699bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
700{
701 /// An rvalue of type float can be converted to an rvalue of type
702 /// double. (C++ 4.6p1).
703 if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
704 if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType())
705 if (FromBuiltin->getKind() == BuiltinType::Float &&
706 ToBuiltin->getKind() == BuiltinType::Double)
707 return true;
708
709 return false;
710}
711
Douglas Gregor24a90a52008-11-26 23:31:11 +0000712/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
713/// the pointer type FromPtr to a pointer to type ToPointee, with the
714/// same type qualifiers as FromPtr has on its pointee type. ToType,
715/// if non-empty, will be a pointer to ToType that may or may not have
716/// the right set of qualifiers on its pointee.
717static QualType
718BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
719 QualType ToPointee, QualType ToType,
720 ASTContext &Context) {
721 QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
722 QualType CanonToPointee = Context.getCanonicalType(ToPointee);
723 unsigned Quals = CanonFromPointee.getCVRQualifiers();
724
725 // Exact qualifier match -> return the pointer type we're converting to.
726 if (CanonToPointee.getCVRQualifiers() == Quals) {
727 // ToType is exactly what we need. Return it.
728 if (ToType.getTypePtr())
729 return ToType;
730
731 // Build a pointer to ToPointee. It has the right qualifiers
732 // already.
733 return Context.getPointerType(ToPointee);
734 }
735
736 // Just build a canonical type that has the right qualifiers.
737 return Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
738}
739
Douglas Gregord2baafd2008-10-21 16:13:35 +0000740/// IsPointerConversion - Determines whether the conversion of the
741/// expression From, which has the (possibly adjusted) type FromType,
742/// can be converted to the type ToType via a pointer conversion (C++
743/// 4.10). If so, returns true and places the converted type (that
744/// might differ from ToType in its cv-qualifiers at some level) into
745/// ConvertedType.
Douglas Gregor9036ef72008-11-27 00:15:41 +0000746///
747/// This routine also supports conversions to and from block pointers.
Douglas Gregord2baafd2008-10-21 16:13:35 +0000748bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
749 QualType& ConvertedType)
750{
Douglas Gregor9036ef72008-11-27 00:15:41 +0000751 // Blocks: Block pointers can be converted to void*.
752 if (FromType->isBlockPointerType() && ToType->isPointerType() &&
753 ToType->getAsPointerType()->getPointeeType()->isVoidType()) {
754 ConvertedType = ToType;
755 return true;
756 }
757 // Blocks: A null pointer constant can be converted to a block
758 // pointer type.
759 if (ToType->isBlockPointerType() && From->isNullPointerConstant(Context)) {
760 ConvertedType = ToType;
761 return true;
762 }
763
Douglas Gregord2baafd2008-10-21 16:13:35 +0000764 const PointerType* ToTypePtr = ToType->getAsPointerType();
765 if (!ToTypePtr)
766 return false;
767
768 // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
769 if (From->isNullPointerConstant(Context)) {
770 ConvertedType = ToType;
771 return true;
772 }
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000773
Douglas Gregor24a90a52008-11-26 23:31:11 +0000774 // Beyond this point, both types need to be pointers.
775 const PointerType *FromTypePtr = FromType->getAsPointerType();
776 if (!FromTypePtr)
777 return false;
778
779 QualType FromPointeeType = FromTypePtr->getPointeeType();
780 QualType ToPointeeType = ToTypePtr->getPointeeType();
781
Douglas Gregord2baafd2008-10-21 16:13:35 +0000782 // An rvalue of type "pointer to cv T," where T is an object type,
783 // can be converted to an rvalue of type "pointer to cv void" (C++
784 // 4.10p2).
Douglas Gregor24a90a52008-11-26 23:31:11 +0000785 if (FromPointeeType->isIncompleteOrObjectType() && ToPointeeType->isVoidType()) {
786 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, ToPointeeType,
787 ToType, Context);
Douglas Gregord2baafd2008-10-21 16:13:35 +0000788 return true;
789 }
790
Douglas Gregor14046502008-10-23 00:40:37 +0000791 // C++ [conv.ptr]p3:
792 //
793 // An rvalue of type "pointer to cv D," where D is a class type,
794 // can be converted to an rvalue of type "pointer to cv B," where
795 // B is a base class (clause 10) of D. If B is an inaccessible
796 // (clause 11) or ambiguous (10.2) base class of D, a program that
797 // necessitates this conversion is ill-formed. The result of the
798 // conversion is a pointer to the base class sub-object of the
799 // derived class object. The null pointer value is converted to
800 // the null pointer value of the destination type.
801 //
Douglas Gregorbb461502008-10-24 04:54:22 +0000802 // Note that we do not check for ambiguity or inaccessibility
803 // here. That is handled by CheckPointerConversion.
Douglas Gregor24a90a52008-11-26 23:31:11 +0000804 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
805 IsDerivedFrom(FromPointeeType, ToPointeeType)) {
806 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, ToPointeeType,
807 ToType, Context);
808 return true;
809 }
Douglas Gregor14046502008-10-23 00:40:37 +0000810
Douglas Gregor24a90a52008-11-26 23:31:11 +0000811 // Objective C++: We're able to convert from a pointer to an
812 // interface to a pointer to a different interface.
813 const ObjCInterfaceType* FromIface = FromPointeeType->getAsObjCInterfaceType();
814 const ObjCInterfaceType* ToIface = ToPointeeType->getAsObjCInterfaceType();
815 if (FromIface && ToIface &&
816 Context.canAssignObjCInterfaces(ToIface, FromIface)) {
817 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, ToPointeeType,
818 ToType, Context);
819 return true;
820 }
821
822 // Objective C++: We're able to convert between "id" and a pointer
823 // to any interface (in both directions).
824 if ((FromIface && Context.isObjCIdType(ToPointeeType))
825 || (ToIface && Context.isObjCIdType(FromPointeeType))) {
826 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, ToPointeeType,
827 ToType, Context);
828 return true;
829 }
Douglas Gregor14046502008-10-23 00:40:37 +0000830
Douglas Gregord2baafd2008-10-21 16:13:35 +0000831 return false;
832}
833
Douglas Gregorbb461502008-10-24 04:54:22 +0000834/// CheckPointerConversion - Check the pointer conversion from the
835/// expression From to the type ToType. This routine checks for
836/// ambiguous (FIXME: or inaccessible) derived-to-base pointer
837/// conversions for which IsPointerConversion has already returned
838/// true. It returns true and produces a diagnostic if there was an
839/// error, or returns false otherwise.
840bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
841 QualType FromType = From->getType();
842
843 if (const PointerType *FromPtrType = FromType->getAsPointerType())
844 if (const PointerType *ToPtrType = ToType->getAsPointerType()) {
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000845 BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
846 /*DetectVirtual=*/false);
Douglas Gregorbb461502008-10-24 04:54:22 +0000847 QualType FromPointeeType = FromPtrType->getPointeeType(),
848 ToPointeeType = ToPtrType->getPointeeType();
849 if (FromPointeeType->isRecordType() &&
850 ToPointeeType->isRecordType()) {
851 // We must have a derived-to-base conversion. Check an
852 // ambiguous or inaccessible conversion.
Douglas Gregor651d1cc2008-10-24 16:17:19 +0000853 return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
854 From->getExprLoc(),
855 From->getSourceRange());
Douglas Gregorbb461502008-10-24 04:54:22 +0000856 }
857 }
858
859 return false;
860}
861
Douglas Gregor6573cfd2008-10-21 23:43:52 +0000862/// IsQualificationConversion - Determines whether the conversion from
863/// an rvalue of type FromType to ToType is a qualification conversion
864/// (C++ 4.4).
865bool
866Sema::IsQualificationConversion(QualType FromType, QualType ToType)
867{
868 FromType = Context.getCanonicalType(FromType);
869 ToType = Context.getCanonicalType(ToType);
870
871 // If FromType and ToType are the same type, this is not a
872 // qualification conversion.
873 if (FromType == ToType)
874 return false;
875
876 // (C++ 4.4p4):
877 // A conversion can add cv-qualifiers at levels other than the first
878 // in multi-level pointers, subject to the following rules: [...]
879 bool PreviousToQualsIncludeConst = true;
Douglas Gregor6573cfd2008-10-21 23:43:52 +0000880 bool UnwrappedAnyPointer = false;
Douglas Gregorccc0ccc2008-10-22 14:17:15 +0000881 while (UnwrapSimilarPointerTypes(FromType, ToType)) {
Douglas Gregor6573cfd2008-10-21 23:43:52 +0000882 // Within each iteration of the loop, we check the qualifiers to
883 // determine if this still looks like a qualification
884 // conversion. Then, if all is well, we unwrap one more level of
Douglas Gregorabed2172008-10-22 17:49:05 +0000885 // pointers or pointers-to-members and do it all again
Douglas Gregor6573cfd2008-10-21 23:43:52 +0000886 // until there are no more pointers or pointers-to-members left to
887 // unwrap.
Douglas Gregorccc0ccc2008-10-22 14:17:15 +0000888 UnwrappedAnyPointer = true;
Douglas Gregor6573cfd2008-10-21 23:43:52 +0000889
890 // -- for every j > 0, if const is in cv 1,j then const is in cv
891 // 2,j, and similarly for volatile.
Douglas Gregore5db4f72008-10-22 00:38:21 +0000892 if (!ToType.isAtLeastAsQualifiedAs(FromType))
Douglas Gregor6573cfd2008-10-21 23:43:52 +0000893 return false;
Douglas Gregorccc0ccc2008-10-22 14:17:15 +0000894
Douglas Gregor6573cfd2008-10-21 23:43:52 +0000895 // -- if the cv 1,j and cv 2,j are different, then const is in
896 // every cv for 0 < k < j.
897 if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
Douglas Gregorccc0ccc2008-10-22 14:17:15 +0000898 && !PreviousToQualsIncludeConst)
Douglas Gregor6573cfd2008-10-21 23:43:52 +0000899 return false;
Douglas Gregorccc0ccc2008-10-22 14:17:15 +0000900
Douglas Gregor6573cfd2008-10-21 23:43:52 +0000901 // Keep track of whether all prior cv-qualifiers in the "to" type
902 // include const.
903 PreviousToQualsIncludeConst
904 = PreviousToQualsIncludeConst && ToType.isConstQualified();
Douglas Gregorccc0ccc2008-10-22 14:17:15 +0000905 }
Douglas Gregor6573cfd2008-10-21 23:43:52 +0000906
907 // We are left with FromType and ToType being the pointee types
908 // after unwrapping the original FromType and ToType the same number
909 // of types. If we unwrapped any pointers, and if FromType and
910 // ToType have the same unqualified type (since we checked
911 // qualifiers above), then this is a qualification conversion.
912 return UnwrappedAnyPointer &&
913 FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
914}
915
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000916/// IsUserDefinedConversion - Determines whether there is a
917/// user-defined conversion sequence (C++ [over.ics.user]) that
918/// converts expression From to the type ToType. If such a conversion
919/// exists, User will contain the user-defined conversion sequence
920/// that performs such a conversion and this routine will return
921/// true. Otherwise, this routine returns false and User is
922/// unspecified.
923bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
924 UserDefinedConversionSequence& User)
925{
926 OverloadCandidateSet CandidateSet;
927 if (const CXXRecordType *ToRecordType
928 = dyn_cast_or_null<CXXRecordType>(ToType->getAsRecordType())) {
929 // C++ [over.match.ctor]p1:
930 // When objects of class type are direct-initialized (8.5), or
931 // copy-initialized from an expression of the same or a
932 // derived class type (8.5), overload resolution selects the
933 // constructor. [...] For copy-initialization, the candidate
934 // functions are all the converting constructors (12.3.1) of
935 // that class. The argument list is the expression-list within
936 // the parentheses of the initializer.
937 CXXRecordDecl *ToRecordDecl = ToRecordType->getDecl();
938 const OverloadedFunctionDecl *Constructors = ToRecordDecl->getConstructors();
939 for (OverloadedFunctionDecl::function_const_iterator func
940 = Constructors->function_begin();
941 func != Constructors->function_end(); ++func) {
942 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*func);
943 if (Constructor->isConvertingConstructor())
Douglas Gregora3b34bb2008-11-03 19:09:14 +0000944 AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
945 /*SuppressUserConversions=*/true);
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000946 }
947 }
948
Douglas Gregor60714f92008-11-07 22:36:19 +0000949 if (const CXXRecordType *FromRecordType
950 = dyn_cast_or_null<CXXRecordType>(From->getType()->getAsRecordType())) {
951 // Add all of the conversion functions as candidates.
952 // FIXME: Look for conversions in base classes!
953 CXXRecordDecl *FromRecordDecl = FromRecordType->getDecl();
954 OverloadedFunctionDecl *Conversions
955 = FromRecordDecl->getConversionFunctions();
956 for (OverloadedFunctionDecl::function_iterator Func
957 = Conversions->function_begin();
958 Func != Conversions->function_end(); ++Func) {
959 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
960 AddConversionCandidate(Conv, From, ToType, CandidateSet);
961 }
962 }
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000963
964 OverloadCandidateSet::iterator Best;
965 switch (BestViableFunction(CandidateSet, Best)) {
966 case OR_Success:
967 // Record the standard conversion we used and the conversion function.
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000968 if (CXXConstructorDecl *Constructor
969 = dyn_cast<CXXConstructorDecl>(Best->Function)) {
970 // C++ [over.ics.user]p1:
971 // If the user-defined conversion is specified by a
972 // constructor (12.3.1), the initial standard conversion
973 // sequence converts the source type to the type required by
974 // the argument of the constructor.
975 //
976 // FIXME: What about ellipsis conversions?
977 QualType ThisType = Constructor->getThisType(Context);
978 User.Before = Best->Conversions[0].Standard;
979 User.ConversionFunction = Constructor;
980 User.After.setAsIdentityConversion();
981 User.After.FromTypePtr
982 = ThisType->getAsPointerType()->getPointeeType().getAsOpaquePtr();
983 User.After.ToTypePtr = ToType.getAsOpaquePtr();
984 return true;
Douglas Gregor60714f92008-11-07 22:36:19 +0000985 } else if (CXXConversionDecl *Conversion
986 = dyn_cast<CXXConversionDecl>(Best->Function)) {
987 // C++ [over.ics.user]p1:
988 //
989 // [...] If the user-defined conversion is specified by a
990 // conversion function (12.3.2), the initial standard
991 // conversion sequence converts the source type to the
992 // implicit object parameter of the conversion function.
993 User.Before = Best->Conversions[0].Standard;
994 User.ConversionFunction = Conversion;
995
996 // C++ [over.ics.user]p2:
997 // The second standard conversion sequence converts the
998 // result of the user-defined conversion to the target type
999 // for the sequence. Since an implicit conversion sequence
1000 // is an initialization, the special rules for
1001 // initialization by user-defined conversion apply when
1002 // selecting the best user-defined conversion for a
1003 // user-defined conversion sequence (see 13.3.3 and
1004 // 13.3.3.1).
1005 User.After = Best->FinalConversion;
1006 return true;
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001007 } else {
Douglas Gregor60714f92008-11-07 22:36:19 +00001008 assert(false && "Not a constructor or conversion function?");
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001009 return false;
1010 }
1011
1012 case OR_No_Viable_Function:
1013 // No conversion here! We're done.
1014 return false;
1015
1016 case OR_Ambiguous:
1017 // FIXME: See C++ [over.best.ics]p10 for the handling of
1018 // ambiguous conversion sequences.
1019 return false;
1020 }
1021
1022 return false;
1023}
1024
Douglas Gregord2baafd2008-10-21 16:13:35 +00001025/// CompareImplicitConversionSequences - Compare two implicit
1026/// conversion sequences to determine whether one is better than the
1027/// other or if they are indistinguishable (C++ 13.3.3.2).
1028ImplicitConversionSequence::CompareKind
1029Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1030 const ImplicitConversionSequence& ICS2)
1031{
1032 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1033 // conversion sequences (as defined in 13.3.3.1)
1034 // -- a standard conversion sequence (13.3.3.1.1) is a better
1035 // conversion sequence than a user-defined conversion sequence or
1036 // an ellipsis conversion sequence, and
1037 // -- a user-defined conversion sequence (13.3.3.1.2) is a better
1038 // conversion sequence than an ellipsis conversion sequence
1039 // (13.3.3.1.3).
1040 //
1041 if (ICS1.ConversionKind < ICS2.ConversionKind)
1042 return ImplicitConversionSequence::Better;
1043 else if (ICS2.ConversionKind < ICS1.ConversionKind)
1044 return ImplicitConversionSequence::Worse;
1045
1046 // Two implicit conversion sequences of the same form are
1047 // indistinguishable conversion sequences unless one of the
1048 // following rules apply: (C++ 13.3.3.2p3):
1049 if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1050 return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1051 else if (ICS1.ConversionKind ==
1052 ImplicitConversionSequence::UserDefinedConversion) {
1053 // User-defined conversion sequence U1 is a better conversion
1054 // sequence than another user-defined conversion sequence U2 if
1055 // they contain the same user-defined conversion function or
1056 // constructor and if the second standard conversion sequence of
1057 // U1 is better than the second standard conversion sequence of
1058 // U2 (C++ 13.3.3.2p3).
1059 if (ICS1.UserDefined.ConversionFunction ==
1060 ICS2.UserDefined.ConversionFunction)
1061 return CompareStandardConversionSequences(ICS1.UserDefined.After,
1062 ICS2.UserDefined.After);
1063 }
1064
1065 return ImplicitConversionSequence::Indistinguishable;
1066}
1067
1068/// CompareStandardConversionSequences - Compare two standard
1069/// conversion sequences to determine whether one is better than the
1070/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1071ImplicitConversionSequence::CompareKind
1072Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1073 const StandardConversionSequence& SCS2)
1074{
1075 // Standard conversion sequence S1 is a better conversion sequence
1076 // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1077
1078 // -- S1 is a proper subsequence of S2 (comparing the conversion
1079 // sequences in the canonical form defined by 13.3.3.1.1,
1080 // excluding any Lvalue Transformation; the identity conversion
1081 // sequence is considered to be a subsequence of any
1082 // non-identity conversion sequence) or, if not that,
1083 if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1084 // Neither is a proper subsequence of the other. Do nothing.
1085 ;
1086 else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1087 (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1088 (SCS1.Second == ICK_Identity &&
1089 SCS1.Third == ICK_Identity))
1090 // SCS1 is a proper subsequence of SCS2.
1091 return ImplicitConversionSequence::Better;
1092 else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1093 (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1094 (SCS2.Second == ICK_Identity &&
1095 SCS2.Third == ICK_Identity))
1096 // SCS2 is a proper subsequence of SCS1.
1097 return ImplicitConversionSequence::Worse;
1098
1099 // -- the rank of S1 is better than the rank of S2 (by the rules
1100 // defined below), or, if not that,
1101 ImplicitConversionRank Rank1 = SCS1.getRank();
1102 ImplicitConversionRank Rank2 = SCS2.getRank();
1103 if (Rank1 < Rank2)
1104 return ImplicitConversionSequence::Better;
1105 else if (Rank2 < Rank1)
1106 return ImplicitConversionSequence::Worse;
Douglas Gregord2baafd2008-10-21 16:13:35 +00001107
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001108 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1109 // are indistinguishable unless one of the following rules
1110 // applies:
1111
1112 // A conversion that is not a conversion of a pointer, or
1113 // pointer to member, to bool is better than another conversion
1114 // that is such a conversion.
1115 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1116 return SCS2.isPointerConversionToBool()
1117 ? ImplicitConversionSequence::Better
1118 : ImplicitConversionSequence::Worse;
1119
Douglas Gregor14046502008-10-23 00:40:37 +00001120 // C++ [over.ics.rank]p4b2:
1121 //
1122 // If class B is derived directly or indirectly from class A,
Douglas Gregor0e343382008-10-29 14:50:44 +00001123 // conversion of B* to A* is better than conversion of B* to
1124 // void*, and conversion of A* to void* is better than conversion
1125 // of B* to void*.
Douglas Gregor14046502008-10-23 00:40:37 +00001126 bool SCS1ConvertsToVoid
1127 = SCS1.isPointerConversionToVoidPointer(Context);
1128 bool SCS2ConvertsToVoid
1129 = SCS2.isPointerConversionToVoidPointer(Context);
Douglas Gregor0e343382008-10-29 14:50:44 +00001130 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1131 // Exactly one of the conversion sequences is a conversion to
1132 // a void pointer; it's the worse conversion.
Douglas Gregor14046502008-10-23 00:40:37 +00001133 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1134 : ImplicitConversionSequence::Worse;
Douglas Gregor0e343382008-10-29 14:50:44 +00001135 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1136 // Neither conversion sequence converts to a void pointer; compare
1137 // their derived-to-base conversions.
Douglas Gregor14046502008-10-23 00:40:37 +00001138 if (ImplicitConversionSequence::CompareKind DerivedCK
1139 = CompareDerivedToBaseConversions(SCS1, SCS2))
1140 return DerivedCK;
Douglas Gregor0e343382008-10-29 14:50:44 +00001141 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1142 // Both conversion sequences are conversions to void
1143 // pointers. Compare the source types to determine if there's an
1144 // inheritance relationship in their sources.
1145 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1146 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1147
1148 // Adjust the types we're converting from via the array-to-pointer
1149 // conversion, if we need to.
1150 if (SCS1.First == ICK_Array_To_Pointer)
1151 FromType1 = Context.getArrayDecayedType(FromType1);
1152 if (SCS2.First == ICK_Array_To_Pointer)
1153 FromType2 = Context.getArrayDecayedType(FromType2);
1154
1155 QualType FromPointee1
1156 = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1157 QualType FromPointee2
1158 = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1159
1160 if (IsDerivedFrom(FromPointee2, FromPointee1))
1161 return ImplicitConversionSequence::Better;
1162 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1163 return ImplicitConversionSequence::Worse;
Douglas Gregor24a90a52008-11-26 23:31:11 +00001164
1165 // Objective-C++: If one interface is more specific than the
1166 // other, it is the better one.
1167 const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1168 const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1169 if (FromIface1 && FromIface1) {
1170 if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1171 return ImplicitConversionSequence::Better;
1172 else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1173 return ImplicitConversionSequence::Worse;
1174 }
Douglas Gregor0e343382008-10-29 14:50:44 +00001175 }
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001176
1177 // Compare based on qualification conversions (C++ 13.3.3.2p3,
1178 // bullet 3).
Douglas Gregor14046502008-10-23 00:40:37 +00001179 if (ImplicitConversionSequence::CompareKind QualCK
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001180 = CompareQualificationConversions(SCS1, SCS2))
Douglas Gregor14046502008-10-23 00:40:37 +00001181 return QualCK;
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001182
Douglas Gregor0e343382008-10-29 14:50:44 +00001183 // C++ [over.ics.rank]p3b4:
1184 // -- S1 and S2 are reference bindings (8.5.3), and the types to
1185 // which the references refer are the same type except for
1186 // top-level cv-qualifiers, and the type to which the reference
1187 // initialized by S2 refers is more cv-qualified than the type
1188 // to which the reference initialized by S1 refers.
1189 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1190 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1191 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1192 T1 = Context.getCanonicalType(T1);
1193 T2 = Context.getCanonicalType(T2);
1194 if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1195 if (T2.isMoreQualifiedThan(T1))
1196 return ImplicitConversionSequence::Better;
1197 else if (T1.isMoreQualifiedThan(T2))
1198 return ImplicitConversionSequence::Worse;
1199 }
1200 }
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001201
1202 return ImplicitConversionSequence::Indistinguishable;
1203}
1204
1205/// CompareQualificationConversions - Compares two standard conversion
1206/// sequences to determine whether they can be ranked based on their
1207/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1208ImplicitConversionSequence::CompareKind
1209Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1210 const StandardConversionSequence& SCS2)
1211{
Douglas Gregor4459bbe2008-10-22 15:04:37 +00001212 // C++ 13.3.3.2p3:
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001213 // -- S1 and S2 differ only in their qualification conversion and
1214 // yield similar types T1 and T2 (C++ 4.4), respectively, and the
1215 // cv-qualification signature of type T1 is a proper subset of
1216 // the cv-qualification signature of type T2, and S1 is not the
1217 // deprecated string literal array-to-pointer conversion (4.2).
1218 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1219 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1220 return ImplicitConversionSequence::Indistinguishable;
1221
1222 // FIXME: the example in the standard doesn't use a qualification
1223 // conversion (!)
1224 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1225 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1226 T1 = Context.getCanonicalType(T1);
1227 T2 = Context.getCanonicalType(T2);
1228
1229 // If the types are the same, we won't learn anything by unwrapped
1230 // them.
1231 if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1232 return ImplicitConversionSequence::Indistinguishable;
1233
1234 ImplicitConversionSequence::CompareKind Result
1235 = ImplicitConversionSequence::Indistinguishable;
1236 while (UnwrapSimilarPointerTypes(T1, T2)) {
1237 // Within each iteration of the loop, we check the qualifiers to
1238 // determine if this still looks like a qualification
1239 // conversion. Then, if all is well, we unwrap one more level of
Douglas Gregorabed2172008-10-22 17:49:05 +00001240 // pointers or pointers-to-members and do it all again
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001241 // until there are no more pointers or pointers-to-members left
1242 // to unwrap. This essentially mimics what
1243 // IsQualificationConversion does, but here we're checking for a
1244 // strict subset of qualifiers.
1245 if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1246 // The qualifiers are the same, so this doesn't tell us anything
1247 // about how the sequences rank.
1248 ;
1249 else if (T2.isMoreQualifiedThan(T1)) {
1250 // T1 has fewer qualifiers, so it could be the better sequence.
1251 if (Result == ImplicitConversionSequence::Worse)
1252 // Neither has qualifiers that are a subset of the other's
1253 // qualifiers.
1254 return ImplicitConversionSequence::Indistinguishable;
1255
1256 Result = ImplicitConversionSequence::Better;
1257 } else if (T1.isMoreQualifiedThan(T2)) {
1258 // T2 has fewer qualifiers, so it could be the better sequence.
1259 if (Result == ImplicitConversionSequence::Better)
1260 // Neither has qualifiers that are a subset of the other's
1261 // qualifiers.
1262 return ImplicitConversionSequence::Indistinguishable;
1263
1264 Result = ImplicitConversionSequence::Worse;
1265 } else {
1266 // Qualifiers are disjoint.
1267 return ImplicitConversionSequence::Indistinguishable;
1268 }
1269
1270 // If the types after this point are equivalent, we're done.
1271 if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1272 break;
Douglas Gregord2baafd2008-10-21 16:13:35 +00001273 }
1274
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001275 // Check that the winning standard conversion sequence isn't using
1276 // the deprecated string literal array to pointer conversion.
1277 switch (Result) {
1278 case ImplicitConversionSequence::Better:
1279 if (SCS1.Deprecated)
1280 Result = ImplicitConversionSequence::Indistinguishable;
1281 break;
1282
1283 case ImplicitConversionSequence::Indistinguishable:
1284 break;
1285
1286 case ImplicitConversionSequence::Worse:
1287 if (SCS2.Deprecated)
1288 Result = ImplicitConversionSequence::Indistinguishable;
1289 break;
1290 }
1291
1292 return Result;
Douglas Gregord2baafd2008-10-21 16:13:35 +00001293}
1294
Douglas Gregor14046502008-10-23 00:40:37 +00001295/// CompareDerivedToBaseConversions - Compares two standard conversion
1296/// sequences to determine whether they can be ranked based on their
Douglas Gregor24a90a52008-11-26 23:31:11 +00001297/// various kinds of derived-to-base conversions (C++
1298/// [over.ics.rank]p4b3). As part of these checks, we also look at
1299/// conversions between Objective-C interface types.
Douglas Gregor14046502008-10-23 00:40:37 +00001300ImplicitConversionSequence::CompareKind
1301Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1302 const StandardConversionSequence& SCS2) {
1303 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1304 QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1305 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1306 QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1307
1308 // Adjust the types we're converting from via the array-to-pointer
1309 // conversion, if we need to.
1310 if (SCS1.First == ICK_Array_To_Pointer)
1311 FromType1 = Context.getArrayDecayedType(FromType1);
1312 if (SCS2.First == ICK_Array_To_Pointer)
1313 FromType2 = Context.getArrayDecayedType(FromType2);
1314
1315 // Canonicalize all of the types.
1316 FromType1 = Context.getCanonicalType(FromType1);
1317 ToType1 = Context.getCanonicalType(ToType1);
1318 FromType2 = Context.getCanonicalType(FromType2);
1319 ToType2 = Context.getCanonicalType(ToType2);
1320
Douglas Gregor0e343382008-10-29 14:50:44 +00001321 // C++ [over.ics.rank]p4b3:
Douglas Gregor14046502008-10-23 00:40:37 +00001322 //
1323 // If class B is derived directly or indirectly from class A and
1324 // class C is derived directly or indirectly from B,
Douglas Gregor24a90a52008-11-26 23:31:11 +00001325 //
1326 // For Objective-C, we let A, B, and C also be Objective-C
1327 // interfaces.
Douglas Gregor0e343382008-10-29 14:50:44 +00001328
1329 // Compare based on pointer conversions.
Douglas Gregor14046502008-10-23 00:40:37 +00001330 if (SCS1.Second == ICK_Pointer_Conversion &&
1331 SCS2.Second == ICK_Pointer_Conversion) {
Douglas Gregor14046502008-10-23 00:40:37 +00001332 QualType FromPointee1
1333 = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1334 QualType ToPointee1
1335 = ToType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1336 QualType FromPointee2
1337 = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1338 QualType ToPointee2
1339 = ToType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
Douglas Gregor24a90a52008-11-26 23:31:11 +00001340
1341 const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1342 const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1343 const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType();
1344 const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType();
1345
Douglas Gregor0e343382008-10-29 14:50:44 +00001346 // -- conversion of C* to B* is better than conversion of C* to A*,
Douglas Gregor14046502008-10-23 00:40:37 +00001347 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1348 if (IsDerivedFrom(ToPointee1, ToPointee2))
1349 return ImplicitConversionSequence::Better;
1350 else if (IsDerivedFrom(ToPointee2, ToPointee1))
1351 return ImplicitConversionSequence::Worse;
Douglas Gregor24a90a52008-11-26 23:31:11 +00001352
1353 if (ToIface1 && ToIface2) {
1354 if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1355 return ImplicitConversionSequence::Better;
1356 else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1357 return ImplicitConversionSequence::Worse;
1358 }
Douglas Gregor14046502008-10-23 00:40:37 +00001359 }
Douglas Gregor0e343382008-10-29 14:50:44 +00001360
1361 // -- conversion of B* to A* is better than conversion of C* to A*,
1362 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1363 if (IsDerivedFrom(FromPointee2, FromPointee1))
1364 return ImplicitConversionSequence::Better;
1365 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1366 return ImplicitConversionSequence::Worse;
Douglas Gregor24a90a52008-11-26 23:31:11 +00001367
1368 if (FromIface1 && FromIface2) {
1369 if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1370 return ImplicitConversionSequence::Better;
1371 else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1372 return ImplicitConversionSequence::Worse;
1373 }
Douglas Gregor0e343382008-10-29 14:50:44 +00001374 }
Douglas Gregor14046502008-10-23 00:40:37 +00001375 }
1376
Douglas Gregor0e343382008-10-29 14:50:44 +00001377 // Compare based on reference bindings.
1378 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1379 SCS1.Second == ICK_Derived_To_Base) {
1380 // -- binding of an expression of type C to a reference of type
1381 // B& is better than binding an expression of type C to a
1382 // reference of type A&,
1383 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1384 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1385 if (IsDerivedFrom(ToType1, ToType2))
1386 return ImplicitConversionSequence::Better;
1387 else if (IsDerivedFrom(ToType2, ToType1))
1388 return ImplicitConversionSequence::Worse;
1389 }
1390
Douglas Gregora3b34bb2008-11-03 19:09:14 +00001391 // -- binding of an expression of type B to a reference of type
1392 // A& is better than binding an expression of type C to a
1393 // reference of type A&,
Douglas Gregor0e343382008-10-29 14:50:44 +00001394 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1395 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1396 if (IsDerivedFrom(FromType2, FromType1))
1397 return ImplicitConversionSequence::Better;
1398 else if (IsDerivedFrom(FromType1, FromType2))
1399 return ImplicitConversionSequence::Worse;
1400 }
1401 }
1402
1403
1404 // FIXME: conversion of A::* to B::* is better than conversion of
1405 // A::* to C::*,
1406
1407 // FIXME: conversion of B::* to C::* is better than conversion of
1408 // A::* to C::*, and
1409
Douglas Gregora3b34bb2008-11-03 19:09:14 +00001410 if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1411 SCS1.Second == ICK_Derived_To_Base) {
1412 // -- conversion of C to B is better than conversion of C to A,
1413 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1414 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1415 if (IsDerivedFrom(ToType1, ToType2))
1416 return ImplicitConversionSequence::Better;
1417 else if (IsDerivedFrom(ToType2, ToType1))
1418 return ImplicitConversionSequence::Worse;
1419 }
Douglas Gregor0e343382008-10-29 14:50:44 +00001420
Douglas Gregora3b34bb2008-11-03 19:09:14 +00001421 // -- conversion of B to A is better than conversion of C to A.
1422 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1423 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1424 if (IsDerivedFrom(FromType2, FromType1))
1425 return ImplicitConversionSequence::Better;
1426 else if (IsDerivedFrom(FromType1, FromType2))
1427 return ImplicitConversionSequence::Worse;
1428 }
1429 }
Douglas Gregor0e343382008-10-29 14:50:44 +00001430
Douglas Gregor14046502008-10-23 00:40:37 +00001431 return ImplicitConversionSequence::Indistinguishable;
1432}
1433
Douglas Gregor81c29152008-10-29 00:13:59 +00001434/// TryCopyInitialization - Try to copy-initialize a value of type
1435/// ToType from the expression From. Return the implicit conversion
1436/// sequence required to pass this argument, which may be a bad
1437/// conversion sequence (meaning that the argument cannot be passed to
Douglas Gregora3b34bb2008-11-03 19:09:14 +00001438/// a parameter of this type). If @p SuppressUserConversions, then we
1439/// do not permit any user-defined conversion sequences.
Douglas Gregor81c29152008-10-29 00:13:59 +00001440ImplicitConversionSequence
Douglas Gregora3b34bb2008-11-03 19:09:14 +00001441Sema::TryCopyInitialization(Expr *From, QualType ToType,
1442 bool SuppressUserConversions) {
Douglas Gregor81c29152008-10-29 00:13:59 +00001443 if (!getLangOptions().CPlusPlus) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001444 // In C, copy initialization is the same as performing an assignment.
Douglas Gregor81c29152008-10-29 00:13:59 +00001445 AssignConvertType ConvTy =
1446 CheckSingleAssignmentConstraints(ToType, From);
1447 ImplicitConversionSequence ICS;
1448 if (getLangOptions().NoExtensions? ConvTy != Compatible
1449 : ConvTy == Incompatible)
1450 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1451 else
1452 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1453 return ICS;
1454 } else if (ToType->isReferenceType()) {
1455 ImplicitConversionSequence ICS;
Douglas Gregora3b34bb2008-11-03 19:09:14 +00001456 CheckReferenceInit(From, ToType, &ICS, SuppressUserConversions);
Douglas Gregor81c29152008-10-29 00:13:59 +00001457 return ICS;
1458 } else {
Douglas Gregora3b34bb2008-11-03 19:09:14 +00001459 return TryImplicitConversion(From, ToType, SuppressUserConversions);
Douglas Gregor81c29152008-10-29 00:13:59 +00001460 }
1461}
1462
1463/// PerformArgumentPassing - Pass the argument Arg into a parameter of
1464/// type ToType. Returns true (and emits a diagnostic) if there was
1465/// an error, returns false if the initialization succeeded.
1466bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
1467 const char* Flavor) {
1468 if (!getLangOptions().CPlusPlus) {
1469 // In C, argument passing is the same as performing an assignment.
1470 QualType FromType = From->getType();
1471 AssignConvertType ConvTy =
1472 CheckSingleAssignmentConstraints(ToType, From);
1473
1474 return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
1475 FromType, From, Flavor);
Douglas Gregor81c29152008-10-29 00:13:59 +00001476 }
Chris Lattner271d4c22008-11-24 05:29:24 +00001477
1478 if (ToType->isReferenceType())
1479 return CheckReferenceInit(From, ToType);
1480
1481 if (!PerformImplicitConversion(From, ToType))
1482 return false;
1483
1484 return Diag(From->getSourceRange().getBegin(),
1485 diag::err_typecheck_convert_incompatible)
1486 << ToType << From->getType() << Flavor << From->getSourceRange();
Douglas Gregor81c29152008-10-29 00:13:59 +00001487}
1488
Douglas Gregor5ed15042008-11-18 23:14:02 +00001489/// TryObjectArgumentInitialization - Try to initialize the object
1490/// parameter of the given member function (@c Method) from the
1491/// expression @p From.
1492ImplicitConversionSequence
1493Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
1494 QualType ClassType = Context.getTypeDeclType(Method->getParent());
1495 unsigned MethodQuals = Method->getTypeQualifiers();
1496 QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals);
1497
1498 // Set up the conversion sequence as a "bad" conversion, to allow us
1499 // to exit early.
1500 ImplicitConversionSequence ICS;
1501 ICS.Standard.setAsIdentityConversion();
1502 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1503
1504 // We need to have an object of class type.
1505 QualType FromType = From->getType();
1506 if (!FromType->isRecordType())
1507 return ICS;
1508
1509 // The implicit object parmeter is has the type "reference to cv X",
1510 // where X is the class of which the function is a member
1511 // (C++ [over.match.funcs]p4). However, when finding an implicit
1512 // conversion sequence for the argument, we are not allowed to
1513 // create temporaries or perform user-defined conversions
1514 // (C++ [over.match.funcs]p5). We perform a simplified version of
1515 // reference binding here, that allows class rvalues to bind to
1516 // non-constant references.
1517
1518 // First check the qualifiers. We don't care about lvalue-vs-rvalue
1519 // with the implicit object parameter (C++ [over.match.funcs]p5).
1520 QualType FromTypeCanon = Context.getCanonicalType(FromType);
1521 if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
1522 !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
1523 return ICS;
1524
1525 // Check that we have either the same type or a derived type. It
1526 // affects the conversion rank.
1527 QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
1528 if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
1529 ICS.Standard.Second = ICK_Identity;
1530 else if (IsDerivedFrom(FromType, ClassType))
1531 ICS.Standard.Second = ICK_Derived_To_Base;
1532 else
1533 return ICS;
1534
1535 // Success. Mark this as a reference binding.
1536 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1537 ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
1538 ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
1539 ICS.Standard.ReferenceBinding = true;
1540 ICS.Standard.DirectBinding = true;
1541 return ICS;
1542}
1543
1544/// PerformObjectArgumentInitialization - Perform initialization of
1545/// the implicit object parameter for the given Method with the given
1546/// expression.
1547bool
1548Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
1549 QualType ImplicitParamType
1550 = Method->getThisType(Context)->getAsPointerType()->getPointeeType();
1551 ImplicitConversionSequence ICS
1552 = TryObjectArgumentInitialization(From, Method);
1553 if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
1554 return Diag(From->getSourceRange().getBegin(),
Chris Lattner8ba580c2008-11-19 05:08:23 +00001555 diag::err_implicit_object_parameter_init)
Chris Lattner4bfd2232008-11-24 06:25:27 +00001556 << ImplicitParamType << From->getType() << From->getSourceRange();
Douglas Gregor5ed15042008-11-18 23:14:02 +00001557
1558 if (ICS.Standard.Second == ICK_Derived_To_Base &&
1559 CheckDerivedToBaseConversion(From->getType(), ImplicitParamType,
1560 From->getSourceRange().getBegin(),
1561 From->getSourceRange()))
1562 return true;
1563
1564 ImpCastExprToType(From, ImplicitParamType, /*isLvalue=*/true);
1565 return false;
1566}
1567
Douglas Gregord2baafd2008-10-21 16:13:35 +00001568/// AddOverloadCandidate - Adds the given function to the set of
Douglas Gregora3b34bb2008-11-03 19:09:14 +00001569/// candidate functions, using the given function call arguments. If
1570/// @p SuppressUserConversions, then don't allow user-defined
1571/// conversions via constructors or conversion operators.
Douglas Gregord2baafd2008-10-21 16:13:35 +00001572void
1573Sema::AddOverloadCandidate(FunctionDecl *Function,
1574 Expr **Args, unsigned NumArgs,
Douglas Gregora3b34bb2008-11-03 19:09:14 +00001575 OverloadCandidateSet& CandidateSet,
1576 bool SuppressUserConversions)
Douglas Gregord2baafd2008-10-21 16:13:35 +00001577{
1578 const FunctionTypeProto* Proto
1579 = dyn_cast<FunctionTypeProto>(Function->getType()->getAsFunctionType());
1580 assert(Proto && "Functions without a prototype cannot be overloaded");
Douglas Gregor60714f92008-11-07 22:36:19 +00001581 assert(!isa<CXXConversionDecl>(Function) &&
1582 "Use AddConversionCandidate for conversion functions");
Douglas Gregord2baafd2008-10-21 16:13:35 +00001583
1584 // Add this candidate
1585 CandidateSet.push_back(OverloadCandidate());
1586 OverloadCandidate& Candidate = CandidateSet.back();
1587 Candidate.Function = Function;
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00001588 Candidate.IsSurrogate = false;
Douglas Gregord2baafd2008-10-21 16:13:35 +00001589
1590 unsigned NumArgsInProto = Proto->getNumArgs();
1591
1592 // (C++ 13.3.2p2): A candidate function having fewer than m
1593 // parameters is viable only if it has an ellipsis in its parameter
1594 // list (8.3.5).
1595 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
1596 Candidate.Viable = false;
1597 return;
1598 }
1599
1600 // (C++ 13.3.2p2): A candidate function having more than m parameters
1601 // is viable only if the (m+1)st parameter has a default argument
1602 // (8.3.6). For the purposes of overload resolution, the
1603 // parameter list is truncated on the right, so that there are
1604 // exactly m parameters.
1605 unsigned MinRequiredArgs = Function->getMinRequiredArguments();
1606 if (NumArgs < MinRequiredArgs) {
1607 // Not enough arguments.
1608 Candidate.Viable = false;
1609 return;
1610 }
1611
1612 // Determine the implicit conversion sequences for each of the
1613 // arguments.
1614 Candidate.Viable = true;
1615 Candidate.Conversions.resize(NumArgs);
1616 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1617 if (ArgIdx < NumArgsInProto) {
1618 // (C++ 13.3.2p3): for F to be a viable function, there shall
1619 // exist for each argument an implicit conversion sequence
1620 // (13.3.3.1) that converts that argument to the corresponding
1621 // parameter of F.
1622 QualType ParamType = Proto->getArgType(ArgIdx);
1623 Candidate.Conversions[ArgIdx]
Douglas Gregora3b34bb2008-11-03 19:09:14 +00001624 = TryCopyInitialization(Args[ArgIdx], ParamType,
1625 SuppressUserConversions);
Douglas Gregord2baafd2008-10-21 16:13:35 +00001626 if (Candidate.Conversions[ArgIdx].ConversionKind
Douglas Gregor5ed15042008-11-18 23:14:02 +00001627 == ImplicitConversionSequence::BadConversion) {
Douglas Gregord2baafd2008-10-21 16:13:35 +00001628 Candidate.Viable = false;
Douglas Gregor5ed15042008-11-18 23:14:02 +00001629 break;
1630 }
Douglas Gregord2baafd2008-10-21 16:13:35 +00001631 } else {
1632 // (C++ 13.3.2p2): For the purposes of overload resolution, any
1633 // argument for which there is no corresponding parameter is
1634 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
1635 Candidate.Conversions[ArgIdx].ConversionKind
1636 = ImplicitConversionSequence::EllipsisConversion;
1637 }
1638 }
1639}
1640
Douglas Gregor5ed15042008-11-18 23:14:02 +00001641/// AddMethodCandidate - Adds the given C++ member function to the set
1642/// of candidate functions, using the given function call arguments
1643/// and the object argument (@c Object). For example, in a call
1644/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
1645/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
1646/// allow user-defined conversions via constructors or conversion
1647/// operators.
1648void
1649Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
1650 Expr **Args, unsigned NumArgs,
1651 OverloadCandidateSet& CandidateSet,
1652 bool SuppressUserConversions)
1653{
1654 const FunctionTypeProto* Proto
1655 = dyn_cast<FunctionTypeProto>(Method->getType()->getAsFunctionType());
1656 assert(Proto && "Methods without a prototype cannot be overloaded");
1657 assert(!isa<CXXConversionDecl>(Method) &&
1658 "Use AddConversionCandidate for conversion functions");
1659
1660 // Add this candidate
1661 CandidateSet.push_back(OverloadCandidate());
1662 OverloadCandidate& Candidate = CandidateSet.back();
1663 Candidate.Function = Method;
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00001664 Candidate.IsSurrogate = false;
Douglas Gregor5ed15042008-11-18 23:14:02 +00001665
1666 unsigned NumArgsInProto = Proto->getNumArgs();
1667
1668 // (C++ 13.3.2p2): A candidate function having fewer than m
1669 // parameters is viable only if it has an ellipsis in its parameter
1670 // list (8.3.5).
1671 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
1672 Candidate.Viable = false;
1673 return;
1674 }
1675
1676 // (C++ 13.3.2p2): A candidate function having more than m parameters
1677 // is viable only if the (m+1)st parameter has a default argument
1678 // (8.3.6). For the purposes of overload resolution, the
1679 // parameter list is truncated on the right, so that there are
1680 // exactly m parameters.
1681 unsigned MinRequiredArgs = Method->getMinRequiredArguments();
1682 if (NumArgs < MinRequiredArgs) {
1683 // Not enough arguments.
1684 Candidate.Viable = false;
1685 return;
1686 }
1687
1688 Candidate.Viable = true;
1689 Candidate.Conversions.resize(NumArgs + 1);
1690
1691 // Determine the implicit conversion sequence for the object
1692 // parameter.
1693 Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
1694 if (Candidate.Conversions[0].ConversionKind
1695 == ImplicitConversionSequence::BadConversion) {
1696 Candidate.Viable = false;
1697 return;
1698 }
1699
1700 // Determine the implicit conversion sequences for each of the
1701 // arguments.
1702 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1703 if (ArgIdx < NumArgsInProto) {
1704 // (C++ 13.3.2p3): for F to be a viable function, there shall
1705 // exist for each argument an implicit conversion sequence
1706 // (13.3.3.1) that converts that argument to the corresponding
1707 // parameter of F.
1708 QualType ParamType = Proto->getArgType(ArgIdx);
1709 Candidate.Conversions[ArgIdx + 1]
1710 = TryCopyInitialization(Args[ArgIdx], ParamType,
1711 SuppressUserConversions);
1712 if (Candidate.Conversions[ArgIdx + 1].ConversionKind
1713 == ImplicitConversionSequence::BadConversion) {
1714 Candidate.Viable = false;
1715 break;
1716 }
1717 } else {
1718 // (C++ 13.3.2p2): For the purposes of overload resolution, any
1719 // argument for which there is no corresponding parameter is
1720 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
1721 Candidate.Conversions[ArgIdx + 1].ConversionKind
1722 = ImplicitConversionSequence::EllipsisConversion;
1723 }
1724 }
1725}
1726
Douglas Gregor60714f92008-11-07 22:36:19 +00001727/// AddConversionCandidate - Add a C++ conversion function as a
1728/// candidate in the candidate set (C++ [over.match.conv],
1729/// C++ [over.match.copy]). From is the expression we're converting from,
1730/// and ToType is the type that we're eventually trying to convert to
1731/// (which may or may not be the same type as the type that the
1732/// conversion function produces).
1733void
1734Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
1735 Expr *From, QualType ToType,
1736 OverloadCandidateSet& CandidateSet) {
1737 // Add this candidate
1738 CandidateSet.push_back(OverloadCandidate());
1739 OverloadCandidate& Candidate = CandidateSet.back();
1740 Candidate.Function = Conversion;
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00001741 Candidate.IsSurrogate = false;
Douglas Gregor60714f92008-11-07 22:36:19 +00001742 Candidate.FinalConversion.setAsIdentityConversion();
1743 Candidate.FinalConversion.FromTypePtr
1744 = Conversion->getConversionType().getAsOpaquePtr();
1745 Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
1746
Douglas Gregor5ed15042008-11-18 23:14:02 +00001747 // Determine the implicit conversion sequence for the implicit
1748 // object parameter.
Douglas Gregor60714f92008-11-07 22:36:19 +00001749 Candidate.Viable = true;
1750 Candidate.Conversions.resize(1);
Douglas Gregor5ed15042008-11-18 23:14:02 +00001751 Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
Douglas Gregor60714f92008-11-07 22:36:19 +00001752
Douglas Gregor60714f92008-11-07 22:36:19 +00001753 if (Candidate.Conversions[0].ConversionKind
1754 == ImplicitConversionSequence::BadConversion) {
1755 Candidate.Viable = false;
1756 return;
1757 }
1758
1759 // To determine what the conversion from the result of calling the
1760 // conversion function to the type we're eventually trying to
1761 // convert to (ToType), we need to synthesize a call to the
1762 // conversion function and attempt copy initialization from it. This
1763 // makes sure that we get the right semantics with respect to
1764 // lvalues/rvalues and the type. Fortunately, we can allocate this
1765 // call on the stack and we don't need its arguments to be
1766 // well-formed.
1767 DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
1768 SourceLocation());
1769 ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
Douglas Gregor70d26122008-11-12 17:17:38 +00001770 &ConversionRef, false);
Douglas Gregor60714f92008-11-07 22:36:19 +00001771 CallExpr Call(&ConversionFn, 0, 0,
1772 Conversion->getConversionType().getNonReferenceType(),
1773 SourceLocation());
1774 ImplicitConversionSequence ICS = TryCopyInitialization(&Call, ToType, true);
1775 switch (ICS.ConversionKind) {
1776 case ImplicitConversionSequence::StandardConversion:
1777 Candidate.FinalConversion = ICS.Standard;
1778 break;
1779
1780 case ImplicitConversionSequence::BadConversion:
1781 Candidate.Viable = false;
1782 break;
1783
1784 default:
1785 assert(false &&
1786 "Can only end up with a standard conversion sequence or failure");
1787 }
1788}
1789
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00001790/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
1791/// converts the given @c Object to a function pointer via the
1792/// conversion function @c Conversion, and then attempts to call it
1793/// with the given arguments (C++ [over.call.object]p2-4). Proto is
1794/// the type of function that we'll eventually be calling.
1795void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
1796 const FunctionTypeProto *Proto,
1797 Expr *Object, Expr **Args, unsigned NumArgs,
1798 OverloadCandidateSet& CandidateSet) {
1799 CandidateSet.push_back(OverloadCandidate());
1800 OverloadCandidate& Candidate = CandidateSet.back();
1801 Candidate.Function = 0;
1802 Candidate.Surrogate = Conversion;
1803 Candidate.Viable = true;
1804 Candidate.IsSurrogate = true;
1805 Candidate.Conversions.resize(NumArgs + 1);
1806
1807 // Determine the implicit conversion sequence for the implicit
1808 // object parameter.
1809 ImplicitConversionSequence ObjectInit
1810 = TryObjectArgumentInitialization(Object, Conversion);
1811 if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
1812 Candidate.Viable = false;
1813 return;
1814 }
1815
1816 // The first conversion is actually a user-defined conversion whose
1817 // first conversion is ObjectInit's standard conversion (which is
1818 // effectively a reference binding). Record it as such.
1819 Candidate.Conversions[0].ConversionKind
1820 = ImplicitConversionSequence::UserDefinedConversion;
1821 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
1822 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
1823 Candidate.Conversions[0].UserDefined.After
1824 = Candidate.Conversions[0].UserDefined.Before;
1825 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
1826
1827 // Find the
1828 unsigned NumArgsInProto = Proto->getNumArgs();
1829
1830 // (C++ 13.3.2p2): A candidate function having fewer than m
1831 // parameters is viable only if it has an ellipsis in its parameter
1832 // list (8.3.5).
1833 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
1834 Candidate.Viable = false;
1835 return;
1836 }
1837
1838 // Function types don't have any default arguments, so just check if
1839 // we have enough arguments.
1840 if (NumArgs < NumArgsInProto) {
1841 // Not enough arguments.
1842 Candidate.Viable = false;
1843 return;
1844 }
1845
1846 // Determine the implicit conversion sequences for each of the
1847 // arguments.
1848 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1849 if (ArgIdx < NumArgsInProto) {
1850 // (C++ 13.3.2p3): for F to be a viable function, there shall
1851 // exist for each argument an implicit conversion sequence
1852 // (13.3.3.1) that converts that argument to the corresponding
1853 // parameter of F.
1854 QualType ParamType = Proto->getArgType(ArgIdx);
1855 Candidate.Conversions[ArgIdx + 1]
1856 = TryCopyInitialization(Args[ArgIdx], ParamType,
1857 /*SuppressUserConversions=*/false);
1858 if (Candidate.Conversions[ArgIdx + 1].ConversionKind
1859 == ImplicitConversionSequence::BadConversion) {
1860 Candidate.Viable = false;
1861 break;
1862 }
1863 } else {
1864 // (C++ 13.3.2p2): For the purposes of overload resolution, any
1865 // argument for which there is no corresponding parameter is
1866 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
1867 Candidate.Conversions[ArgIdx + 1].ConversionKind
1868 = ImplicitConversionSequence::EllipsisConversion;
1869 }
1870 }
1871}
1872
Douglas Gregor849ea9c2008-11-19 03:25:36 +00001873/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
1874/// an acceptable non-member overloaded operator for a call whose
1875/// arguments have types T1 (and, if non-empty, T2). This routine
1876/// implements the check in C++ [over.match.oper]p3b2 concerning
1877/// enumeration types.
1878static bool
1879IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
1880 QualType T1, QualType T2,
1881 ASTContext &Context) {
1882 if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
1883 return true;
1884
1885 const FunctionTypeProto *Proto = Fn->getType()->getAsFunctionTypeProto();
1886 if (Proto->getNumArgs() < 1)
1887 return false;
1888
1889 if (T1->isEnumeralType()) {
1890 QualType ArgType = Proto->getArgType(0).getNonReferenceType();
1891 if (Context.getCanonicalType(T1).getUnqualifiedType()
1892 == Context.getCanonicalType(ArgType).getUnqualifiedType())
1893 return true;
1894 }
1895
1896 if (Proto->getNumArgs() < 2)
1897 return false;
1898
1899 if (!T2.isNull() && T2->isEnumeralType()) {
1900 QualType ArgType = Proto->getArgType(1).getNonReferenceType();
1901 if (Context.getCanonicalType(T2).getUnqualifiedType()
1902 == Context.getCanonicalType(ArgType).getUnqualifiedType())
1903 return true;
1904 }
1905
1906 return false;
1907}
1908
Douglas Gregor5ed15042008-11-18 23:14:02 +00001909/// AddOperatorCandidates - Add the overloaded operator candidates for
1910/// the operator Op that was used in an operator expression such as "x
1911/// Op y". S is the scope in which the expression occurred (used for
1912/// name lookup of the operator), Args/NumArgs provides the operator
1913/// arguments, and CandidateSet will store the added overload
1914/// candidates. (C++ [over.match.oper]).
1915void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
1916 Expr **Args, unsigned NumArgs,
1917 OverloadCandidateSet& CandidateSet) {
1918 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
1919
1920 // C++ [over.match.oper]p3:
1921 // For a unary operator @ with an operand of a type whose
1922 // cv-unqualified version is T1, and for a binary operator @ with
1923 // a left operand of a type whose cv-unqualified version is T1 and
1924 // a right operand of a type whose cv-unqualified version is T2,
1925 // three sets of candidate functions, designated member
1926 // candidates, non-member candidates and built-in candidates, are
1927 // constructed as follows:
1928 QualType T1 = Args[0]->getType();
1929 QualType T2;
1930 if (NumArgs > 1)
1931 T2 = Args[1]->getType();
1932
1933 // -- If T1 is a class type, the set of member candidates is the
1934 // result of the qualified lookup of T1::operator@
1935 // (13.3.1.1.1); otherwise, the set of member candidates is
1936 // empty.
1937 if (const RecordType *T1Rec = T1->getAsRecordType()) {
1938 IdentifierResolver::iterator I
1939 = IdResolver.begin(OpName, cast<CXXRecordType>(T1Rec)->getDecl(),
1940 /*LookInParentCtx=*/false);
1941 NamedDecl *MemberOps = (I == IdResolver.end())? 0 : *I;
1942 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(MemberOps))
1943 AddMethodCandidate(Method, Args[0], Args+1, NumArgs - 1, CandidateSet,
1944 /*SuppressUserConversions=*/false);
1945 else if (OverloadedFunctionDecl *Ovl
1946 = dyn_cast_or_null<OverloadedFunctionDecl>(MemberOps)) {
1947 for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
1948 FEnd = Ovl->function_end();
1949 F != FEnd; ++F) {
1950 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*F))
1951 AddMethodCandidate(Method, Args[0], Args+1, NumArgs - 1, CandidateSet,
1952 /*SuppressUserConversions=*/false);
1953 }
1954 }
1955 }
1956
1957 // -- The set of non-member candidates is the result of the
1958 // unqualified lookup of operator@ in the context of the
1959 // expression according to the usual rules for name lookup in
1960 // unqualified function calls (3.4.2) except that all member
1961 // functions are ignored. However, if no operand has a class
1962 // type, only those non-member functions in the lookup set
1963 // that have a first parameter of type T1 or “reference to
1964 // (possibly cv-qualified) T1”, when T1 is an enumeration
1965 // type, or (if there is a right operand) a second parameter
1966 // of type T2 or “reference to (possibly cv-qualified) T2”,
1967 // when T2 is an enumeration type, are candidate functions.
1968 {
1969 NamedDecl *NonMemberOps = 0;
1970 for (IdentifierResolver::iterator I
1971 = IdResolver.begin(OpName, CurContext, true/*LookInParentCtx*/);
1972 I != IdResolver.end(); ++I) {
1973 // We don't need to check the identifier namespace, because
1974 // operator names can only be ordinary identifiers.
1975
1976 // Ignore member functions.
1977 if (ScopedDecl *SD = dyn_cast<ScopedDecl>(*I)) {
1978 if (SD->getDeclContext()->isCXXRecord())
1979 continue;
1980 }
1981
1982 // We found something with this name. We're done.
1983 NonMemberOps = *I;
1984 break;
1985 }
1986
Douglas Gregor849ea9c2008-11-19 03:25:36 +00001987 if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NonMemberOps)) {
1988 if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
1989 AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
1990 /*SuppressUserConversions=*/false);
1991 } else if (OverloadedFunctionDecl *Ovl
1992 = dyn_cast_or_null<OverloadedFunctionDecl>(NonMemberOps)) {
Douglas Gregor5ed15042008-11-18 23:14:02 +00001993 for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
1994 FEnd = Ovl->function_end();
Douglas Gregor849ea9c2008-11-19 03:25:36 +00001995 F != FEnd; ++F) {
1996 if (IsAcceptableNonMemberOperatorCandidate(*F, T1, T2, Context))
1997 AddOverloadCandidate(*F, Args, NumArgs, CandidateSet,
1998 /*SuppressUserConversions=*/false);
1999 }
Douglas Gregor5ed15042008-11-18 23:14:02 +00002000 }
2001 }
2002
2003 // Add builtin overload candidates (C++ [over.built]).
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002004 AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
Douglas Gregor5ed15042008-11-18 23:14:02 +00002005}
2006
Douglas Gregor70d26122008-11-12 17:17:38 +00002007/// AddBuiltinCandidate - Add a candidate for a built-in
2008/// operator. ResultTy and ParamTys are the result and parameter types
2009/// of the built-in candidate, respectively. Args and NumArgs are the
2010/// arguments being passed to the candidate.
2011void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2012 Expr **Args, unsigned NumArgs,
2013 OverloadCandidateSet& CandidateSet) {
2014 // Add this candidate
2015 CandidateSet.push_back(OverloadCandidate());
2016 OverloadCandidate& Candidate = CandidateSet.back();
2017 Candidate.Function = 0;
2018 Candidate.BuiltinTypes.ResultTy = ResultTy;
2019 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2020 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2021
2022 // Determine the implicit conversion sequences for each of the
2023 // arguments.
2024 Candidate.Viable = true;
2025 Candidate.Conversions.resize(NumArgs);
2026 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2027 Candidate.Conversions[ArgIdx]
2028 = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx], false);
2029 if (Candidate.Conversions[ArgIdx].ConversionKind
Douglas Gregor5ed15042008-11-18 23:14:02 +00002030 == ImplicitConversionSequence::BadConversion) {
Douglas Gregor70d26122008-11-12 17:17:38 +00002031 Candidate.Viable = false;
Douglas Gregor5ed15042008-11-18 23:14:02 +00002032 break;
2033 }
Douglas Gregor70d26122008-11-12 17:17:38 +00002034 }
2035}
2036
2037/// BuiltinCandidateTypeSet - A set of types that will be used for the
2038/// candidate operator functions for built-in operators (C++
2039/// [over.built]). The types are separated into pointer types and
2040/// enumeration types.
2041class BuiltinCandidateTypeSet {
2042 /// TypeSet - A set of types.
Douglas Gregor3d4492e2008-11-13 20:12:29 +00002043 typedef llvm::SmallPtrSet<void*, 8> TypeSet;
Douglas Gregor70d26122008-11-12 17:17:38 +00002044
2045 /// PointerTypes - The set of pointer types that will be used in the
2046 /// built-in candidates.
2047 TypeSet PointerTypes;
2048
2049 /// EnumerationTypes - The set of enumeration types that will be
2050 /// used in the built-in candidates.
2051 TypeSet EnumerationTypes;
2052
2053 /// Context - The AST context in which we will build the type sets.
2054 ASTContext &Context;
2055
2056 bool AddWithMoreQualifiedTypeVariants(QualType Ty);
2057
2058public:
2059 /// iterator - Iterates through the types that are part of the set.
Douglas Gregor3d4492e2008-11-13 20:12:29 +00002060 class iterator {
2061 TypeSet::iterator Base;
2062
2063 public:
2064 typedef QualType value_type;
2065 typedef QualType reference;
2066 typedef QualType pointer;
2067 typedef std::ptrdiff_t difference_type;
2068 typedef std::input_iterator_tag iterator_category;
2069
2070 iterator(TypeSet::iterator B) : Base(B) { }
2071
2072 iterator& operator++() {
2073 ++Base;
2074 return *this;
2075 }
2076
2077 iterator operator++(int) {
2078 iterator tmp(*this);
2079 ++(*this);
2080 return tmp;
2081 }
2082
2083 reference operator*() const {
2084 return QualType::getFromOpaquePtr(*Base);
2085 }
2086
2087 pointer operator->() const {
2088 return **this;
2089 }
2090
2091 friend bool operator==(iterator LHS, iterator RHS) {
2092 return LHS.Base == RHS.Base;
2093 }
2094
2095 friend bool operator!=(iterator LHS, iterator RHS) {
2096 return LHS.Base != RHS.Base;
2097 }
2098 };
Douglas Gregor70d26122008-11-12 17:17:38 +00002099
2100 BuiltinCandidateTypeSet(ASTContext &Context) : Context(Context) { }
2101
2102 void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions = true);
2103
2104 /// pointer_begin - First pointer type found;
2105 iterator pointer_begin() { return PointerTypes.begin(); }
2106
2107 /// pointer_end - Last pointer type found;
2108 iterator pointer_end() { return PointerTypes.end(); }
2109
2110 /// enumeration_begin - First enumeration type found;
2111 iterator enumeration_begin() { return EnumerationTypes.begin(); }
2112
2113 /// enumeration_end - Last enumeration type found;
2114 iterator enumeration_end() { return EnumerationTypes.end(); }
2115};
2116
2117/// AddWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
2118/// the set of pointer types along with any more-qualified variants of
2119/// that type. For example, if @p Ty is "int const *", this routine
2120/// will add "int const *", "int const volatile *", "int const
2121/// restrict *", and "int const volatile restrict *" to the set of
2122/// pointer types. Returns true if the add of @p Ty itself succeeded,
2123/// false otherwise.
2124bool BuiltinCandidateTypeSet::AddWithMoreQualifiedTypeVariants(QualType Ty) {
2125 // Insert this type.
Douglas Gregor3d4492e2008-11-13 20:12:29 +00002126 if (!PointerTypes.insert(Ty.getAsOpaquePtr()))
Douglas Gregor70d26122008-11-12 17:17:38 +00002127 return false;
2128
2129 if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2130 QualType PointeeTy = PointerTy->getPointeeType();
2131 // FIXME: Optimize this so that we don't keep trying to add the same types.
2132
2133 // FIXME: Do we have to add CVR qualifiers at *all* levels to deal
2134 // with all pointer conversions that don't cast away constness?
2135 if (!PointeeTy.isConstQualified())
2136 AddWithMoreQualifiedTypeVariants
2137 (Context.getPointerType(PointeeTy.withConst()));
2138 if (!PointeeTy.isVolatileQualified())
2139 AddWithMoreQualifiedTypeVariants
2140 (Context.getPointerType(PointeeTy.withVolatile()));
2141 if (!PointeeTy.isRestrictQualified())
2142 AddWithMoreQualifiedTypeVariants
2143 (Context.getPointerType(PointeeTy.withRestrict()));
2144 }
2145
2146 return true;
2147}
2148
2149/// AddTypesConvertedFrom - Add each of the types to which the type @p
2150/// Ty can be implicit converted to the given set of @p Types. We're
2151/// primarily interested in pointer types, enumeration types,
2152void BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
2153 bool AllowUserConversions) {
2154 // Only deal with canonical types.
2155 Ty = Context.getCanonicalType(Ty);
2156
2157 // Look through reference types; they aren't part of the type of an
2158 // expression for the purposes of conversions.
2159 if (const ReferenceType *RefTy = Ty->getAsReferenceType())
2160 Ty = RefTy->getPointeeType();
2161
2162 // We don't care about qualifiers on the type.
2163 Ty = Ty.getUnqualifiedType();
2164
2165 if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2166 QualType PointeeTy = PointerTy->getPointeeType();
2167
2168 // Insert our type, and its more-qualified variants, into the set
2169 // of types.
2170 if (!AddWithMoreQualifiedTypeVariants(Ty))
2171 return;
2172
2173 // Add 'cv void*' to our set of types.
2174 if (!Ty->isVoidType()) {
2175 QualType QualVoid
2176 = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2177 AddWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid));
2178 }
2179
2180 // If this is a pointer to a class type, add pointers to its bases
2181 // (with the same level of cv-qualification as the original
2182 // derived class, of course).
2183 if (const RecordType *PointeeRec = PointeeTy->getAsRecordType()) {
2184 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
2185 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2186 Base != ClassDecl->bases_end(); ++Base) {
2187 QualType BaseTy = Context.getCanonicalType(Base->getType());
2188 BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2189
2190 // Add the pointer type, recursively, so that we get all of
2191 // the indirect base classes, too.
2192 AddTypesConvertedFrom(Context.getPointerType(BaseTy), false);
2193 }
2194 }
2195 } else if (Ty->isEnumeralType()) {
Douglas Gregor3d4492e2008-11-13 20:12:29 +00002196 EnumerationTypes.insert(Ty.getAsOpaquePtr());
Douglas Gregor70d26122008-11-12 17:17:38 +00002197 } else if (AllowUserConversions) {
2198 if (const RecordType *TyRec = Ty->getAsRecordType()) {
2199 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
2200 // FIXME: Visit conversion functions in the base classes, too.
2201 OverloadedFunctionDecl *Conversions
2202 = ClassDecl->getConversionFunctions();
2203 for (OverloadedFunctionDecl::function_iterator Func
2204 = Conversions->function_begin();
2205 Func != Conversions->function_end(); ++Func) {
2206 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2207 AddTypesConvertedFrom(Conv->getConversionType(), false);
2208 }
2209 }
2210 }
2211}
2212
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002213/// AddBuiltinOperatorCandidates - Add the appropriate built-in
2214/// operator overloads to the candidate set (C++ [over.built]), based
2215/// on the operator @p Op and the arguments given. For example, if the
2216/// operator is a binary '+', this routine might add "int
2217/// operator+(int, int)" to cover integer addition.
Douglas Gregor70d26122008-11-12 17:17:38 +00002218void
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002219Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
2220 Expr **Args, unsigned NumArgs,
2221 OverloadCandidateSet& CandidateSet) {
Douglas Gregor70d26122008-11-12 17:17:38 +00002222 // The set of "promoted arithmetic types", which are the arithmetic
2223 // types are that preserved by promotion (C++ [over.built]p2). Note
2224 // that the first few of these types are the promoted integral
2225 // types; these types need to be first.
2226 // FIXME: What about complex?
2227 const unsigned FirstIntegralType = 0;
2228 const unsigned LastIntegralType = 13;
2229 const unsigned FirstPromotedIntegralType = 7,
2230 LastPromotedIntegralType = 13;
2231 const unsigned FirstPromotedArithmeticType = 7,
2232 LastPromotedArithmeticType = 16;
2233 const unsigned NumArithmeticTypes = 16;
2234 QualType ArithmeticTypes[NumArithmeticTypes] = {
2235 Context.BoolTy, Context.CharTy, Context.WCharTy,
2236 Context.SignedCharTy, Context.ShortTy,
2237 Context.UnsignedCharTy, Context.UnsignedShortTy,
2238 Context.IntTy, Context.LongTy, Context.LongLongTy,
2239 Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
2240 Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
2241 };
2242
2243 // Find all of the types that the arguments can convert to, but only
2244 // if the operator we're looking at has built-in operator candidates
2245 // that make use of these types.
2246 BuiltinCandidateTypeSet CandidateTypes(Context);
2247 if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
2248 Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002249 Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
Douglas Gregor70d26122008-11-12 17:17:38 +00002250 Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002251 Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
2252 (Op == OO_Star && NumArgs == 1)) {
2253 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
Douglas Gregor70d26122008-11-12 17:17:38 +00002254 CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType());
2255 }
2256
2257 bool isComparison = false;
2258 switch (Op) {
2259 case OO_None:
2260 case NUM_OVERLOADED_OPERATORS:
2261 assert(false && "Expected an overloaded operator");
2262 break;
2263
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002264 case OO_Star: // '*' is either unary or binary
2265 if (NumArgs == 1)
2266 goto UnaryStar;
2267 else
2268 goto BinaryStar;
2269 break;
2270
2271 case OO_Plus: // '+' is either unary or binary
2272 if (NumArgs == 1)
2273 goto UnaryPlus;
2274 else
2275 goto BinaryPlus;
2276 break;
2277
2278 case OO_Minus: // '-' is either unary or binary
2279 if (NumArgs == 1)
2280 goto UnaryMinus;
2281 else
2282 goto BinaryMinus;
2283 break;
2284
2285 case OO_Amp: // '&' is either unary or binary
2286 if (NumArgs == 1)
2287 goto UnaryAmp;
2288 else
2289 goto BinaryAmp;
2290
2291 case OO_PlusPlus:
2292 case OO_MinusMinus:
2293 // C++ [over.built]p3:
2294 //
2295 // For every pair (T, VQ), where T is an arithmetic type, and VQ
2296 // is either volatile or empty, there exist candidate operator
2297 // functions of the form
2298 //
2299 // VQ T& operator++(VQ T&);
2300 // T operator++(VQ T&, int);
2301 //
2302 // C++ [over.built]p4:
2303 //
2304 // For every pair (T, VQ), where T is an arithmetic type other
2305 // than bool, and VQ is either volatile or empty, there exist
2306 // candidate operator functions of the form
2307 //
2308 // VQ T& operator--(VQ T&);
2309 // T operator--(VQ T&, int);
2310 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
2311 Arith < NumArithmeticTypes; ++Arith) {
2312 QualType ArithTy = ArithmeticTypes[Arith];
2313 QualType ParamTypes[2]
2314 = { Context.getReferenceType(ArithTy), Context.IntTy };
2315
2316 // Non-volatile version.
2317 if (NumArgs == 1)
2318 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2319 else
2320 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2321
2322 // Volatile version
2323 ParamTypes[0] = Context.getReferenceType(ArithTy.withVolatile());
2324 if (NumArgs == 1)
2325 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2326 else
2327 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2328 }
2329
2330 // C++ [over.built]p5:
2331 //
2332 // For every pair (T, VQ), where T is a cv-qualified or
2333 // cv-unqualified object type, and VQ is either volatile or
2334 // empty, there exist candidate operator functions of the form
2335 //
2336 // T*VQ& operator++(T*VQ&);
2337 // T*VQ& operator--(T*VQ&);
2338 // T* operator++(T*VQ&, int);
2339 // T* operator--(T*VQ&, int);
2340 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2341 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2342 // Skip pointer types that aren't pointers to object types.
Douglas Gregor24a90a52008-11-26 23:31:11 +00002343 if (!(*Ptr)->getAsPointerType()->getPointeeType()->isIncompleteOrObjectType())
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002344 continue;
2345
2346 QualType ParamTypes[2] = {
2347 Context.getReferenceType(*Ptr), Context.IntTy
2348 };
2349
2350 // Without volatile
2351 if (NumArgs == 1)
2352 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2353 else
2354 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2355
2356 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2357 // With volatile
2358 ParamTypes[0] = Context.getReferenceType((*Ptr).withVolatile());
2359 if (NumArgs == 1)
2360 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2361 else
2362 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2363 }
2364 }
2365 break;
2366
2367 UnaryStar:
2368 // C++ [over.built]p6:
2369 // For every cv-qualified or cv-unqualified object type T, there
2370 // exist candidate operator functions of the form
2371 //
2372 // T& operator*(T*);
2373 //
2374 // C++ [over.built]p7:
2375 // For every function type T, there exist candidate operator
2376 // functions of the form
2377 // T& operator*(T*);
2378 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2379 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2380 QualType ParamTy = *Ptr;
2381 QualType PointeeTy = ParamTy->getAsPointerType()->getPointeeType();
2382 AddBuiltinCandidate(Context.getReferenceType(PointeeTy),
2383 &ParamTy, Args, 1, CandidateSet);
2384 }
2385 break;
2386
2387 UnaryPlus:
2388 // C++ [over.built]p8:
2389 // For every type T, there exist candidate operator functions of
2390 // the form
2391 //
2392 // T* operator+(T*);
2393 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2394 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2395 QualType ParamTy = *Ptr;
2396 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2397 }
2398
2399 // Fall through
2400
2401 UnaryMinus:
2402 // C++ [over.built]p9:
2403 // For every promoted arithmetic type T, there exist candidate
2404 // operator functions of the form
2405 //
2406 // T operator+(T);
2407 // T operator-(T);
2408 for (unsigned Arith = FirstPromotedArithmeticType;
2409 Arith < LastPromotedArithmeticType; ++Arith) {
2410 QualType ArithTy = ArithmeticTypes[Arith];
2411 AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
2412 }
2413 break;
2414
2415 case OO_Tilde:
2416 // C++ [over.built]p10:
2417 // For every promoted integral type T, there exist candidate
2418 // operator functions of the form
2419 //
2420 // T operator~(T);
2421 for (unsigned Int = FirstPromotedIntegralType;
2422 Int < LastPromotedIntegralType; ++Int) {
2423 QualType IntTy = ArithmeticTypes[Int];
2424 AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
2425 }
2426 break;
2427
Douglas Gregor70d26122008-11-12 17:17:38 +00002428 case OO_New:
2429 case OO_Delete:
2430 case OO_Array_New:
2431 case OO_Array_Delete:
Douglas Gregor70d26122008-11-12 17:17:38 +00002432 case OO_Call:
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002433 assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
Douglas Gregor70d26122008-11-12 17:17:38 +00002434 break;
2435
2436 case OO_Comma:
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002437 UnaryAmp:
2438 case OO_Arrow:
Douglas Gregor70d26122008-11-12 17:17:38 +00002439 // C++ [over.match.oper]p3:
2440 // -- For the operator ',', the unary operator '&', or the
2441 // operator '->', the built-in candidates set is empty.
Douglas Gregor70d26122008-11-12 17:17:38 +00002442 break;
2443
2444 case OO_Less:
2445 case OO_Greater:
2446 case OO_LessEqual:
2447 case OO_GreaterEqual:
2448 case OO_EqualEqual:
2449 case OO_ExclaimEqual:
2450 // C++ [over.built]p15:
2451 //
2452 // For every pointer or enumeration type T, there exist
2453 // candidate operator functions of the form
2454 //
2455 // bool operator<(T, T);
2456 // bool operator>(T, T);
2457 // bool operator<=(T, T);
2458 // bool operator>=(T, T);
2459 // bool operator==(T, T);
2460 // bool operator!=(T, T);
2461 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2462 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2463 QualType ParamTypes[2] = { *Ptr, *Ptr };
2464 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2465 }
2466 for (BuiltinCandidateTypeSet::iterator Enum
2467 = CandidateTypes.enumeration_begin();
2468 Enum != CandidateTypes.enumeration_end(); ++Enum) {
2469 QualType ParamTypes[2] = { *Enum, *Enum };
2470 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2471 }
2472
2473 // Fall through.
2474 isComparison = true;
2475
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002476 BinaryPlus:
2477 BinaryMinus:
Douglas Gregor70d26122008-11-12 17:17:38 +00002478 if (!isComparison) {
2479 // We didn't fall through, so we must have OO_Plus or OO_Minus.
2480
2481 // C++ [over.built]p13:
2482 //
2483 // For every cv-qualified or cv-unqualified object type T
2484 // there exist candidate operator functions of the form
2485 //
2486 // T* operator+(T*, ptrdiff_t);
2487 // T& operator[](T*, ptrdiff_t); [BELOW]
2488 // T* operator-(T*, ptrdiff_t);
2489 // T* operator+(ptrdiff_t, T*);
2490 // T& operator[](ptrdiff_t, T*); [BELOW]
2491 //
2492 // C++ [over.built]p14:
2493 //
2494 // For every T, where T is a pointer to object type, there
2495 // exist candidate operator functions of the form
2496 //
2497 // ptrdiff_t operator-(T, T);
2498 for (BuiltinCandidateTypeSet::iterator Ptr
2499 = CandidateTypes.pointer_begin();
2500 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2501 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
2502
2503 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
2504 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2505
2506 if (Op == OO_Plus) {
2507 // T* operator+(ptrdiff_t, T*);
2508 ParamTypes[0] = ParamTypes[1];
2509 ParamTypes[1] = *Ptr;
2510 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2511 } else {
2512 // ptrdiff_t operator-(T, T);
2513 ParamTypes[1] = *Ptr;
2514 AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
2515 Args, 2, CandidateSet);
2516 }
2517 }
2518 }
2519 // Fall through
2520
Douglas Gregor70d26122008-11-12 17:17:38 +00002521 case OO_Slash:
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002522 BinaryStar:
Douglas Gregor70d26122008-11-12 17:17:38 +00002523 // C++ [over.built]p12:
2524 //
2525 // For every pair of promoted arithmetic types L and R, there
2526 // exist candidate operator functions of the form
2527 //
2528 // LR operator*(L, R);
2529 // LR operator/(L, R);
2530 // LR operator+(L, R);
2531 // LR operator-(L, R);
2532 // bool operator<(L, R);
2533 // bool operator>(L, R);
2534 // bool operator<=(L, R);
2535 // bool operator>=(L, R);
2536 // bool operator==(L, R);
2537 // bool operator!=(L, R);
2538 //
2539 // where LR is the result of the usual arithmetic conversions
2540 // between types L and R.
2541 for (unsigned Left = FirstPromotedArithmeticType;
2542 Left < LastPromotedArithmeticType; ++Left) {
2543 for (unsigned Right = FirstPromotedArithmeticType;
2544 Right < LastPromotedArithmeticType; ++Right) {
2545 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
2546 QualType Result
2547 = isComparison? Context.BoolTy
2548 : UsualArithmeticConversionsType(LandR[0], LandR[1]);
2549 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
2550 }
2551 }
2552 break;
2553
2554 case OO_Percent:
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002555 BinaryAmp:
Douglas Gregor70d26122008-11-12 17:17:38 +00002556 case OO_Caret:
2557 case OO_Pipe:
2558 case OO_LessLess:
2559 case OO_GreaterGreater:
2560 // C++ [over.built]p17:
2561 //
2562 // For every pair of promoted integral types L and R, there
2563 // exist candidate operator functions of the form
2564 //
2565 // LR operator%(L, R);
2566 // LR operator&(L, R);
2567 // LR operator^(L, R);
2568 // LR operator|(L, R);
2569 // L operator<<(L, R);
2570 // L operator>>(L, R);
2571 //
2572 // where LR is the result of the usual arithmetic conversions
2573 // between types L and R.
2574 for (unsigned Left = FirstPromotedIntegralType;
2575 Left < LastPromotedIntegralType; ++Left) {
2576 for (unsigned Right = FirstPromotedIntegralType;
2577 Right < LastPromotedIntegralType; ++Right) {
2578 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
2579 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
2580 ? LandR[0]
2581 : UsualArithmeticConversionsType(LandR[0], LandR[1]);
2582 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
2583 }
2584 }
2585 break;
2586
2587 case OO_Equal:
2588 // C++ [over.built]p20:
2589 //
2590 // For every pair (T, VQ), where T is an enumeration or
2591 // (FIXME:) pointer to member type and VQ is either volatile or
2592 // empty, there exist candidate operator functions of the form
2593 //
2594 // VQ T& operator=(VQ T&, T);
2595 for (BuiltinCandidateTypeSet::iterator Enum
2596 = CandidateTypes.enumeration_begin();
2597 Enum != CandidateTypes.enumeration_end(); ++Enum) {
2598 QualType ParamTypes[2];
2599
2600 // T& operator=(T&, T)
2601 ParamTypes[0] = Context.getReferenceType(*Enum);
2602 ParamTypes[1] = *Enum;
2603 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2604
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002605 if (!Context.getCanonicalType(*Enum).isVolatileQualified()) {
2606 // volatile T& operator=(volatile T&, T)
2607 ParamTypes[0] = Context.getReferenceType((*Enum).withVolatile());
2608 ParamTypes[1] = *Enum;
2609 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2610 }
Douglas Gregor70d26122008-11-12 17:17:38 +00002611 }
2612 // Fall through.
2613
2614 case OO_PlusEqual:
2615 case OO_MinusEqual:
2616 // C++ [over.built]p19:
2617 //
2618 // For every pair (T, VQ), where T is any type and VQ is either
2619 // volatile or empty, there exist candidate operator functions
2620 // of the form
2621 //
2622 // T*VQ& operator=(T*VQ&, T*);
2623 //
2624 // C++ [over.built]p21:
2625 //
2626 // For every pair (T, VQ), where T is a cv-qualified or
2627 // cv-unqualified object type and VQ is either volatile or
2628 // empty, there exist candidate operator functions of the form
2629 //
2630 // T*VQ& operator+=(T*VQ&, ptrdiff_t);
2631 // T*VQ& operator-=(T*VQ&, ptrdiff_t);
2632 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2633 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2634 QualType ParamTypes[2];
2635 ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
2636
2637 // non-volatile version
2638 ParamTypes[0] = Context.getReferenceType(*Ptr);
2639 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2640
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002641 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2642 // volatile version
2643 ParamTypes[0] = Context.getReferenceType((*Ptr).withVolatile());
2644 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2645 }
Douglas Gregor70d26122008-11-12 17:17:38 +00002646 }
2647 // Fall through.
2648
2649 case OO_StarEqual:
2650 case OO_SlashEqual:
2651 // C++ [over.built]p18:
2652 //
2653 // For every triple (L, VQ, R), where L is an arithmetic type,
2654 // VQ is either volatile or empty, and R is a promoted
2655 // arithmetic type, there exist candidate operator functions of
2656 // the form
2657 //
2658 // VQ L& operator=(VQ L&, R);
2659 // VQ L& operator*=(VQ L&, R);
2660 // VQ L& operator/=(VQ L&, R);
2661 // VQ L& operator+=(VQ L&, R);
2662 // VQ L& operator-=(VQ L&, R);
2663 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
2664 for (unsigned Right = FirstPromotedArithmeticType;
2665 Right < LastPromotedArithmeticType; ++Right) {
2666 QualType ParamTypes[2];
2667 ParamTypes[1] = ArithmeticTypes[Right];
2668
2669 // Add this built-in operator as a candidate (VQ is empty).
2670 ParamTypes[0] = Context.getReferenceType(ArithmeticTypes[Left]);
2671 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2672
2673 // Add this built-in operator as a candidate (VQ is 'volatile').
2674 ParamTypes[0] = ArithmeticTypes[Left].withVolatile();
2675 ParamTypes[0] = Context.getReferenceType(ParamTypes[0]);
2676 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2677 }
2678 }
2679 break;
2680
2681 case OO_PercentEqual:
2682 case OO_LessLessEqual:
2683 case OO_GreaterGreaterEqual:
2684 case OO_AmpEqual:
2685 case OO_CaretEqual:
2686 case OO_PipeEqual:
2687 // C++ [over.built]p22:
2688 //
2689 // For every triple (L, VQ, R), where L is an integral type, VQ
2690 // is either volatile or empty, and R is a promoted integral
2691 // type, there exist candidate operator functions of the form
2692 //
2693 // VQ L& operator%=(VQ L&, R);
2694 // VQ L& operator<<=(VQ L&, R);
2695 // VQ L& operator>>=(VQ L&, R);
2696 // VQ L& operator&=(VQ L&, R);
2697 // VQ L& operator^=(VQ L&, R);
2698 // VQ L& operator|=(VQ L&, R);
2699 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
2700 for (unsigned Right = FirstPromotedIntegralType;
2701 Right < LastPromotedIntegralType; ++Right) {
2702 QualType ParamTypes[2];
2703 ParamTypes[1] = ArithmeticTypes[Right];
2704
2705 // Add this built-in operator as a candidate (VQ is empty).
2706 // FIXME: We should be caching these declarations somewhere,
2707 // rather than re-building them every time.
2708 ParamTypes[0] = Context.getReferenceType(ArithmeticTypes[Left]);
2709 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2710
2711 // Add this built-in operator as a candidate (VQ is 'volatile').
2712 ParamTypes[0] = ArithmeticTypes[Left];
2713 ParamTypes[0].addVolatile();
2714 ParamTypes[0] = Context.getReferenceType(ParamTypes[0]);
2715 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2716 }
2717 }
2718 break;
2719
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002720 case OO_Exclaim: {
2721 // C++ [over.operator]p23:
2722 //
2723 // There also exist candidate operator functions of the form
2724 //
2725 // bool operator!(bool);
2726 // bool operator&&(bool, bool); [BELOW]
2727 // bool operator||(bool, bool); [BELOW]
2728 QualType ParamTy = Context.BoolTy;
2729 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2730 break;
2731 }
2732
Douglas Gregor70d26122008-11-12 17:17:38 +00002733 case OO_AmpAmp:
2734 case OO_PipePipe: {
2735 // C++ [over.operator]p23:
2736 //
2737 // There also exist candidate operator functions of the form
2738 //
Douglas Gregor4f6904d2008-11-19 15:42:04 +00002739 // bool operator!(bool); [ABOVE]
Douglas Gregor70d26122008-11-12 17:17:38 +00002740 // bool operator&&(bool, bool);
2741 // bool operator||(bool, bool);
2742 QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
2743 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2744 break;
2745 }
2746
2747 case OO_Subscript:
2748 // C++ [over.built]p13:
2749 //
2750 // For every cv-qualified or cv-unqualified object type T there
2751 // exist candidate operator functions of the form
2752 //
2753 // T* operator+(T*, ptrdiff_t); [ABOVE]
2754 // T& operator[](T*, ptrdiff_t);
2755 // T* operator-(T*, ptrdiff_t); [ABOVE]
2756 // T* operator+(ptrdiff_t, T*); [ABOVE]
2757 // T& operator[](ptrdiff_t, T*);
2758 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2759 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2760 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
2761 QualType PointeeType = (*Ptr)->getAsPointerType()->getPointeeType();
2762 QualType ResultTy = Context.getReferenceType(PointeeType);
2763
2764 // T& operator[](T*, ptrdiff_t)
2765 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
2766
2767 // T& operator[](ptrdiff_t, T*);
2768 ParamTypes[0] = ParamTypes[1];
2769 ParamTypes[1] = *Ptr;
2770 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
2771 }
2772 break;
2773
2774 case OO_ArrowStar:
2775 // FIXME: No support for pointer-to-members yet.
2776 break;
2777 }
2778}
2779
Douglas Gregord2baafd2008-10-21 16:13:35 +00002780/// AddOverloadCandidates - Add all of the function overloads in Ovl
2781/// to the candidate set.
2782void
Douglas Gregor5870a952008-11-03 20:45:27 +00002783Sema::AddOverloadCandidates(const OverloadedFunctionDecl *Ovl,
Douglas Gregord2baafd2008-10-21 16:13:35 +00002784 Expr **Args, unsigned NumArgs,
Douglas Gregora3b34bb2008-11-03 19:09:14 +00002785 OverloadCandidateSet& CandidateSet,
2786 bool SuppressUserConversions)
Douglas Gregord2baafd2008-10-21 16:13:35 +00002787{
Douglas Gregor5870a952008-11-03 20:45:27 +00002788 for (OverloadedFunctionDecl::function_const_iterator Func
2789 = Ovl->function_begin();
Douglas Gregord2baafd2008-10-21 16:13:35 +00002790 Func != Ovl->function_end(); ++Func)
Douglas Gregora3b34bb2008-11-03 19:09:14 +00002791 AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet,
2792 SuppressUserConversions);
Douglas Gregord2baafd2008-10-21 16:13:35 +00002793}
2794
2795/// isBetterOverloadCandidate - Determines whether the first overload
2796/// candidate is a better candidate than the second (C++ 13.3.3p1).
2797bool
2798Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
2799 const OverloadCandidate& Cand2)
2800{
2801 // Define viable functions to be better candidates than non-viable
2802 // functions.
2803 if (!Cand2.Viable)
2804 return Cand1.Viable;
2805 else if (!Cand1.Viable)
2806 return false;
2807
2808 // FIXME: Deal with the implicit object parameter for static member
2809 // functions. (C++ 13.3.3p1).
2810
2811 // (C++ 13.3.3p1): a viable function F1 is defined to be a better
2812 // function than another viable function F2 if for all arguments i,
2813 // ICSi(F1) is not a worse conversion sequence than ICSi(F2), and
2814 // then...
2815 unsigned NumArgs = Cand1.Conversions.size();
2816 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
2817 bool HasBetterConversion = false;
2818 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2819 switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
2820 Cand2.Conversions[ArgIdx])) {
2821 case ImplicitConversionSequence::Better:
2822 // Cand1 has a better conversion sequence.
2823 HasBetterConversion = true;
2824 break;
2825
2826 case ImplicitConversionSequence::Worse:
2827 // Cand1 can't be better than Cand2.
2828 return false;
2829
2830 case ImplicitConversionSequence::Indistinguishable:
2831 // Do nothing.
2832 break;
2833 }
2834 }
2835
2836 if (HasBetterConversion)
2837 return true;
2838
Douglas Gregor70d26122008-11-12 17:17:38 +00002839 // FIXME: Several other bullets in (C++ 13.3.3p1) need to be
2840 // implemented, but they require template support.
Douglas Gregord2baafd2008-10-21 16:13:35 +00002841
Douglas Gregor60714f92008-11-07 22:36:19 +00002842 // C++ [over.match.best]p1b4:
2843 //
2844 // -- the context is an initialization by user-defined conversion
2845 // (see 8.5, 13.3.1.5) and the standard conversion sequence
2846 // from the return type of F1 to the destination type (i.e.,
2847 // the type of the entity being initialized) is a better
2848 // conversion sequence than the standard conversion sequence
2849 // from the return type of F2 to the destination type.
Douglas Gregor849ea9c2008-11-19 03:25:36 +00002850 if (Cand1.Function && Cand2.Function &&
2851 isa<CXXConversionDecl>(Cand1.Function) &&
Douglas Gregor60714f92008-11-07 22:36:19 +00002852 isa<CXXConversionDecl>(Cand2.Function)) {
2853 switch (CompareStandardConversionSequences(Cand1.FinalConversion,
2854 Cand2.FinalConversion)) {
2855 case ImplicitConversionSequence::Better:
2856 // Cand1 has a better conversion sequence.
2857 return true;
2858
2859 case ImplicitConversionSequence::Worse:
2860 // Cand1 can't be better than Cand2.
2861 return false;
2862
2863 case ImplicitConversionSequence::Indistinguishable:
2864 // Do nothing
2865 break;
2866 }
2867 }
2868
Douglas Gregord2baafd2008-10-21 16:13:35 +00002869 return false;
2870}
2871
2872/// BestViableFunction - Computes the best viable function (C++ 13.3.3)
2873/// within an overload candidate set. If overloading is successful,
2874/// the result will be OR_Success and Best will be set to point to the
2875/// best viable function within the candidate set. Otherwise, one of
2876/// several kinds of errors will be returned; see
2877/// Sema::OverloadingResult.
2878Sema::OverloadingResult
2879Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
2880 OverloadCandidateSet::iterator& Best)
2881{
2882 // Find the best viable function.
2883 Best = CandidateSet.end();
2884 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
2885 Cand != CandidateSet.end(); ++Cand) {
2886 if (Cand->Viable) {
2887 if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
2888 Best = Cand;
2889 }
2890 }
2891
2892 // If we didn't find any viable functions, abort.
2893 if (Best == CandidateSet.end())
2894 return OR_No_Viable_Function;
2895
2896 // Make sure that this function is better than every other viable
2897 // function. If not, we have an ambiguity.
2898 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
2899 Cand != CandidateSet.end(); ++Cand) {
2900 if (Cand->Viable &&
2901 Cand != Best &&
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00002902 !isBetterOverloadCandidate(*Best, *Cand)) {
2903 Best = CandidateSet.end();
Douglas Gregord2baafd2008-10-21 16:13:35 +00002904 return OR_Ambiguous;
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00002905 }
Douglas Gregord2baafd2008-10-21 16:13:35 +00002906 }
2907
2908 // Best is the best viable function.
2909 return OR_Success;
2910}
2911
2912/// PrintOverloadCandidates - When overload resolution fails, prints
2913/// diagnostic messages containing the candidates in the candidate
2914/// set. If OnlyViable is true, only viable candidates will be printed.
2915void
2916Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
2917 bool OnlyViable)
2918{
2919 OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
2920 LastCand = CandidateSet.end();
2921 for (; Cand != LastCand; ++Cand) {
Douglas Gregor70d26122008-11-12 17:17:38 +00002922 if (Cand->Viable || !OnlyViable) {
2923 if (Cand->Function) {
2924 // Normal function
2925 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00002926 } else if (Cand->IsSurrogate) {
Douglas Gregor30c8ddf2008-11-21 02:54:28 +00002927 // Desugar the type of the surrogate down to a function type,
2928 // retaining as many typedefs as possible while still showing
2929 // the function type (and, therefore, its parameter types).
2930 QualType FnType = Cand->Surrogate->getConversionType();
2931 bool isReference = false;
2932 bool isPointer = false;
2933 if (const ReferenceType *FnTypeRef = FnType->getAsReferenceType()) {
2934 FnType = FnTypeRef->getPointeeType();
2935 isReference = true;
2936 }
2937 if (const PointerType *FnTypePtr = FnType->getAsPointerType()) {
2938 FnType = FnTypePtr->getPointeeType();
2939 isPointer = true;
2940 }
2941 // Desugar down to a function type.
2942 FnType = QualType(FnType->getAsFunctionType(), 0);
2943 // Reconstruct the pointer/reference as appropriate.
2944 if (isPointer) FnType = Context.getPointerType(FnType);
2945 if (isReference) FnType = Context.getReferenceType(FnType);
2946
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00002947 Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
Chris Lattner4bfd2232008-11-24 06:25:27 +00002948 << FnType;
Douglas Gregor70d26122008-11-12 17:17:38 +00002949 } else {
2950 // FIXME: We need to get the identifier in here
2951 // FIXME: Do we want the error message to point at the
2952 // operator? (built-ins won't have a location)
2953 QualType FnType
2954 = Context.getFunctionType(Cand->BuiltinTypes.ResultTy,
2955 Cand->BuiltinTypes.ParamTypes,
2956 Cand->Conversions.size(),
2957 false, 0);
2958
Chris Lattner4bfd2232008-11-24 06:25:27 +00002959 Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType;
Douglas Gregor70d26122008-11-12 17:17:38 +00002960 }
2961 }
Douglas Gregord2baafd2008-10-21 16:13:35 +00002962 }
2963}
2964
Douglas Gregor45014fd2008-11-10 20:40:00 +00002965/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
2966/// an overloaded function (C++ [over.over]), where @p From is an
2967/// expression with overloaded function type and @p ToType is the type
2968/// we're trying to resolve to. For example:
2969///
2970/// @code
2971/// int f(double);
2972/// int f(int);
2973///
2974/// int (*pfd)(double) = f; // selects f(double)
2975/// @endcode
2976///
2977/// This routine returns the resulting FunctionDecl if it could be
2978/// resolved, and NULL otherwise. When @p Complain is true, this
2979/// routine will emit diagnostics if there is an error.
2980FunctionDecl *
2981Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
2982 bool Complain) {
2983 QualType FunctionType = ToType;
2984 if (const PointerLikeType *ToTypePtr = ToType->getAsPointerLikeType())
2985 FunctionType = ToTypePtr->getPointeeType();
2986
2987 // We only look at pointers or references to functions.
2988 if (!FunctionType->isFunctionType())
2989 return 0;
2990
2991 // Find the actual overloaded function declaration.
2992 OverloadedFunctionDecl *Ovl = 0;
2993
2994 // C++ [over.over]p1:
2995 // [...] [Note: any redundant set of parentheses surrounding the
2996 // overloaded function name is ignored (5.1). ]
2997 Expr *OvlExpr = From->IgnoreParens();
2998
2999 // C++ [over.over]p1:
3000 // [...] The overloaded function name can be preceded by the &
3001 // operator.
3002 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
3003 if (UnOp->getOpcode() == UnaryOperator::AddrOf)
3004 OvlExpr = UnOp->getSubExpr()->IgnoreParens();
3005 }
3006
3007 // Try to dig out the overloaded function.
3008 if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr))
3009 Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
3010
3011 // If there's no overloaded function declaration, we're done.
3012 if (!Ovl)
3013 return 0;
3014
3015 // Look through all of the overloaded functions, searching for one
3016 // whose type matches exactly.
3017 // FIXME: When templates or using declarations come along, we'll actually
3018 // have to deal with duplicates, partial ordering, etc. For now, we
3019 // can just do a simple search.
3020 FunctionType = Context.getCanonicalType(FunctionType.getUnqualifiedType());
3021 for (OverloadedFunctionDecl::function_iterator Fun = Ovl->function_begin();
3022 Fun != Ovl->function_end(); ++Fun) {
3023 // C++ [over.over]p3:
3024 // Non-member functions and static member functions match
3025 // targets of type “pointer-to-function”or
3026 // “reference-to-function.”
3027 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun))
3028 if (!Method->isStatic())
3029 continue;
3030
3031 if (FunctionType == Context.getCanonicalType((*Fun)->getType()))
3032 return *Fun;
3033 }
3034
3035 return 0;
3036}
3037
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003038/// ResolveOverloadedCallFn - Given the call expression that calls Fn
3039/// (which eventually refers to the set of overloaded functions in
3040/// Ovl) and the call arguments Args/NumArgs, attempt to resolve the
3041/// function call down to a specific function. If overload resolution
Douglas Gregorbf4f0582008-11-26 06:01:48 +00003042/// succeeds, returns the function declaration produced by overload
3043/// resolution. Otherwise, emits diagnostics, deletes all of the
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003044/// arguments and Fn, and returns NULL.
Douglas Gregorbf4f0582008-11-26 06:01:48 +00003045FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, OverloadedFunctionDecl *Ovl,
3046 SourceLocation LParenLoc,
3047 Expr **Args, unsigned NumArgs,
3048 SourceLocation *CommaLocs,
3049 SourceLocation RParenLoc) {
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003050 OverloadCandidateSet CandidateSet;
3051 AddOverloadCandidates(Ovl, Args, NumArgs, CandidateSet);
3052 OverloadCandidateSet::iterator Best;
3053 switch (BestViableFunction(CandidateSet, Best)) {
Douglas Gregorbf4f0582008-11-26 06:01:48 +00003054 case OR_Success:
3055 return Best->Function;
Douglas Gregor3ed006b2008-11-26 05:54:23 +00003056
3057 case OR_No_Viable_Function:
3058 Diag(Fn->getSourceRange().getBegin(),
3059 diag::err_ovl_no_viable_function_in_call)
3060 << Ovl->getDeclName() << (unsigned)CandidateSet.size()
3061 << Fn->getSourceRange();
3062 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3063 break;
3064
3065 case OR_Ambiguous:
3066 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
3067 << Ovl->getDeclName() << Fn->getSourceRange();
3068 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3069 break;
3070 }
3071
3072 // Overload resolution failed. Destroy all of the subexpressions and
3073 // return NULL.
3074 Fn->Destroy(Context);
3075 for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
3076 Args[Arg]->Destroy(Context);
3077 return 0;
3078}
3079
Douglas Gregor10f3c502008-11-19 21:05:33 +00003080/// BuildCallToObjectOfClassType - Build a call to an object of class
3081/// type (C++ [over.call.object]), which can end up invoking an
3082/// overloaded function call operator (@c operator()) or performing a
3083/// user-defined conversion on the object argument.
3084Action::ExprResult
3085Sema::BuildCallToObjectOfClassType(Expr *Object, SourceLocation LParenLoc,
3086 Expr **Args, unsigned NumArgs,
3087 SourceLocation *CommaLocs,
3088 SourceLocation RParenLoc) {
3089 assert(Object->getType()->isRecordType() && "Requires object type argument");
3090 const RecordType *Record = Object->getType()->getAsRecordType();
3091
3092 // C++ [over.call.object]p1:
3093 // If the primary-expression E in the function call syntax
3094 // evaluates to a class object of type “cv T”, then the set of
3095 // candidate functions includes at least the function call
3096 // operators of T. The function call operators of T are obtained by
3097 // ordinary lookup of the name operator() in the context of
3098 // (E).operator().
3099 OverloadCandidateSet CandidateSet;
3100 IdentifierResolver::iterator I
3101 = IdResolver.begin(Context.DeclarationNames.getCXXOperatorName(OO_Call),
3102 cast<CXXRecordType>(Record)->getDecl(),
3103 /*LookInParentCtx=*/false);
3104 NamedDecl *MemberOps = (I == IdResolver.end())? 0 : *I;
3105 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(MemberOps))
3106 AddMethodCandidate(Method, Object, Args, NumArgs, CandidateSet,
3107 /*SuppressUserConversions=*/false);
3108 else if (OverloadedFunctionDecl *Ovl
3109 = dyn_cast_or_null<OverloadedFunctionDecl>(MemberOps)) {
3110 for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
3111 FEnd = Ovl->function_end();
3112 F != FEnd; ++F) {
3113 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*F))
3114 AddMethodCandidate(Method, Object, Args, NumArgs, CandidateSet,
3115 /*SuppressUserConversions=*/false);
3116 }
3117 }
3118
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00003119 // C++ [over.call.object]p2:
3120 // In addition, for each conversion function declared in T of the
3121 // form
3122 //
3123 // operator conversion-type-id () cv-qualifier;
3124 //
3125 // where cv-qualifier is the same cv-qualification as, or a
3126 // greater cv-qualification than, cv, and where conversion-type-id
Douglas Gregor261afa72008-11-20 13:33:37 +00003127 // denotes the type "pointer to function of (P1,...,Pn) returning
3128 // R", or the type "reference to pointer to function of
3129 // (P1,...,Pn) returning R", or the type "reference to function
3130 // of (P1,...,Pn) returning R", a surrogate call function [...]
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00003131 // is also considered as a candidate function. Similarly,
3132 // surrogate call functions are added to the set of candidate
3133 // functions for each conversion function declared in an
3134 // accessible base class provided the function is not hidden
3135 // within T by another intervening declaration.
3136 //
3137 // FIXME: Look in base classes for more conversion operators!
3138 OverloadedFunctionDecl *Conversions
3139 = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
Douglas Gregor30c8ddf2008-11-21 02:54:28 +00003140 for (OverloadedFunctionDecl::function_iterator
3141 Func = Conversions->function_begin(),
3142 FuncEnd = Conversions->function_end();
3143 Func != FuncEnd; ++Func) {
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00003144 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
3145
3146 // Strip the reference type (if any) and then the pointer type (if
3147 // any) to get down to what might be a function type.
3148 QualType ConvType = Conv->getConversionType().getNonReferenceType();
3149 if (const PointerType *ConvPtrType = ConvType->getAsPointerType())
3150 ConvType = ConvPtrType->getPointeeType();
3151
3152 if (const FunctionTypeProto *Proto = ConvType->getAsFunctionTypeProto())
3153 AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
3154 }
Douglas Gregor10f3c502008-11-19 21:05:33 +00003155
3156 // Perform overload resolution.
3157 OverloadCandidateSet::iterator Best;
3158 switch (BestViableFunction(CandidateSet, Best)) {
3159 case OR_Success:
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00003160 // Overload resolution succeeded; we'll build the appropriate call
3161 // below.
Douglas Gregor10f3c502008-11-19 21:05:33 +00003162 break;
3163
3164 case OR_No_Viable_Function:
Sebastian Redlfd9f2ac2008-11-22 13:44:36 +00003165 Diag(Object->getSourceRange().getBegin(),
3166 diag::err_ovl_no_viable_object_call)
Chris Lattner4bfd2232008-11-24 06:25:27 +00003167 << Object->getType() << (unsigned)CandidateSet.size()
Sebastian Redlfd9f2ac2008-11-22 13:44:36 +00003168 << Object->getSourceRange();
3169 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
Douglas Gregor10f3c502008-11-19 21:05:33 +00003170 break;
3171
3172 case OR_Ambiguous:
3173 Diag(Object->getSourceRange().getBegin(),
3174 diag::err_ovl_ambiguous_object_call)
Chris Lattner4bfd2232008-11-24 06:25:27 +00003175 << Object->getType() << Object->getSourceRange();
Douglas Gregor10f3c502008-11-19 21:05:33 +00003176 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3177 break;
3178 }
3179
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00003180 if (Best == CandidateSet.end()) {
Douglas Gregor10f3c502008-11-19 21:05:33 +00003181 // We had an error; delete all of the subexpressions and return
3182 // the error.
3183 delete Object;
3184 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3185 delete Args[ArgIdx];
3186 return true;
3187 }
3188
Douglas Gregor67fdb5b2008-11-19 22:57:39 +00003189 if (Best->Function == 0) {
3190 // Since there is no function declaration, this is one of the
3191 // surrogate candidates. Dig out the conversion function.
3192 CXXConversionDecl *Conv
3193 = cast<CXXConversionDecl>(
3194 Best->Conversions[0].UserDefined.ConversionFunction);
3195
3196 // We selected one of the surrogate functions that converts the
3197 // object parameter to a function pointer. Perform the conversion
3198 // on the object argument, then let ActOnCallExpr finish the job.
3199 // FIXME: Represent the user-defined conversion in the AST!
3200 ImpCastExprToType(Object,
3201 Conv->getConversionType().getNonReferenceType(),
3202 Conv->getConversionType()->isReferenceType());
3203 return ActOnCallExpr((ExprTy*)Object, LParenLoc, (ExprTy**)Args, NumArgs,
3204 CommaLocs, RParenLoc);
3205 }
3206
3207 // We found an overloaded operator(). Build a CXXOperatorCallExpr
3208 // that calls this method, using Object for the implicit object
3209 // parameter and passing along the remaining arguments.
3210 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
Douglas Gregor10f3c502008-11-19 21:05:33 +00003211 const FunctionTypeProto *Proto = Method->getType()->getAsFunctionTypeProto();
3212
3213 unsigned NumArgsInProto = Proto->getNumArgs();
3214 unsigned NumArgsToCheck = NumArgs;
3215
3216 // Build the full argument list for the method call (the
3217 // implicit object parameter is placed at the beginning of the
3218 // list).
3219 Expr **MethodArgs;
3220 if (NumArgs < NumArgsInProto) {
3221 NumArgsToCheck = NumArgsInProto;
3222 MethodArgs = new Expr*[NumArgsInProto + 1];
3223 } else {
3224 MethodArgs = new Expr*[NumArgs + 1];
3225 }
3226 MethodArgs[0] = Object;
3227 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3228 MethodArgs[ArgIdx + 1] = Args[ArgIdx];
3229
3230 Expr *NewFn = new DeclRefExpr(Method, Method->getType(),
3231 SourceLocation());
3232 UsualUnaryConversions(NewFn);
3233
3234 // Once we've built TheCall, all of the expressions are properly
3235 // owned.
3236 QualType ResultTy = Method->getResultType().getNonReferenceType();
3237 llvm::OwningPtr<CXXOperatorCallExpr>
3238 TheCall(new CXXOperatorCallExpr(NewFn, MethodArgs, NumArgs + 1,
3239 ResultTy, RParenLoc));
3240 delete [] MethodArgs;
3241
3242 // Initialize the implicit object parameter.
3243 if (!PerformObjectArgumentInitialization(Object, Method))
3244 return true;
3245 TheCall->setArg(0, Object);
3246
3247 // Check the argument types.
3248 for (unsigned i = 0; i != NumArgsToCheck; i++) {
3249 QualType ProtoArgType = Proto->getArgType(i);
3250
3251 Expr *Arg;
3252 if (i < NumArgs)
3253 Arg = Args[i];
3254 else
3255 Arg = new CXXDefaultArgExpr(Method->getParamDecl(i));
3256 QualType ArgType = Arg->getType();
3257
3258 // Pass the argument.
3259 if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
3260 return true;
3261
3262 TheCall->setArg(i + 1, Arg);
3263 }
3264
3265 // If this is a variadic call, handle args passed through "...".
3266 if (Proto->isVariadic()) {
3267 // Promote the arguments (C99 6.5.2.2p7).
3268 for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
3269 Expr *Arg = Args[i];
3270 DefaultArgumentPromotion(Arg);
3271 TheCall->setArg(i + 1, Arg);
3272 }
3273 }
3274
3275 return CheckFunctionCall(Method, TheCall.take());
3276}
3277
Douglas Gregor7f3fec52008-11-20 16:27:02 +00003278/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
3279/// (if one exists), where @c Base is an expression of class type and
3280/// @c Member is the name of the member we're trying to find.
3281Action::ExprResult
3282Sema::BuildOverloadedArrowExpr(Expr *Base, SourceLocation OpLoc,
3283 SourceLocation MemberLoc,
3284 IdentifierInfo &Member) {
3285 assert(Base->getType()->isRecordType() && "left-hand side must have class type");
3286
3287 // C++ [over.ref]p1:
3288 //
3289 // [...] An expression x->m is interpreted as (x.operator->())->m
3290 // for a class object x of type T if T::operator->() exists and if
3291 // the operator is selected as the best match function by the
3292 // overload resolution mechanism (13.3).
3293 // FIXME: look in base classes.
3294 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
3295 OverloadCandidateSet CandidateSet;
3296 const RecordType *BaseRecord = Base->getType()->getAsRecordType();
3297 IdentifierResolver::iterator I
3298 = IdResolver.begin(OpName, cast<CXXRecordType>(BaseRecord)->getDecl(),
3299 /*LookInParentCtx=*/false);
3300 NamedDecl *MemberOps = (I == IdResolver.end())? 0 : *I;
3301 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(MemberOps))
3302 AddMethodCandidate(Method, Base, 0, 0, CandidateSet,
3303 /*SuppressUserConversions=*/false);
3304 else if (OverloadedFunctionDecl *Ovl
3305 = dyn_cast_or_null<OverloadedFunctionDecl>(MemberOps)) {
3306 for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
3307 FEnd = Ovl->function_end();
3308 F != FEnd; ++F) {
3309 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*F))
3310 AddMethodCandidate(Method, Base, 0, 0, CandidateSet,
3311 /*SuppressUserConversions=*/false);
3312 }
3313 }
3314
Douglas Gregor9c690e92008-11-21 03:04:22 +00003315 llvm::OwningPtr<Expr> BasePtr(Base);
3316
Douglas Gregor7f3fec52008-11-20 16:27:02 +00003317 // Perform overload resolution.
3318 OverloadCandidateSet::iterator Best;
3319 switch (BestViableFunction(CandidateSet, Best)) {
3320 case OR_Success:
3321 // Overload resolution succeeded; we'll build the call below.
3322 break;
3323
3324 case OR_No_Viable_Function:
3325 if (CandidateSet.empty())
3326 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
Chris Lattner4bfd2232008-11-24 06:25:27 +00003327 << BasePtr->getType() << BasePtr->getSourceRange();
Douglas Gregor7f3fec52008-11-20 16:27:02 +00003328 else
3329 Diag(OpLoc, diag::err_ovl_no_viable_oper)
Sebastian Redlfd9f2ac2008-11-22 13:44:36 +00003330 << "operator->" << (unsigned)CandidateSet.size()
3331 << BasePtr->getSourceRange();
Douglas Gregor7f3fec52008-11-20 16:27:02 +00003332 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
Douglas Gregor7f3fec52008-11-20 16:27:02 +00003333 return true;
3334
3335 case OR_Ambiguous:
3336 Diag(OpLoc, diag::err_ovl_ambiguous_oper)
Chris Lattner4bfd2232008-11-24 06:25:27 +00003337 << "operator->" << BasePtr->getSourceRange();
Douglas Gregor7f3fec52008-11-20 16:27:02 +00003338 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
Douglas Gregor7f3fec52008-11-20 16:27:02 +00003339 return true;
3340 }
3341
3342 // Convert the object parameter.
3343 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
Douglas Gregor9c690e92008-11-21 03:04:22 +00003344 if (PerformObjectArgumentInitialization(Base, Method))
Douglas Gregor7f3fec52008-11-20 16:27:02 +00003345 return true;
Douglas Gregor9c690e92008-11-21 03:04:22 +00003346
3347 // No concerns about early exits now.
3348 BasePtr.take();
Douglas Gregor7f3fec52008-11-20 16:27:02 +00003349
3350 // Build the operator call.
3351 Expr *FnExpr = new DeclRefExpr(Method, Method->getType(), SourceLocation());
3352 UsualUnaryConversions(FnExpr);
3353 Base = new CXXOperatorCallExpr(FnExpr, &Base, 1,
3354 Method->getResultType().getNonReferenceType(),
3355 OpLoc);
3356 return ActOnMemberReferenceExpr(Base, OpLoc, tok::arrow, MemberLoc, Member);
3357}
3358
Douglas Gregor45014fd2008-11-10 20:40:00 +00003359/// FixOverloadedFunctionReference - E is an expression that refers to
3360/// a C++ overloaded function (possibly with some parentheses and
3361/// perhaps a '&' around it). We have resolved the overloaded function
3362/// to the function declaration Fn, so patch up the expression E to
3363/// refer (possibly indirectly) to Fn.
3364void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
3365 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
3366 FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
3367 E->setType(PE->getSubExpr()->getType());
3368 } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
3369 assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
3370 "Can only take the address of an overloaded function");
3371 FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
3372 E->setType(Context.getPointerType(E->getType()));
3373 } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
3374 assert(isa<OverloadedFunctionDecl>(DR->getDecl()) &&
3375 "Expected overloaded function");
3376 DR->setDecl(Fn);
3377 E->setType(Fn->getType());
3378 } else {
3379 assert(false && "Invalid reference to overloaded function");
3380 }
3381}
3382
Douglas Gregord2baafd2008-10-21 16:13:35 +00003383} // end namespace clang