blob: b20c026f7146cfec2a24bf1ceabfef667acb7369 [file] [log] [blame]
Douglas Gregord2baafd2008-10-21 16:13:35 +00001//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
Douglas Gregorbb461502008-10-24 04:54:22 +000015#include "SemaInherit.h"
Douglas Gregord2baafd2008-10-21 16:13:35 +000016#include "clang/Basic/Diagnostic.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/Expr.h"
19#include "llvm/Support/Compiler.h"
20#include <algorithm>
21
22namespace clang {
23
24/// GetConversionCategory - Retrieve the implicit conversion
25/// category corresponding to the given implicit conversion kind.
26ImplicitConversionCategory
27GetConversionCategory(ImplicitConversionKind Kind) {
28 static const ImplicitConversionCategory
29 Category[(int)ICK_Num_Conversion_Kinds] = {
30 ICC_Identity,
31 ICC_Lvalue_Transformation,
32 ICC_Lvalue_Transformation,
33 ICC_Lvalue_Transformation,
34 ICC_Qualification_Adjustment,
35 ICC_Promotion,
36 ICC_Promotion,
37 ICC_Conversion,
38 ICC_Conversion,
39 ICC_Conversion,
40 ICC_Conversion,
41 ICC_Conversion,
Douglas Gregor2aecd1f2008-10-29 02:00:59 +000042 ICC_Conversion,
Douglas Gregord2baafd2008-10-21 16:13:35 +000043 ICC_Conversion
44 };
45 return Category[(int)Kind];
46}
47
48/// GetConversionRank - Retrieve the implicit conversion rank
49/// corresponding to the given implicit conversion kind.
50ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
51 static const ImplicitConversionRank
52 Rank[(int)ICK_Num_Conversion_Kinds] = {
53 ICR_Exact_Match,
54 ICR_Exact_Match,
55 ICR_Exact_Match,
56 ICR_Exact_Match,
57 ICR_Exact_Match,
58 ICR_Promotion,
59 ICR_Promotion,
60 ICR_Conversion,
61 ICR_Conversion,
62 ICR_Conversion,
63 ICR_Conversion,
64 ICR_Conversion,
Douglas Gregor2aecd1f2008-10-29 02:00:59 +000065 ICR_Conversion,
Douglas Gregord2baafd2008-10-21 16:13:35 +000066 ICR_Conversion
67 };
68 return Rank[(int)Kind];
69}
70
71/// GetImplicitConversionName - Return the name of this kind of
72/// implicit conversion.
73const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
74 static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
75 "No conversion",
76 "Lvalue-to-rvalue",
77 "Array-to-pointer",
78 "Function-to-pointer",
79 "Qualification",
80 "Integral promotion",
81 "Floating point promotion",
82 "Integral conversion",
83 "Floating conversion",
84 "Floating-integral conversion",
85 "Pointer conversion",
86 "Pointer-to-member conversion",
Douglas Gregor2aecd1f2008-10-29 02:00:59 +000087 "Boolean conversion",
88 "Derived-to-base conversion"
Douglas Gregord2baafd2008-10-21 16:13:35 +000089 };
90 return Name[Kind];
91}
92
Douglas Gregorb72e9da2008-10-31 16:23:19 +000093/// StandardConversionSequence - Set the standard conversion
94/// sequence to the identity conversion.
95void StandardConversionSequence::setAsIdentityConversion() {
96 First = ICK_Identity;
97 Second = ICK_Identity;
98 Third = ICK_Identity;
99 Deprecated = false;
100 ReferenceBinding = false;
101 DirectBinding = false;
102}
103
Douglas Gregord2baafd2008-10-21 16:13:35 +0000104/// getRank - Retrieve the rank of this standard conversion sequence
105/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
106/// implicit conversions.
107ImplicitConversionRank StandardConversionSequence::getRank() const {
108 ImplicitConversionRank Rank = ICR_Exact_Match;
109 if (GetConversionRank(First) > Rank)
110 Rank = GetConversionRank(First);
111 if (GetConversionRank(Second) > Rank)
112 Rank = GetConversionRank(Second);
113 if (GetConversionRank(Third) > Rank)
114 Rank = GetConversionRank(Third);
115 return Rank;
116}
117
118/// isPointerConversionToBool - Determines whether this conversion is
119/// a conversion of a pointer or pointer-to-member to bool. This is
120/// used as part of the ranking of standard conversion sequences
121/// (C++ 13.3.3.2p4).
122bool StandardConversionSequence::isPointerConversionToBool() const
123{
124 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
125 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
126
127 // Note that FromType has not necessarily been transformed by the
128 // array-to-pointer or function-to-pointer implicit conversions, so
129 // check for their presence as well as checking whether FromType is
130 // a pointer.
131 if (ToType->isBooleanType() &&
132 (FromType->isPointerType() ||
133 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
134 return true;
135
136 return false;
137}
138
Douglas Gregor14046502008-10-23 00:40:37 +0000139/// isPointerConversionToVoidPointer - Determines whether this
140/// conversion is a conversion of a pointer to a void pointer. This is
141/// used as part of the ranking of standard conversion sequences (C++
142/// 13.3.3.2p4).
143bool
144StandardConversionSequence::
145isPointerConversionToVoidPointer(ASTContext& Context) const
146{
147 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
148 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
149
150 // Note that FromType has not necessarily been transformed by the
151 // array-to-pointer implicit conversion, so check for its presence
152 // and redo the conversion to get a pointer.
153 if (First == ICK_Array_To_Pointer)
154 FromType = Context.getArrayDecayedType(FromType);
155
156 if (Second == ICK_Pointer_Conversion)
157 if (const PointerType* ToPtrType = ToType->getAsPointerType())
158 return ToPtrType->getPointeeType()->isVoidType();
159
160 return false;
161}
162
Douglas Gregord2baafd2008-10-21 16:13:35 +0000163/// DebugPrint - Print this standard conversion sequence to standard
164/// error. Useful for debugging overloading issues.
165void StandardConversionSequence::DebugPrint() const {
166 bool PrintedSomething = false;
167 if (First != ICK_Identity) {
168 fprintf(stderr, "%s", GetImplicitConversionName(First));
169 PrintedSomething = true;
170 }
171
172 if (Second != ICK_Identity) {
173 if (PrintedSomething) {
174 fprintf(stderr, " -> ");
175 }
176 fprintf(stderr, "%s", GetImplicitConversionName(Second));
177 PrintedSomething = true;
178 }
179
180 if (Third != ICK_Identity) {
181 if (PrintedSomething) {
182 fprintf(stderr, " -> ");
183 }
184 fprintf(stderr, "%s", GetImplicitConversionName(Third));
185 PrintedSomething = true;
186 }
187
188 if (!PrintedSomething) {
189 fprintf(stderr, "No conversions required");
190 }
191}
192
193/// DebugPrint - Print this user-defined conversion sequence to standard
194/// error. Useful for debugging overloading issues.
195void UserDefinedConversionSequence::DebugPrint() const {
196 if (Before.First || Before.Second || Before.Third) {
197 Before.DebugPrint();
198 fprintf(stderr, " -> ");
199 }
200 fprintf(stderr, "'%s'", ConversionFunction->getName());
201 if (After.First || After.Second || After.Third) {
202 fprintf(stderr, " -> ");
203 After.DebugPrint();
204 }
205}
206
207/// DebugPrint - Print this implicit conversion sequence to standard
208/// error. Useful for debugging overloading issues.
209void ImplicitConversionSequence::DebugPrint() const {
210 switch (ConversionKind) {
211 case StandardConversion:
212 fprintf(stderr, "Standard conversion: ");
213 Standard.DebugPrint();
214 break;
215 case UserDefinedConversion:
216 fprintf(stderr, "User-defined conversion: ");
217 UserDefined.DebugPrint();
218 break;
219 case EllipsisConversion:
220 fprintf(stderr, "Ellipsis conversion");
221 break;
222 case BadConversion:
223 fprintf(stderr, "Bad conversion");
224 break;
225 }
226
227 fprintf(stderr, "\n");
228}
229
230// IsOverload - Determine whether the given New declaration is an
231// overload of the Old declaration. This routine returns false if New
232// and Old cannot be overloaded, e.g., if they are functions with the
233// same signature (C++ 1.3.10) or if the Old declaration isn't a
234// function (or overload set). When it does return false and Old is an
235// OverloadedFunctionDecl, MatchedDecl will be set to point to the
236// FunctionDecl that New cannot be overloaded with.
237//
238// Example: Given the following input:
239//
240// void f(int, float); // #1
241// void f(int, int); // #2
242// int f(int, int); // #3
243//
244// When we process #1, there is no previous declaration of "f",
245// so IsOverload will not be used.
246//
247// When we process #2, Old is a FunctionDecl for #1. By comparing the
248// parameter types, we see that #1 and #2 are overloaded (since they
249// have different signatures), so this routine returns false;
250// MatchedDecl is unchanged.
251//
252// When we process #3, Old is an OverloadedFunctionDecl containing #1
253// and #2. We compare the signatures of #3 to #1 (they're overloaded,
254// so we do nothing) and then #3 to #2. Since the signatures of #3 and
255// #2 are identical (return types of functions are not part of the
256// signature), IsOverload returns false and MatchedDecl will be set to
257// point to the FunctionDecl for #2.
258bool
259Sema::IsOverload(FunctionDecl *New, Decl* OldD,
260 OverloadedFunctionDecl::function_iterator& MatchedDecl)
261{
262 if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
263 // Is this new function an overload of every function in the
264 // overload set?
265 OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
266 FuncEnd = Ovl->function_end();
267 for (; Func != FuncEnd; ++Func) {
268 if (!IsOverload(New, *Func, MatchedDecl)) {
269 MatchedDecl = Func;
270 return false;
271 }
272 }
273
274 // This function overloads every function in the overload set.
275 return true;
276 } else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
277 // Is the function New an overload of the function Old?
278 QualType OldQType = Context.getCanonicalType(Old->getType());
279 QualType NewQType = Context.getCanonicalType(New->getType());
280
281 // Compare the signatures (C++ 1.3.10) of the two functions to
282 // determine whether they are overloads. If we find any mismatch
283 // in the signature, they are overloads.
284
285 // If either of these functions is a K&R-style function (no
286 // prototype), then we consider them to have matching signatures.
287 if (isa<FunctionTypeNoProto>(OldQType.getTypePtr()) ||
288 isa<FunctionTypeNoProto>(NewQType.getTypePtr()))
289 return false;
290
291 FunctionTypeProto* OldType = cast<FunctionTypeProto>(OldQType.getTypePtr());
292 FunctionTypeProto* NewType = cast<FunctionTypeProto>(NewQType.getTypePtr());
293
294 // The signature of a function includes the types of its
295 // parameters (C++ 1.3.10), which includes the presence or absence
296 // of the ellipsis; see C++ DR 357).
297 if (OldQType != NewQType &&
298 (OldType->getNumArgs() != NewType->getNumArgs() ||
299 OldType->isVariadic() != NewType->isVariadic() ||
300 !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
301 NewType->arg_type_begin())))
302 return true;
303
304 // If the function is a class member, its signature includes the
305 // cv-qualifiers (if any) on the function itself.
306 //
307 // As part of this, also check whether one of the member functions
308 // is static, in which case they are not overloads (C++
309 // 13.1p2). While not part of the definition of the signature,
310 // this check is important to determine whether these functions
311 // can be overloaded.
312 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
313 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
314 if (OldMethod && NewMethod &&
315 !OldMethod->isStatic() && !NewMethod->isStatic() &&
316 OldQType.getCVRQualifiers() != NewQType.getCVRQualifiers())
317 return true;
318
319 // The signatures match; this is not an overload.
320 return false;
321 } else {
322 // (C++ 13p1):
323 // Only function declarations can be overloaded; object and type
324 // declarations cannot be overloaded.
325 return false;
326 }
327}
328
Douglas Gregor81c29152008-10-29 00:13:59 +0000329/// TryImplicitConversion - Attempt to perform an implicit conversion
330/// from the given expression (Expr) to the given type (ToType). This
331/// function returns an implicit conversion sequence that can be used
332/// to perform the initialization. Given
Douglas Gregord2baafd2008-10-21 16:13:35 +0000333///
334/// void f(float f);
335/// void g(int i) { f(i); }
336///
337/// this routine would produce an implicit conversion sequence to
338/// describe the initialization of f from i, which will be a standard
339/// conversion sequence containing an lvalue-to-rvalue conversion (C++
340/// 4.1) followed by a floating-integral conversion (C++ 4.9).
341//
342/// Note that this routine only determines how the conversion can be
343/// performed; it does not actually perform the conversion. As such,
344/// it will not produce any diagnostics if no conversion is available,
345/// but will instead return an implicit conversion sequence of kind
346/// "BadConversion".
347ImplicitConversionSequence
Douglas Gregor81c29152008-10-29 00:13:59 +0000348Sema::TryImplicitConversion(Expr* From, QualType ToType)
Douglas Gregord2baafd2008-10-21 16:13:35 +0000349{
350 ImplicitConversionSequence ICS;
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000351 if (IsStandardConversion(From, ToType, ICS.Standard))
352 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
Douglas Gregore640ab62008-11-03 17:51:48 +0000353 else if (IsUserDefinedConversion(From, ToType, ICS.UserDefined)) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000354 ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
Douglas Gregore640ab62008-11-03 17:51:48 +0000355 // C++ [over.ics.user]p4:
356 // A conversion of an expression of class type to the same class
357 // type is given Exact Match rank, and a conversion of an
358 // expression of class type to a base class of that type is
359 // given Conversion rank, in spite of the fact that a copy
360 // constructor (i.e., a user-defined conversion function) is
361 // called for those cases.
362 if (CXXConstructorDecl *Constructor
363 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
364 if (Constructor->isCopyConstructor(Context)) {
365 // FIXME: This is a temporary hack to give copy-constructor
366 // calls the appropriate rank (Exact Match or Conversion) by
367 // making them into standard conversions. To really fix this, we
368 // need to tweak the rank-checking logic to deal with ranking
369 // different kinds of user conversions.
370 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
371 ICS.Standard.setAsIdentityConversion();
372 ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
373 ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
374 if (IsDerivedFrom(From->getType().getUnqualifiedType(),
375 ToType.getUnqualifiedType()))
376 ICS.Standard.Second = ICK_Derived_To_Base;
377 }
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000378 }
Douglas Gregore640ab62008-11-03 17:51:48 +0000379 } else
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000380 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000381
382 return ICS;
383}
384
385/// IsStandardConversion - Determines whether there is a standard
386/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
387/// expression From to the type ToType. Standard conversion sequences
388/// only consider non-class types; for conversions that involve class
389/// types, use TryImplicitConversion. If a conversion exists, SCS will
390/// contain the standard conversion sequence required to perform this
391/// conversion and this routine will return true. Otherwise, this
392/// routine will return false and the value of SCS is unspecified.
393bool
394Sema::IsStandardConversion(Expr* From, QualType ToType,
395 StandardConversionSequence &SCS)
396{
Douglas Gregord2baafd2008-10-21 16:13:35 +0000397 QualType FromType = From->getType();
398
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000399 // There are no standard conversions for class types, so abort early.
400 if (FromType->isRecordType() || ToType->isRecordType())
401 return false;
402
403 // Standard conversions (C++ [conv])
404 SCS.Deprecated = false;
405 SCS.FromTypePtr = FromType.getAsOpaquePtr();
Douglas Gregord2baafd2008-10-21 16:13:35 +0000406
407 // The first conversion can be an lvalue-to-rvalue conversion,
408 // array-to-pointer conversion, or function-to-pointer conversion
409 // (C++ 4p1).
410
411 // Lvalue-to-rvalue conversion (C++ 4.1):
412 // An lvalue (3.10) of a non-function, non-array type T can be
413 // converted to an rvalue.
414 Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
415 if (argIsLvalue == Expr::LV_Valid &&
416 !FromType->isFunctionType() && !FromType->isArrayType()) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000417 SCS.First = ICK_Lvalue_To_Rvalue;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000418
419 // If T is a non-class type, the type of the rvalue is the
420 // cv-unqualified version of T. Otherwise, the type of the rvalue
421 // is T (C++ 4.1p1).
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000422 FromType = FromType.getUnqualifiedType();
Douglas Gregord2baafd2008-10-21 16:13:35 +0000423 }
424 // Array-to-pointer conversion (C++ 4.2)
425 else if (FromType->isArrayType()) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000426 SCS.First = ICK_Array_To_Pointer;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000427
428 // An lvalue or rvalue of type "array of N T" or "array of unknown
429 // bound of T" can be converted to an rvalue of type "pointer to
430 // T" (C++ 4.2p1).
431 FromType = Context.getArrayDecayedType(FromType);
432
433 if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
434 // This conversion is deprecated. (C++ D.4).
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000435 SCS.Deprecated = true;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000436
437 // For the purpose of ranking in overload resolution
438 // (13.3.3.1.1), this conversion is considered an
439 // array-to-pointer conversion followed by a qualification
440 // conversion (4.4). (C++ 4.2p2)
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000441 SCS.Second = ICK_Identity;
442 SCS.Third = ICK_Qualification;
443 SCS.ToTypePtr = ToType.getAsOpaquePtr();
444 return true;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000445 }
446 }
447 // Function-to-pointer conversion (C++ 4.3).
448 else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000449 SCS.First = ICK_Function_To_Pointer;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000450
451 // An lvalue of function type T can be converted to an rvalue of
452 // type "pointer to T." The result is a pointer to the
453 // function. (C++ 4.3p1).
454 FromType = Context.getPointerType(FromType);
455
456 // FIXME: Deal with overloaded functions here (C++ 4.3p2).
457 }
458 // We don't require any conversions for the first step.
459 else {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000460 SCS.First = ICK_Identity;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000461 }
462
463 // The second conversion can be an integral promotion, floating
464 // point promotion, integral conversion, floating point conversion,
465 // floating-integral conversion, pointer conversion,
466 // pointer-to-member conversion, or boolean conversion (C++ 4p1).
467 if (Context.getCanonicalType(FromType).getUnqualifiedType() ==
468 Context.getCanonicalType(ToType).getUnqualifiedType()) {
469 // The unqualified versions of the types are the same: there's no
470 // conversion to do.
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000471 SCS.Second = ICK_Identity;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000472 }
473 // Integral promotion (C++ 4.5).
474 else if (IsIntegralPromotion(From, FromType, ToType)) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000475 SCS.Second = ICK_Integral_Promotion;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000476 FromType = ToType.getUnqualifiedType();
477 }
478 // Floating point promotion (C++ 4.6).
479 else if (IsFloatingPointPromotion(FromType, ToType)) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000480 SCS.Second = ICK_Floating_Promotion;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000481 FromType = ToType.getUnqualifiedType();
482 }
483 // Integral conversions (C++ 4.7).
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000484 // FIXME: isIntegralType shouldn't be true for enums in C++.
Douglas Gregord2baafd2008-10-21 16:13:35 +0000485 else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000486 (ToType->isIntegralType() && !ToType->isEnumeralType())) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000487 SCS.Second = ICK_Integral_Conversion;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000488 FromType = ToType.getUnqualifiedType();
489 }
490 // Floating point conversions (C++ 4.8).
491 else if (FromType->isFloatingType() && ToType->isFloatingType()) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000492 SCS.Second = ICK_Floating_Conversion;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000493 FromType = ToType.getUnqualifiedType();
494 }
495 // Floating-integral conversions (C++ 4.9).
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000496 // FIXME: isIntegralType shouldn't be true for enums in C++.
Douglas Gregord2baafd2008-10-21 16:13:35 +0000497 else if ((FromType->isFloatingType() &&
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000498 ToType->isIntegralType() && !ToType->isBooleanType() &&
499 !ToType->isEnumeralType()) ||
Douglas Gregord2baafd2008-10-21 16:13:35 +0000500 ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
501 ToType->isFloatingType())) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000502 SCS.Second = ICK_Floating_Integral;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000503 FromType = ToType.getUnqualifiedType();
504 }
505 // Pointer conversions (C++ 4.10).
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000506 else if (IsPointerConversion(From, FromType, ToType, FromType)) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000507 SCS.Second = ICK_Pointer_Conversion;
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000508 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000509 // FIXME: Pointer to member conversions (4.11).
510 // Boolean conversions (C++ 4.12).
511 // FIXME: pointer-to-member type
512 else if (ToType->isBooleanType() &&
513 (FromType->isArithmeticType() ||
514 FromType->isEnumeralType() ||
515 FromType->isPointerType())) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000516 SCS.Second = ICK_Boolean_Conversion;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000517 FromType = Context.BoolTy;
518 } else {
519 // No second conversion required.
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000520 SCS.Second = ICK_Identity;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000521 }
522
Douglas Gregor81c29152008-10-29 00:13:59 +0000523 QualType CanonFrom;
524 QualType CanonTo;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000525 // The third conversion can be a qualification conversion (C++ 4p1).
Douglas Gregor6573cfd2008-10-21 23:43:52 +0000526 if (IsQualificationConversion(FromType, ToType)) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000527 SCS.Third = ICK_Qualification;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000528 FromType = ToType;
Douglas Gregor81c29152008-10-29 00:13:59 +0000529 CanonFrom = Context.getCanonicalType(FromType);
530 CanonTo = Context.getCanonicalType(ToType);
Douglas Gregord2baafd2008-10-21 16:13:35 +0000531 } else {
532 // No conversion required
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000533 SCS.Third = ICK_Identity;
534
535 // C++ [over.best.ics]p6:
536 // [...] Any difference in top-level cv-qualification is
537 // subsumed by the initialization itself and does not constitute
538 // a conversion. [...]
Douglas Gregor81c29152008-10-29 00:13:59 +0000539
540 // C++ [dcl.init]p14 last bullet:
Douglas Gregor0e343382008-10-29 14:50:44 +0000541 // [ Note: an expression of type "cv1 T" can initialize an object
Douglas Gregor81c29152008-10-29 00:13:59 +0000542 // of type “cv2 T” independently of the cv-qualifiers cv1 and
543 // cv2. -- end note]
544 //
545 // FIXME: Where is the normative text?
546 CanonFrom = Context.getCanonicalType(FromType);
547 CanonTo = Context.getCanonicalType(ToType);
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000548 if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
Douglas Gregor81c29152008-10-29 00:13:59 +0000549 CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
550 FromType = ToType;
551 CanonFrom = CanonTo;
552 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000553 }
554
555 // If we have not converted the argument type to the parameter type,
556 // this is a bad conversion sequence.
Douglas Gregor81c29152008-10-29 00:13:59 +0000557 if (CanonFrom != CanonTo)
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000558 return false;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000559
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000560 SCS.ToTypePtr = FromType.getAsOpaquePtr();
561 return true;
Douglas Gregord2baafd2008-10-21 16:13:35 +0000562}
563
564/// IsIntegralPromotion - Determines whether the conversion from the
565/// expression From (whose potentially-adjusted type is FromType) to
566/// ToType is an integral promotion (C++ 4.5). If so, returns true and
567/// sets PromotedType to the promoted type.
568bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
569{
570 const BuiltinType *To = ToType->getAsBuiltinType();
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000571 if (!To) {
572 return false;
573 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000574
575 // An rvalue of type char, signed char, unsigned char, short int, or
576 // unsigned short int can be converted to an rvalue of type int if
577 // int can represent all the values of the source type; otherwise,
578 // the source rvalue can be converted to an rvalue of type unsigned
579 // int (C++ 4.5p1).
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000580 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000581 if (// We can promote any signed, promotable integer type to an int
582 (FromType->isSignedIntegerType() ||
583 // We can promote any unsigned integer type whose size is
584 // less than int to an int.
585 (!FromType->isSignedIntegerType() &&
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000586 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000587 return To->getKind() == BuiltinType::Int;
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000588 }
589
Douglas Gregord2baafd2008-10-21 16:13:35 +0000590 return To->getKind() == BuiltinType::UInt;
591 }
592
593 // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
594 // can be converted to an rvalue of the first of the following types
595 // that can represent all the values of its underlying type: int,
596 // unsigned int, long, or unsigned long (C++ 4.5p2).
597 if ((FromType->isEnumeralType() || FromType->isWideCharType())
598 && ToType->isIntegerType()) {
599 // Determine whether the type we're converting from is signed or
600 // unsigned.
601 bool FromIsSigned;
602 uint64_t FromSize = Context.getTypeSize(FromType);
603 if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
604 QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
605 FromIsSigned = UnderlyingType->isSignedIntegerType();
606 } else {
607 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
608 FromIsSigned = true;
609 }
610
611 // The types we'll try to promote to, in the appropriate
612 // order. Try each of these types.
613 QualType PromoteTypes[4] = {
614 Context.IntTy, Context.UnsignedIntTy,
615 Context.LongTy, Context.UnsignedLongTy
616 };
617 for (int Idx = 0; Idx < 0; ++Idx) {
618 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
619 if (FromSize < ToSize ||
620 (FromSize == ToSize &&
621 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
622 // We found the type that we can promote to. If this is the
623 // type we wanted, we have a promotion. Otherwise, no
624 // promotion.
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000625 return Context.getCanonicalType(ToType).getUnqualifiedType()
Douglas Gregord2baafd2008-10-21 16:13:35 +0000626 == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
627 }
628 }
629 }
630
631 // An rvalue for an integral bit-field (9.6) can be converted to an
632 // rvalue of type int if int can represent all the values of the
633 // bit-field; otherwise, it can be converted to unsigned int if
634 // unsigned int can represent all the values of the bit-field. If
635 // the bit-field is larger yet, no integral promotion applies to
636 // it. If the bit-field has an enumerated type, it is treated as any
637 // other value of that type for promotion purposes (C++ 4.5p3).
638 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(From)) {
639 using llvm::APSInt;
640 FieldDecl *MemberDecl = MemRef->getMemberDecl();
641 APSInt BitWidth;
642 if (MemberDecl->isBitField() &&
643 FromType->isIntegralType() && !FromType->isEnumeralType() &&
644 From->isIntegerConstantExpr(BitWidth, Context)) {
645 APSInt ToSize(Context.getTypeSize(ToType));
646
647 // Are we promoting to an int from a bitfield that fits in an int?
648 if (BitWidth < ToSize ||
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000649 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000650 return To->getKind() == BuiltinType::Int;
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000651 }
652
Douglas Gregord2baafd2008-10-21 16:13:35 +0000653 // Are we promoting to an unsigned int from an unsigned bitfield
654 // that fits into an unsigned int?
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000655 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000656 return To->getKind() == BuiltinType::UInt;
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000657 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000658
659 return false;
660 }
661 }
662
663 // An rvalue of type bool can be converted to an rvalue of type int,
664 // with false becoming zero and true becoming one (C++ 4.5p4).
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000665 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
Douglas Gregord2baafd2008-10-21 16:13:35 +0000666 return true;
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000667 }
Douglas Gregord2baafd2008-10-21 16:13:35 +0000668
669 return false;
670}
671
672/// IsFloatingPointPromotion - Determines whether the conversion from
673/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
674/// returns true and sets PromotedType to the promoted type.
675bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
676{
677 /// An rvalue of type float can be converted to an rvalue of type
678 /// double. (C++ 4.6p1).
679 if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
680 if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType())
681 if (FromBuiltin->getKind() == BuiltinType::Float &&
682 ToBuiltin->getKind() == BuiltinType::Double)
683 return true;
684
685 return false;
686}
687
688/// IsPointerConversion - Determines whether the conversion of the
689/// expression From, which has the (possibly adjusted) type FromType,
690/// can be converted to the type ToType via a pointer conversion (C++
691/// 4.10). If so, returns true and places the converted type (that
692/// might differ from ToType in its cv-qualifiers at some level) into
693/// ConvertedType.
694bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
695 QualType& ConvertedType)
696{
697 const PointerType* ToTypePtr = ToType->getAsPointerType();
698 if (!ToTypePtr)
699 return false;
700
701 // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
702 if (From->isNullPointerConstant(Context)) {
703 ConvertedType = ToType;
704 return true;
705 }
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000706
Douglas Gregord2baafd2008-10-21 16:13:35 +0000707 // An rvalue of type "pointer to cv T," where T is an object type,
708 // can be converted to an rvalue of type "pointer to cv void" (C++
709 // 4.10p2).
710 if (FromType->isPointerType() &&
711 FromType->getAsPointerType()->getPointeeType()->isObjectType() &&
712 ToTypePtr->getPointeeType()->isVoidType()) {
713 // We need to produce a pointer to cv void, where cv is the same
714 // set of cv-qualifiers as we had on the incoming pointee type.
715 QualType toPointee = ToTypePtr->getPointeeType();
716 unsigned Quals = Context.getCanonicalType(FromType)->getAsPointerType()
717 ->getPointeeType().getCVRQualifiers();
718
719 if (Context.getCanonicalType(ToTypePtr->getPointeeType()).getCVRQualifiers()
720 == Quals) {
721 // ToType is exactly the type we want. Use it.
722 ConvertedType = ToType;
723 } else {
724 // Build a new type with the right qualifiers.
725 ConvertedType
726 = Context.getPointerType(Context.VoidTy.getQualifiedType(Quals));
727 }
728 return true;
729 }
730
Douglas Gregor14046502008-10-23 00:40:37 +0000731 // C++ [conv.ptr]p3:
732 //
733 // An rvalue of type "pointer to cv D," where D is a class type,
734 // can be converted to an rvalue of type "pointer to cv B," where
735 // B is a base class (clause 10) of D. If B is an inaccessible
736 // (clause 11) or ambiguous (10.2) base class of D, a program that
737 // necessitates this conversion is ill-formed. The result of the
738 // conversion is a pointer to the base class sub-object of the
739 // derived class object. The null pointer value is converted to
740 // the null pointer value of the destination type.
741 //
Douglas Gregorbb461502008-10-24 04:54:22 +0000742 // Note that we do not check for ambiguity or inaccessibility
743 // here. That is handled by CheckPointerConversion.
Douglas Gregor14046502008-10-23 00:40:37 +0000744 if (const PointerType *FromPtrType = FromType->getAsPointerType())
745 if (const PointerType *ToPtrType = ToType->getAsPointerType()) {
746 if (FromPtrType->getPointeeType()->isRecordType() &&
747 ToPtrType->getPointeeType()->isRecordType() &&
748 IsDerivedFrom(FromPtrType->getPointeeType(),
749 ToPtrType->getPointeeType())) {
750 // The conversion is okay. Now, we need to produce the type
751 // that results from this conversion, which will have the same
752 // qualifiers as the incoming type.
753 QualType CanonFromPointee
754 = Context.getCanonicalType(FromPtrType->getPointeeType());
755 QualType ToPointee = ToPtrType->getPointeeType();
756 QualType CanonToPointee = Context.getCanonicalType(ToPointee);
757 unsigned Quals = CanonFromPointee.getCVRQualifiers();
758
759 if (CanonToPointee.getCVRQualifiers() == Quals) {
760 // ToType is exactly the type we want. Use it.
761 ConvertedType = ToType;
762 } else {
763 // Build a new type with the right qualifiers.
764 ConvertedType
765 = Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
766 }
767 return true;
768 }
769 }
770
Douglas Gregord2baafd2008-10-21 16:13:35 +0000771 return false;
772}
773
Douglas Gregorbb461502008-10-24 04:54:22 +0000774/// CheckPointerConversion - Check the pointer conversion from the
775/// expression From to the type ToType. This routine checks for
776/// ambiguous (FIXME: or inaccessible) derived-to-base pointer
777/// conversions for which IsPointerConversion has already returned
778/// true. It returns true and produces a diagnostic if there was an
779/// error, or returns false otherwise.
780bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
781 QualType FromType = From->getType();
782
783 if (const PointerType *FromPtrType = FromType->getAsPointerType())
784 if (const PointerType *ToPtrType = ToType->getAsPointerType()) {
Sebastian Redl9ac68aa2008-10-31 14:43:28 +0000785 BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
786 /*DetectVirtual=*/false);
Douglas Gregorbb461502008-10-24 04:54:22 +0000787 QualType FromPointeeType = FromPtrType->getPointeeType(),
788 ToPointeeType = ToPtrType->getPointeeType();
789 if (FromPointeeType->isRecordType() &&
790 ToPointeeType->isRecordType()) {
791 // We must have a derived-to-base conversion. Check an
792 // ambiguous or inaccessible conversion.
Douglas Gregor651d1cc2008-10-24 16:17:19 +0000793 return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
794 From->getExprLoc(),
795 From->getSourceRange());
Douglas Gregorbb461502008-10-24 04:54:22 +0000796 }
797 }
798
799 return false;
800}
801
Douglas Gregor6573cfd2008-10-21 23:43:52 +0000802/// IsQualificationConversion - Determines whether the conversion from
803/// an rvalue of type FromType to ToType is a qualification conversion
804/// (C++ 4.4).
805bool
806Sema::IsQualificationConversion(QualType FromType, QualType ToType)
807{
808 FromType = Context.getCanonicalType(FromType);
809 ToType = Context.getCanonicalType(ToType);
810
811 // If FromType and ToType are the same type, this is not a
812 // qualification conversion.
813 if (FromType == ToType)
814 return false;
815
816 // (C++ 4.4p4):
817 // A conversion can add cv-qualifiers at levels other than the first
818 // in multi-level pointers, subject to the following rules: [...]
819 bool PreviousToQualsIncludeConst = true;
Douglas Gregor6573cfd2008-10-21 23:43:52 +0000820 bool UnwrappedAnyPointer = false;
Douglas Gregorccc0ccc2008-10-22 14:17:15 +0000821 while (UnwrapSimilarPointerTypes(FromType, ToType)) {
Douglas Gregor6573cfd2008-10-21 23:43:52 +0000822 // Within each iteration of the loop, we check the qualifiers to
823 // determine if this still looks like a qualification
824 // conversion. Then, if all is well, we unwrap one more level of
Douglas Gregorabed2172008-10-22 17:49:05 +0000825 // pointers or pointers-to-members and do it all again
Douglas Gregor6573cfd2008-10-21 23:43:52 +0000826 // until there are no more pointers or pointers-to-members left to
827 // unwrap.
Douglas Gregorccc0ccc2008-10-22 14:17:15 +0000828 UnwrappedAnyPointer = true;
Douglas Gregor6573cfd2008-10-21 23:43:52 +0000829
830 // -- for every j > 0, if const is in cv 1,j then const is in cv
831 // 2,j, and similarly for volatile.
Douglas Gregore5db4f72008-10-22 00:38:21 +0000832 if (!ToType.isAtLeastAsQualifiedAs(FromType))
Douglas Gregor6573cfd2008-10-21 23:43:52 +0000833 return false;
Douglas Gregorccc0ccc2008-10-22 14:17:15 +0000834
Douglas Gregor6573cfd2008-10-21 23:43:52 +0000835 // -- if the cv 1,j and cv 2,j are different, then const is in
836 // every cv for 0 < k < j.
837 if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
Douglas Gregorccc0ccc2008-10-22 14:17:15 +0000838 && !PreviousToQualsIncludeConst)
Douglas Gregor6573cfd2008-10-21 23:43:52 +0000839 return false;
Douglas Gregorccc0ccc2008-10-22 14:17:15 +0000840
Douglas Gregor6573cfd2008-10-21 23:43:52 +0000841 // Keep track of whether all prior cv-qualifiers in the "to" type
842 // include const.
843 PreviousToQualsIncludeConst
844 = PreviousToQualsIncludeConst && ToType.isConstQualified();
Douglas Gregorccc0ccc2008-10-22 14:17:15 +0000845 }
Douglas Gregor6573cfd2008-10-21 23:43:52 +0000846
847 // We are left with FromType and ToType being the pointee types
848 // after unwrapping the original FromType and ToType the same number
849 // of types. If we unwrapped any pointers, and if FromType and
850 // ToType have the same unqualified type (since we checked
851 // qualifiers above), then this is a qualification conversion.
852 return UnwrappedAnyPointer &&
853 FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
854}
855
Douglas Gregorb72e9da2008-10-31 16:23:19 +0000856/// IsUserDefinedConversion - Determines whether there is a
857/// user-defined conversion sequence (C++ [over.ics.user]) that
858/// converts expression From to the type ToType. If such a conversion
859/// exists, User will contain the user-defined conversion sequence
860/// that performs such a conversion and this routine will return
861/// true. Otherwise, this routine returns false and User is
862/// unspecified.
863bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
864 UserDefinedConversionSequence& User)
865{
866 OverloadCandidateSet CandidateSet;
867 if (const CXXRecordType *ToRecordType
868 = dyn_cast_or_null<CXXRecordType>(ToType->getAsRecordType())) {
869 // C++ [over.match.ctor]p1:
870 // When objects of class type are direct-initialized (8.5), or
871 // copy-initialized from an expression of the same or a
872 // derived class type (8.5), overload resolution selects the
873 // constructor. [...] For copy-initialization, the candidate
874 // functions are all the converting constructors (12.3.1) of
875 // that class. The argument list is the expression-list within
876 // the parentheses of the initializer.
877 CXXRecordDecl *ToRecordDecl = ToRecordType->getDecl();
878 const OverloadedFunctionDecl *Constructors = ToRecordDecl->getConstructors();
879 for (OverloadedFunctionDecl::function_const_iterator func
880 = Constructors->function_begin();
881 func != Constructors->function_end(); ++func) {
882 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*func);
883 if (Constructor->isConvertingConstructor())
884 // FIXME: Suppress user-defined conversions in here!
885 AddOverloadCandidate(Constructor, &From, 1, CandidateSet);
886 }
887 }
888
889 // FIXME: Implement support for user-defined conversion operators.
890
891 OverloadCandidateSet::iterator Best;
892 switch (BestViableFunction(CandidateSet, Best)) {
893 case OR_Success:
894 // Record the standard conversion we used and the conversion function.
895 // FIXME: Handle user-defined conversion operators.
896 if (CXXConstructorDecl *Constructor
897 = dyn_cast<CXXConstructorDecl>(Best->Function)) {
898 // C++ [over.ics.user]p1:
899 // If the user-defined conversion is specified by a
900 // constructor (12.3.1), the initial standard conversion
901 // sequence converts the source type to the type required by
902 // the argument of the constructor.
903 //
904 // FIXME: What about ellipsis conversions?
905 QualType ThisType = Constructor->getThisType(Context);
906 User.Before = Best->Conversions[0].Standard;
907 User.ConversionFunction = Constructor;
908 User.After.setAsIdentityConversion();
909 User.After.FromTypePtr
910 = ThisType->getAsPointerType()->getPointeeType().getAsOpaquePtr();
911 User.After.ToTypePtr = ToType.getAsOpaquePtr();
912 return true;
913 } else {
914 assert(false &&
915 "Cannot perform user-defined conversion via a conversion operator");
916 return false;
917 }
918
919 case OR_No_Viable_Function:
920 // No conversion here! We're done.
921 return false;
922
923 case OR_Ambiguous:
924 // FIXME: See C++ [over.best.ics]p10 for the handling of
925 // ambiguous conversion sequences.
926 return false;
927 }
928
929 return false;
930}
931
Douglas Gregord2baafd2008-10-21 16:13:35 +0000932/// CompareImplicitConversionSequences - Compare two implicit
933/// conversion sequences to determine whether one is better than the
934/// other or if they are indistinguishable (C++ 13.3.3.2).
935ImplicitConversionSequence::CompareKind
936Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
937 const ImplicitConversionSequence& ICS2)
938{
939 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
940 // conversion sequences (as defined in 13.3.3.1)
941 // -- a standard conversion sequence (13.3.3.1.1) is a better
942 // conversion sequence than a user-defined conversion sequence or
943 // an ellipsis conversion sequence, and
944 // -- a user-defined conversion sequence (13.3.3.1.2) is a better
945 // conversion sequence than an ellipsis conversion sequence
946 // (13.3.3.1.3).
947 //
948 if (ICS1.ConversionKind < ICS2.ConversionKind)
949 return ImplicitConversionSequence::Better;
950 else if (ICS2.ConversionKind < ICS1.ConversionKind)
951 return ImplicitConversionSequence::Worse;
952
953 // Two implicit conversion sequences of the same form are
954 // indistinguishable conversion sequences unless one of the
955 // following rules apply: (C++ 13.3.3.2p3):
956 if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
957 return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
958 else if (ICS1.ConversionKind ==
959 ImplicitConversionSequence::UserDefinedConversion) {
960 // User-defined conversion sequence U1 is a better conversion
961 // sequence than another user-defined conversion sequence U2 if
962 // they contain the same user-defined conversion function or
963 // constructor and if the second standard conversion sequence of
964 // U1 is better than the second standard conversion sequence of
965 // U2 (C++ 13.3.3.2p3).
966 if (ICS1.UserDefined.ConversionFunction ==
967 ICS2.UserDefined.ConversionFunction)
968 return CompareStandardConversionSequences(ICS1.UserDefined.After,
969 ICS2.UserDefined.After);
970 }
971
972 return ImplicitConversionSequence::Indistinguishable;
973}
974
975/// CompareStandardConversionSequences - Compare two standard
976/// conversion sequences to determine whether one is better than the
977/// other or if they are indistinguishable (C++ 13.3.3.2p3).
978ImplicitConversionSequence::CompareKind
979Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
980 const StandardConversionSequence& SCS2)
981{
982 // Standard conversion sequence S1 is a better conversion sequence
983 // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
984
985 // -- S1 is a proper subsequence of S2 (comparing the conversion
986 // sequences in the canonical form defined by 13.3.3.1.1,
987 // excluding any Lvalue Transformation; the identity conversion
988 // sequence is considered to be a subsequence of any
989 // non-identity conversion sequence) or, if not that,
990 if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
991 // Neither is a proper subsequence of the other. Do nothing.
992 ;
993 else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
994 (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
995 (SCS1.Second == ICK_Identity &&
996 SCS1.Third == ICK_Identity))
997 // SCS1 is a proper subsequence of SCS2.
998 return ImplicitConversionSequence::Better;
999 else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1000 (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1001 (SCS2.Second == ICK_Identity &&
1002 SCS2.Third == ICK_Identity))
1003 // SCS2 is a proper subsequence of SCS1.
1004 return ImplicitConversionSequence::Worse;
1005
1006 // -- the rank of S1 is better than the rank of S2 (by the rules
1007 // defined below), or, if not that,
1008 ImplicitConversionRank Rank1 = SCS1.getRank();
1009 ImplicitConversionRank Rank2 = SCS2.getRank();
1010 if (Rank1 < Rank2)
1011 return ImplicitConversionSequence::Better;
1012 else if (Rank2 < Rank1)
1013 return ImplicitConversionSequence::Worse;
Douglas Gregord2baafd2008-10-21 16:13:35 +00001014
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001015 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1016 // are indistinguishable unless one of the following rules
1017 // applies:
1018
1019 // A conversion that is not a conversion of a pointer, or
1020 // pointer to member, to bool is better than another conversion
1021 // that is such a conversion.
1022 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1023 return SCS2.isPointerConversionToBool()
1024 ? ImplicitConversionSequence::Better
1025 : ImplicitConversionSequence::Worse;
1026
Douglas Gregor14046502008-10-23 00:40:37 +00001027 // C++ [over.ics.rank]p4b2:
1028 //
1029 // If class B is derived directly or indirectly from class A,
Douglas Gregor0e343382008-10-29 14:50:44 +00001030 // conversion of B* to A* is better than conversion of B* to
1031 // void*, and conversion of A* to void* is better than conversion
1032 // of B* to void*.
Douglas Gregor14046502008-10-23 00:40:37 +00001033 bool SCS1ConvertsToVoid
1034 = SCS1.isPointerConversionToVoidPointer(Context);
1035 bool SCS2ConvertsToVoid
1036 = SCS2.isPointerConversionToVoidPointer(Context);
Douglas Gregor0e343382008-10-29 14:50:44 +00001037 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1038 // Exactly one of the conversion sequences is a conversion to
1039 // a void pointer; it's the worse conversion.
Douglas Gregor14046502008-10-23 00:40:37 +00001040 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1041 : ImplicitConversionSequence::Worse;
Douglas Gregor0e343382008-10-29 14:50:44 +00001042 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1043 // Neither conversion sequence converts to a void pointer; compare
1044 // their derived-to-base conversions.
Douglas Gregor14046502008-10-23 00:40:37 +00001045 if (ImplicitConversionSequence::CompareKind DerivedCK
1046 = CompareDerivedToBaseConversions(SCS1, SCS2))
1047 return DerivedCK;
Douglas Gregor0e343382008-10-29 14:50:44 +00001048 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1049 // Both conversion sequences are conversions to void
1050 // pointers. Compare the source types to determine if there's an
1051 // inheritance relationship in their sources.
1052 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1053 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1054
1055 // Adjust the types we're converting from via the array-to-pointer
1056 // conversion, if we need to.
1057 if (SCS1.First == ICK_Array_To_Pointer)
1058 FromType1 = Context.getArrayDecayedType(FromType1);
1059 if (SCS2.First == ICK_Array_To_Pointer)
1060 FromType2 = Context.getArrayDecayedType(FromType2);
1061
1062 QualType FromPointee1
1063 = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1064 QualType FromPointee2
1065 = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1066
1067 if (IsDerivedFrom(FromPointee2, FromPointee1))
1068 return ImplicitConversionSequence::Better;
1069 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1070 return ImplicitConversionSequence::Worse;
1071 }
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001072
1073 // Compare based on qualification conversions (C++ 13.3.3.2p3,
1074 // bullet 3).
Douglas Gregor14046502008-10-23 00:40:37 +00001075 if (ImplicitConversionSequence::CompareKind QualCK
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001076 = CompareQualificationConversions(SCS1, SCS2))
Douglas Gregor14046502008-10-23 00:40:37 +00001077 return QualCK;
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001078
Douglas Gregor0e343382008-10-29 14:50:44 +00001079 // C++ [over.ics.rank]p3b4:
1080 // -- S1 and S2 are reference bindings (8.5.3), and the types to
1081 // which the references refer are the same type except for
1082 // top-level cv-qualifiers, and the type to which the reference
1083 // initialized by S2 refers is more cv-qualified than the type
1084 // to which the reference initialized by S1 refers.
1085 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1086 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1087 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1088 T1 = Context.getCanonicalType(T1);
1089 T2 = Context.getCanonicalType(T2);
1090 if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1091 if (T2.isMoreQualifiedThan(T1))
1092 return ImplicitConversionSequence::Better;
1093 else if (T1.isMoreQualifiedThan(T2))
1094 return ImplicitConversionSequence::Worse;
1095 }
1096 }
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001097
1098 return ImplicitConversionSequence::Indistinguishable;
1099}
1100
1101/// CompareQualificationConversions - Compares two standard conversion
1102/// sequences to determine whether they can be ranked based on their
1103/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1104ImplicitConversionSequence::CompareKind
1105Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1106 const StandardConversionSequence& SCS2)
1107{
Douglas Gregor4459bbe2008-10-22 15:04:37 +00001108 // C++ 13.3.3.2p3:
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001109 // -- S1 and S2 differ only in their qualification conversion and
1110 // yield similar types T1 and T2 (C++ 4.4), respectively, and the
1111 // cv-qualification signature of type T1 is a proper subset of
1112 // the cv-qualification signature of type T2, and S1 is not the
1113 // deprecated string literal array-to-pointer conversion (4.2).
1114 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1115 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1116 return ImplicitConversionSequence::Indistinguishable;
1117
1118 // FIXME: the example in the standard doesn't use a qualification
1119 // conversion (!)
1120 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1121 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1122 T1 = Context.getCanonicalType(T1);
1123 T2 = Context.getCanonicalType(T2);
1124
1125 // If the types are the same, we won't learn anything by unwrapped
1126 // them.
1127 if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1128 return ImplicitConversionSequence::Indistinguishable;
1129
1130 ImplicitConversionSequence::CompareKind Result
1131 = ImplicitConversionSequence::Indistinguishable;
1132 while (UnwrapSimilarPointerTypes(T1, T2)) {
1133 // Within each iteration of the loop, we check the qualifiers to
1134 // determine if this still looks like a qualification
1135 // conversion. Then, if all is well, we unwrap one more level of
Douglas Gregorabed2172008-10-22 17:49:05 +00001136 // pointers or pointers-to-members and do it all again
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001137 // until there are no more pointers or pointers-to-members left
1138 // to unwrap. This essentially mimics what
1139 // IsQualificationConversion does, but here we're checking for a
1140 // strict subset of qualifiers.
1141 if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1142 // The qualifiers are the same, so this doesn't tell us anything
1143 // about how the sequences rank.
1144 ;
1145 else if (T2.isMoreQualifiedThan(T1)) {
1146 // T1 has fewer qualifiers, so it could be the better sequence.
1147 if (Result == ImplicitConversionSequence::Worse)
1148 // Neither has qualifiers that are a subset of the other's
1149 // qualifiers.
1150 return ImplicitConversionSequence::Indistinguishable;
1151
1152 Result = ImplicitConversionSequence::Better;
1153 } else if (T1.isMoreQualifiedThan(T2)) {
1154 // T2 has fewer qualifiers, so it could be the better sequence.
1155 if (Result == ImplicitConversionSequence::Better)
1156 // Neither has qualifiers that are a subset of the other's
1157 // qualifiers.
1158 return ImplicitConversionSequence::Indistinguishable;
1159
1160 Result = ImplicitConversionSequence::Worse;
1161 } else {
1162 // Qualifiers are disjoint.
1163 return ImplicitConversionSequence::Indistinguishable;
1164 }
1165
1166 // If the types after this point are equivalent, we're done.
1167 if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1168 break;
Douglas Gregord2baafd2008-10-21 16:13:35 +00001169 }
1170
Douglas Gregorccc0ccc2008-10-22 14:17:15 +00001171 // Check that the winning standard conversion sequence isn't using
1172 // the deprecated string literal array to pointer conversion.
1173 switch (Result) {
1174 case ImplicitConversionSequence::Better:
1175 if (SCS1.Deprecated)
1176 Result = ImplicitConversionSequence::Indistinguishable;
1177 break;
1178
1179 case ImplicitConversionSequence::Indistinguishable:
1180 break;
1181
1182 case ImplicitConversionSequence::Worse:
1183 if (SCS2.Deprecated)
1184 Result = ImplicitConversionSequence::Indistinguishable;
1185 break;
1186 }
1187
1188 return Result;
Douglas Gregord2baafd2008-10-21 16:13:35 +00001189}
1190
Douglas Gregor14046502008-10-23 00:40:37 +00001191/// CompareDerivedToBaseConversions - Compares two standard conversion
1192/// sequences to determine whether they can be ranked based on their
1193/// various kinds of derived-to-base conversions (C++ [over.ics.rank]p4b3).
1194ImplicitConversionSequence::CompareKind
1195Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1196 const StandardConversionSequence& SCS2) {
1197 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1198 QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1199 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1200 QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1201
1202 // Adjust the types we're converting from via the array-to-pointer
1203 // conversion, if we need to.
1204 if (SCS1.First == ICK_Array_To_Pointer)
1205 FromType1 = Context.getArrayDecayedType(FromType1);
1206 if (SCS2.First == ICK_Array_To_Pointer)
1207 FromType2 = Context.getArrayDecayedType(FromType2);
1208
1209 // Canonicalize all of the types.
1210 FromType1 = Context.getCanonicalType(FromType1);
1211 ToType1 = Context.getCanonicalType(ToType1);
1212 FromType2 = Context.getCanonicalType(FromType2);
1213 ToType2 = Context.getCanonicalType(ToType2);
1214
Douglas Gregor0e343382008-10-29 14:50:44 +00001215 // C++ [over.ics.rank]p4b3:
Douglas Gregor14046502008-10-23 00:40:37 +00001216 //
1217 // If class B is derived directly or indirectly from class A and
1218 // class C is derived directly or indirectly from B,
Douglas Gregor0e343382008-10-29 14:50:44 +00001219
1220 // Compare based on pointer conversions.
Douglas Gregor14046502008-10-23 00:40:37 +00001221 if (SCS1.Second == ICK_Pointer_Conversion &&
1222 SCS2.Second == ICK_Pointer_Conversion) {
Douglas Gregor14046502008-10-23 00:40:37 +00001223 QualType FromPointee1
1224 = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1225 QualType ToPointee1
1226 = ToType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1227 QualType FromPointee2
1228 = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1229 QualType ToPointee2
1230 = ToType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
Douglas Gregor0e343382008-10-29 14:50:44 +00001231 // -- conversion of C* to B* is better than conversion of C* to A*,
Douglas Gregor14046502008-10-23 00:40:37 +00001232 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1233 if (IsDerivedFrom(ToPointee1, ToPointee2))
1234 return ImplicitConversionSequence::Better;
1235 else if (IsDerivedFrom(ToPointee2, ToPointee1))
1236 return ImplicitConversionSequence::Worse;
1237 }
Douglas Gregor0e343382008-10-29 14:50:44 +00001238
1239 // -- conversion of B* to A* is better than conversion of C* to A*,
1240 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1241 if (IsDerivedFrom(FromPointee2, FromPointee1))
1242 return ImplicitConversionSequence::Better;
1243 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1244 return ImplicitConversionSequence::Worse;
1245 }
Douglas Gregor14046502008-10-23 00:40:37 +00001246 }
1247
Douglas Gregor0e343382008-10-29 14:50:44 +00001248 // Compare based on reference bindings.
1249 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1250 SCS1.Second == ICK_Derived_To_Base) {
1251 // -- binding of an expression of type C to a reference of type
1252 // B& is better than binding an expression of type C to a
1253 // reference of type A&,
1254 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1255 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1256 if (IsDerivedFrom(ToType1, ToType2))
1257 return ImplicitConversionSequence::Better;
1258 else if (IsDerivedFrom(ToType2, ToType1))
1259 return ImplicitConversionSequence::Worse;
1260 }
1261
1262 // -- binding of an expression of type B to a reference of type
1263 // A& is better than binding an expression of type C to a
1264 // reference of type A&,
1265 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1266 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1267 if (IsDerivedFrom(FromType2, FromType1))
1268 return ImplicitConversionSequence::Better;
1269 else if (IsDerivedFrom(FromType1, FromType2))
1270 return ImplicitConversionSequence::Worse;
1271 }
1272 }
1273
1274
1275 // FIXME: conversion of A::* to B::* is better than conversion of
1276 // A::* to C::*,
1277
1278 // FIXME: conversion of B::* to C::* is better than conversion of
1279 // A::* to C::*, and
1280
1281 // FIXME: conversion of C to B is better than conversion of C to A,
1282
1283 // FIXME: conversion of B to A is better than conversion of C to A.
1284
Douglas Gregor14046502008-10-23 00:40:37 +00001285 return ImplicitConversionSequence::Indistinguishable;
1286}
1287
Douglas Gregor81c29152008-10-29 00:13:59 +00001288/// TryCopyInitialization - Try to copy-initialize a value of type
1289/// ToType from the expression From. Return the implicit conversion
1290/// sequence required to pass this argument, which may be a bad
1291/// conversion sequence (meaning that the argument cannot be passed to
1292/// a parameter of this type). This is user for argument passing,
1293ImplicitConversionSequence
1294Sema::TryCopyInitialization(Expr *From, QualType ToType) {
1295 if (!getLangOptions().CPlusPlus) {
Douglas Gregorb72e9da2008-10-31 16:23:19 +00001296 // In C, copy initialization is the same as performing an assignment.
Douglas Gregor81c29152008-10-29 00:13:59 +00001297 AssignConvertType ConvTy =
1298 CheckSingleAssignmentConstraints(ToType, From);
1299 ImplicitConversionSequence ICS;
1300 if (getLangOptions().NoExtensions? ConvTy != Compatible
1301 : ConvTy == Incompatible)
1302 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1303 else
1304 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1305 return ICS;
1306 } else if (ToType->isReferenceType()) {
1307 ImplicitConversionSequence ICS;
Douglas Gregor2aecd1f2008-10-29 02:00:59 +00001308 CheckReferenceInit(From, ToType, &ICS);
Douglas Gregor81c29152008-10-29 00:13:59 +00001309 return ICS;
1310 } else {
1311 return TryImplicitConversion(From, ToType);
1312 }
1313}
1314
1315/// PerformArgumentPassing - Pass the argument Arg into a parameter of
1316/// type ToType. Returns true (and emits a diagnostic) if there was
1317/// an error, returns false if the initialization succeeded.
1318bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
1319 const char* Flavor) {
1320 if (!getLangOptions().CPlusPlus) {
1321 // In C, argument passing is the same as performing an assignment.
1322 QualType FromType = From->getType();
1323 AssignConvertType ConvTy =
1324 CheckSingleAssignmentConstraints(ToType, From);
1325
1326 return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
1327 FromType, From, Flavor);
1328 } else if (ToType->isReferenceType()) {
1329 return CheckReferenceInit(From, ToType);
1330 } else {
1331 if (PerformImplicitConversion(From, ToType))
1332 return Diag(From->getSourceRange().getBegin(),
1333 diag::err_typecheck_convert_incompatible,
1334 ToType.getAsString(), From->getType().getAsString(),
1335 Flavor,
1336 From->getSourceRange());
1337 else
1338 return false;
1339 }
1340}
1341
Douglas Gregord2baafd2008-10-21 16:13:35 +00001342/// AddOverloadCandidate - Adds the given function to the set of
1343/// candidate functions, using the given function call arguments.
1344void
1345Sema::AddOverloadCandidate(FunctionDecl *Function,
1346 Expr **Args, unsigned NumArgs,
1347 OverloadCandidateSet& CandidateSet)
1348{
1349 const FunctionTypeProto* Proto
1350 = dyn_cast<FunctionTypeProto>(Function->getType()->getAsFunctionType());
1351 assert(Proto && "Functions without a prototype cannot be overloaded");
1352
1353 // Add this candidate
1354 CandidateSet.push_back(OverloadCandidate());
1355 OverloadCandidate& Candidate = CandidateSet.back();
1356 Candidate.Function = Function;
1357
1358 unsigned NumArgsInProto = Proto->getNumArgs();
1359
1360 // (C++ 13.3.2p2): A candidate function having fewer than m
1361 // parameters is viable only if it has an ellipsis in its parameter
1362 // list (8.3.5).
1363 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
1364 Candidate.Viable = false;
1365 return;
1366 }
1367
1368 // (C++ 13.3.2p2): A candidate function having more than m parameters
1369 // is viable only if the (m+1)st parameter has a default argument
1370 // (8.3.6). For the purposes of overload resolution, the
1371 // parameter list is truncated on the right, so that there are
1372 // exactly m parameters.
1373 unsigned MinRequiredArgs = Function->getMinRequiredArguments();
1374 if (NumArgs < MinRequiredArgs) {
1375 // Not enough arguments.
1376 Candidate.Viable = false;
1377 return;
1378 }
1379
1380 // Determine the implicit conversion sequences for each of the
1381 // arguments.
1382 Candidate.Viable = true;
1383 Candidate.Conversions.resize(NumArgs);
1384 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1385 if (ArgIdx < NumArgsInProto) {
1386 // (C++ 13.3.2p3): for F to be a viable function, there shall
1387 // exist for each argument an implicit conversion sequence
1388 // (13.3.3.1) that converts that argument to the corresponding
1389 // parameter of F.
1390 QualType ParamType = Proto->getArgType(ArgIdx);
1391 Candidate.Conversions[ArgIdx]
1392 = TryCopyInitialization(Args[ArgIdx], ParamType);
1393 if (Candidate.Conversions[ArgIdx].ConversionKind
1394 == ImplicitConversionSequence::BadConversion)
1395 Candidate.Viable = false;
1396 } else {
1397 // (C++ 13.3.2p2): For the purposes of overload resolution, any
1398 // argument for which there is no corresponding parameter is
1399 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
1400 Candidate.Conversions[ArgIdx].ConversionKind
1401 = ImplicitConversionSequence::EllipsisConversion;
1402 }
1403 }
1404}
1405
1406/// AddOverloadCandidates - Add all of the function overloads in Ovl
1407/// to the candidate set.
1408void
1409Sema::AddOverloadCandidates(OverloadedFunctionDecl *Ovl,
1410 Expr **Args, unsigned NumArgs,
1411 OverloadCandidateSet& CandidateSet)
1412{
1413 for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin();
1414 Func != Ovl->function_end(); ++Func)
1415 AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet);
1416}
1417
1418/// isBetterOverloadCandidate - Determines whether the first overload
1419/// candidate is a better candidate than the second (C++ 13.3.3p1).
1420bool
1421Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
1422 const OverloadCandidate& Cand2)
1423{
1424 // Define viable functions to be better candidates than non-viable
1425 // functions.
1426 if (!Cand2.Viable)
1427 return Cand1.Viable;
1428 else if (!Cand1.Viable)
1429 return false;
1430
1431 // FIXME: Deal with the implicit object parameter for static member
1432 // functions. (C++ 13.3.3p1).
1433
1434 // (C++ 13.3.3p1): a viable function F1 is defined to be a better
1435 // function than another viable function F2 if for all arguments i,
1436 // ICSi(F1) is not a worse conversion sequence than ICSi(F2), and
1437 // then...
1438 unsigned NumArgs = Cand1.Conversions.size();
1439 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
1440 bool HasBetterConversion = false;
1441 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1442 switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
1443 Cand2.Conversions[ArgIdx])) {
1444 case ImplicitConversionSequence::Better:
1445 // Cand1 has a better conversion sequence.
1446 HasBetterConversion = true;
1447 break;
1448
1449 case ImplicitConversionSequence::Worse:
1450 // Cand1 can't be better than Cand2.
1451 return false;
1452
1453 case ImplicitConversionSequence::Indistinguishable:
1454 // Do nothing.
1455 break;
1456 }
1457 }
1458
1459 if (HasBetterConversion)
1460 return true;
1461
1462 // FIXME: Several other bullets in (C++ 13.3.3p1) need to be implemented.
1463
1464 return false;
1465}
1466
1467/// BestViableFunction - Computes the best viable function (C++ 13.3.3)
1468/// within an overload candidate set. If overloading is successful,
1469/// the result will be OR_Success and Best will be set to point to the
1470/// best viable function within the candidate set. Otherwise, one of
1471/// several kinds of errors will be returned; see
1472/// Sema::OverloadingResult.
1473Sema::OverloadingResult
1474Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
1475 OverloadCandidateSet::iterator& Best)
1476{
1477 // Find the best viable function.
1478 Best = CandidateSet.end();
1479 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
1480 Cand != CandidateSet.end(); ++Cand) {
1481 if (Cand->Viable) {
1482 if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
1483 Best = Cand;
1484 }
1485 }
1486
1487 // If we didn't find any viable functions, abort.
1488 if (Best == CandidateSet.end())
1489 return OR_No_Viable_Function;
1490
1491 // Make sure that this function is better than every other viable
1492 // function. If not, we have an ambiguity.
1493 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
1494 Cand != CandidateSet.end(); ++Cand) {
1495 if (Cand->Viable &&
1496 Cand != Best &&
1497 !isBetterOverloadCandidate(*Best, *Cand))
1498 return OR_Ambiguous;
1499 }
1500
1501 // Best is the best viable function.
1502 return OR_Success;
1503}
1504
1505/// PrintOverloadCandidates - When overload resolution fails, prints
1506/// diagnostic messages containing the candidates in the candidate
1507/// set. If OnlyViable is true, only viable candidates will be printed.
1508void
1509Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
1510 bool OnlyViable)
1511{
1512 OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
1513 LastCand = CandidateSet.end();
1514 for (; Cand != LastCand; ++Cand) {
1515 if (Cand->Viable ||!OnlyViable)
1516 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
1517 }
1518}
1519
1520} // end namespace clang