blob: cbf92f969c9072a99bc6caa081a83610406b7cc4 [file] [log] [blame]
Chris Lattner4b009652007-07-25 00:24:17 +00001//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "clang/AST/AST.h"
Anders Carlsson49865302007-08-20 18:05:56 +000017#include "clang/Lex/IdentifierTable.h"
Chris Lattner4b009652007-07-25 00:24:17 +000018#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/Support/MathExtras.h"
23using namespace clang;
24using namespace CodeGen;
25
26//===--------------------------------------------------------------------===//
27// Miscellaneous Helper Methods
28//===--------------------------------------------------------------------===//
29
30/// CreateTempAlloca - This creates a alloca and inserts it into the entry
31/// block.
32llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(const llvm::Type *Ty,
33 const char *Name) {
34 return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
35}
36
37/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
38/// expression and compare the result against zero, returning an Int1Ty value.
39llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
Chris Lattner2af72ac2007-08-08 17:43:05 +000040 return ConvertScalarValueToBool(EmitExpr(E), E->getType());
Chris Lattner4b009652007-07-25 00:24:17 +000041}
42
Chris Lattner4b009652007-07-25 00:24:17 +000043//===--------------------------------------------------------------------===//
44// Conversions
45//===--------------------------------------------------------------------===//
46
47/// EmitConversion - Convert the value specied by Val, whose type is ValTy, to
48/// the type specified by DstTy, following the rules of C99 6.3.
49RValue CodeGenFunction::EmitConversion(RValue Val, QualType ValTy,
50 QualType DstTy) {
51 ValTy = ValTy.getCanonicalType();
52 DstTy = DstTy.getCanonicalType();
53 if (ValTy == DstTy) return Val;
54
55 // Handle conversions to bool first, they are special: comparisons against 0.
56 if (const BuiltinType *DestBT = dyn_cast<BuiltinType>(DstTy))
57 if (DestBT->getKind() == BuiltinType::Bool)
58 return RValue::get(ConvertScalarValueToBool(Val, ValTy));
59
60 // Handle pointer conversions next: pointers can only be converted to/from
61 // other pointers and integers.
62 if (isa<PointerType>(DstTy)) {
63 const llvm::Type *DestTy = ConvertType(DstTy);
64
Chris Lattner2a420172007-08-10 16:33:59 +000065 if (Val.getVal()->getType() == DestTy)
66 return Val;
67
Chris Lattner4b009652007-07-25 00:24:17 +000068 // The source value may be an integer, or a pointer.
69 assert(Val.isScalar() && "Can only convert from integer or pointer");
70 if (isa<llvm::PointerType>(Val.getVal()->getType()))
71 return RValue::get(Builder.CreateBitCast(Val.getVal(), DestTy, "conv"));
72 assert(ValTy->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
73 return RValue::get(Builder.CreateIntToPtr(Val.getVal(), DestTy, "conv"));
74 }
75
76 if (isa<PointerType>(ValTy)) {
77 // Must be an ptr to int cast.
78 const llvm::Type *DestTy = ConvertType(DstTy);
79 assert(isa<llvm::IntegerType>(DestTy) && "not ptr->int?");
80 return RValue::get(Builder.CreateIntToPtr(Val.getVal(), DestTy, "conv"));
81 }
82
83 // Finally, we have the arithmetic types: real int/float and complex
84 // int/float. Handle real->real conversions first, they are the most
85 // common.
86 if (Val.isScalar() && DstTy->isRealType()) {
87 // We know that these are representable as scalars in LLVM, convert to LLVM
88 // types since they are easier to reason about.
89 llvm::Value *SrcVal = Val.getVal();
90 const llvm::Type *DestTy = ConvertType(DstTy);
91 if (SrcVal->getType() == DestTy) return Val;
92
93 llvm::Value *Result;
94 if (isa<llvm::IntegerType>(SrcVal->getType())) {
95 bool InputSigned = ValTy->isSignedIntegerType();
96 if (isa<llvm::IntegerType>(DestTy))
97 Result = Builder.CreateIntCast(SrcVal, DestTy, InputSigned, "conv");
98 else if (InputSigned)
99 Result = Builder.CreateSIToFP(SrcVal, DestTy, "conv");
100 else
101 Result = Builder.CreateUIToFP(SrcVal, DestTy, "conv");
102 } else {
103 assert(SrcVal->getType()->isFloatingPoint() && "Unknown real conversion");
104 if (isa<llvm::IntegerType>(DestTy)) {
105 if (DstTy->isSignedIntegerType())
106 Result = Builder.CreateFPToSI(SrcVal, DestTy, "conv");
107 else
108 Result = Builder.CreateFPToUI(SrcVal, DestTy, "conv");
109 } else {
110 assert(DestTy->isFloatingPoint() && "Unknown real conversion");
111 if (DestTy->getTypeID() < SrcVal->getType()->getTypeID())
112 Result = Builder.CreateFPTrunc(SrcVal, DestTy, "conv");
113 else
114 Result = Builder.CreateFPExt(SrcVal, DestTy, "conv");
115 }
116 }
117 return RValue::get(Result);
118 }
119
120 assert(0 && "FIXME: We don't support complex conversions yet!");
121}
122
123
124/// ConvertScalarValueToBool - Convert the specified expression value to a
125/// boolean (i1) truth value. This is equivalent to "Val == 0".
126llvm::Value *CodeGenFunction::ConvertScalarValueToBool(RValue Val, QualType Ty){
127 Ty = Ty.getCanonicalType();
128 llvm::Value *Result;
129 if (const BuiltinType *BT = dyn_cast<BuiltinType>(Ty)) {
130 switch (BT->getKind()) {
131 default: assert(0 && "Unknown scalar value");
132 case BuiltinType::Bool:
133 Result = Val.getVal();
134 // Bool is already evaluated right.
135 assert(Result->getType() == llvm::Type::Int1Ty &&
136 "Unexpected bool value type!");
137 return Result;
138 case BuiltinType::Char_S:
139 case BuiltinType::Char_U:
140 case BuiltinType::SChar:
141 case BuiltinType::UChar:
142 case BuiltinType::Short:
143 case BuiltinType::UShort:
144 case BuiltinType::Int:
145 case BuiltinType::UInt:
146 case BuiltinType::Long:
147 case BuiltinType::ULong:
148 case BuiltinType::LongLong:
149 case BuiltinType::ULongLong:
150 // Code below handles simple integers.
151 break;
152 case BuiltinType::Float:
153 case BuiltinType::Double:
154 case BuiltinType::LongDouble: {
155 // Compare against 0.0 for fp scalars.
156 Result = Val.getVal();
157 llvm::Value *Zero = llvm::Constant::getNullValue(Result->getType());
158 // FIXME: llvm-gcc produces a une comparison: validate this is right.
159 Result = Builder.CreateFCmpUNE(Result, Zero, "tobool");
160 return Result;
161 }
162 }
163 } else if (isa<PointerType>(Ty) ||
164 cast<TagType>(Ty)->getDecl()->getKind() == Decl::Enum) {
165 // Code below handles this fine.
166 } else {
167 assert(isa<ComplexType>(Ty) && "Unknwon type!");
168 assert(0 && "FIXME: comparisons against complex not implemented yet");
169 }
170
171 // Usual case for integers, pointers, and enums: compare against zero.
172 Result = Val.getVal();
173
174 // Because of the type rules of C, we often end up computing a logical value,
175 // then zero extending it to int, then wanting it as a logical value again.
176 // Optimize this common case.
177 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Result)) {
178 if (ZI->getOperand(0)->getType() == llvm::Type::Int1Ty) {
179 Result = ZI->getOperand(0);
180 ZI->eraseFromParent();
181 return Result;
182 }
183 }
184
185 llvm::Value *Zero = llvm::Constant::getNullValue(Result->getType());
186 return Builder.CreateICmpNE(Result, Zero, "tobool");
187}
188
189//===----------------------------------------------------------------------===//
190// LValue Expression Emission
191//===----------------------------------------------------------------------===//
192
193/// EmitLValue - Emit code to compute a designator that specifies the location
194/// of the expression.
195///
196/// This can return one of two things: a simple address or a bitfield
197/// reference. In either case, the LLVM Value* in the LValue structure is
198/// guaranteed to be an LLVM pointer type.
199///
200/// If this returns a bitfield reference, nothing about the pointee type of
201/// the LLVM value is known: For example, it may not be a pointer to an
202/// integer.
203///
204/// If this returns a normal address, and if the lvalue's C type is fixed
205/// size, this method guarantees that the returned pointer type will point to
206/// an LLVM type of the same size of the lvalue's type. If the lvalue has a
207/// variable length type, this is not possible.
208///
209LValue CodeGenFunction::EmitLValue(const Expr *E) {
210 switch (E->getStmtClass()) {
211 default:
212 fprintf(stderr, "Unimplemented lvalue expr!\n");
213 E->dump();
214 return LValue::MakeAddr(llvm::UndefValue::get(
215 llvm::PointerType::get(llvm::Type::Int32Ty)));
216
217 case Expr::DeclRefExprClass: return EmitDeclRefLValue(cast<DeclRefExpr>(E));
218 case Expr::ParenExprClass:return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
219 case Expr::PreDefinedExprClass:
220 return EmitPreDefinedLValue(cast<PreDefinedExpr>(E));
221 case Expr::StringLiteralClass:
222 return EmitStringLiteralLValue(cast<StringLiteral>(E));
223
224 case Expr::UnaryOperatorClass:
225 return EmitUnaryOpLValue(cast<UnaryOperator>(E));
226 case Expr::ArraySubscriptExprClass:
227 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
Chris Lattnera0d03a72007-08-03 17:31:20 +0000228 case Expr::OCUVectorElementExprClass:
229 return EmitOCUVectorElementExpr(cast<OCUVectorElementExpr>(E));
Chris Lattner4b009652007-07-25 00:24:17 +0000230 }
231}
232
233/// EmitLoadOfLValue - Given an expression that represents a value lvalue,
234/// this method emits the address of the lvalue, then loads the result as an
235/// rvalue, returning the rvalue.
236RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, QualType ExprType) {
Chris Lattner4b009652007-07-25 00:24:17 +0000237 if (LV.isSimple()) {
238 llvm::Value *Ptr = LV.getAddress();
239 const llvm::Type *EltTy =
240 cast<llvm::PointerType>(Ptr->getType())->getElementType();
241
242 // Simple scalar l-value.
243 if (EltTy->isFirstClassType())
244 return RValue::get(Builder.CreateLoad(Ptr, "tmp"));
245
Chris Lattnerbdb8ffb2007-08-11 00:04:45 +0000246 assert(ExprType->isFunctionType() && "Unknown scalar value");
247 return RValue::get(Ptr);
Chris Lattner4b009652007-07-25 00:24:17 +0000248 }
249
250 if (LV.isVectorElt()) {
251 llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(), "tmp");
252 return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(),
253 "vecext"));
254 }
Chris Lattnera735fac2007-08-03 00:16:29 +0000255
256 // If this is a reference to a subset of the elements of a vector, either
257 // shuffle the input or extract/insert them as appropriate.
Chris Lattnera0d03a72007-08-03 17:31:20 +0000258 if (LV.isOCUVectorElt())
259 return EmitLoadOfOCUElementLValue(LV, ExprType);
Chris Lattner4b009652007-07-25 00:24:17 +0000260
261 assert(0 && "Bitfield ref not impl!");
262}
263
Chris Lattner944f7962007-08-03 16:18:34 +0000264// If this is a reference to a subset of the elements of a vector, either
265// shuffle the input or extract/insert them as appropriate.
Chris Lattnera0d03a72007-08-03 17:31:20 +0000266RValue CodeGenFunction::EmitLoadOfOCUElementLValue(LValue LV,
Chris Lattner4b492962007-08-10 17:10:08 +0000267 QualType ExprType) {
Chris Lattner944f7962007-08-03 16:18:34 +0000268 llvm::Value *Vec = Builder.CreateLoad(LV.getOCUVectorAddr(), "tmp");
269
Chris Lattnera0d03a72007-08-03 17:31:20 +0000270 unsigned EncFields = LV.getOCUVectorElts();
Chris Lattner944f7962007-08-03 16:18:34 +0000271
272 // If the result of the expression is a non-vector type, we must be
273 // extracting a single element. Just codegen as an extractelement.
Chris Lattner4b492962007-08-10 17:10:08 +0000274 const VectorType *ExprVT = ExprType->getAsVectorType();
275 if (!ExprVT) {
Chris Lattnera0d03a72007-08-03 17:31:20 +0000276 unsigned InIdx = OCUVectorElementExpr::getAccessedFieldNo(0, EncFields);
Chris Lattner944f7962007-08-03 16:18:34 +0000277 llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx);
278 return RValue::get(Builder.CreateExtractElement(Vec, Elt, "tmp"));
279 }
280
281 // If the source and destination have the same number of elements, use a
282 // vector shuffle instead of insert/extracts.
Chris Lattner4b492962007-08-10 17:10:08 +0000283 unsigned NumResultElts = ExprVT->getNumElements();
Chris Lattner944f7962007-08-03 16:18:34 +0000284 unsigned NumSourceElts =
285 cast<llvm::VectorType>(Vec->getType())->getNumElements();
286
287 if (NumResultElts == NumSourceElts) {
288 llvm::SmallVector<llvm::Constant*, 4> Mask;
289 for (unsigned i = 0; i != NumResultElts; ++i) {
Chris Lattnera0d03a72007-08-03 17:31:20 +0000290 unsigned InIdx = OCUVectorElementExpr::getAccessedFieldNo(i, EncFields);
Chris Lattner944f7962007-08-03 16:18:34 +0000291 Mask.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx));
292 }
293
294 llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size());
295 Vec = Builder.CreateShuffleVector(Vec,
296 llvm::UndefValue::get(Vec->getType()),
297 MaskV, "tmp");
298 return RValue::get(Vec);
299 }
300
301 // Start out with an undef of the result type.
302 llvm::Value *Result = llvm::UndefValue::get(ConvertType(ExprType));
303
304 // Extract/Insert each element of the result.
305 for (unsigned i = 0; i != NumResultElts; ++i) {
Chris Lattnera0d03a72007-08-03 17:31:20 +0000306 unsigned InIdx = OCUVectorElementExpr::getAccessedFieldNo(i, EncFields);
Chris Lattner944f7962007-08-03 16:18:34 +0000307 llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx);
308 Elt = Builder.CreateExtractElement(Vec, Elt, "tmp");
309
310 llvm::Value *OutIdx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
311 Result = Builder.CreateInsertElement(Result, Elt, OutIdx, "tmp");
312 }
313
314 return RValue::get(Result);
315}
316
317
Chris Lattner4b009652007-07-25 00:24:17 +0000318RValue CodeGenFunction::EmitLoadOfLValue(const Expr *E) {
319 return EmitLoadOfLValue(EmitLValue(E), E->getType());
320}
321
322
323/// EmitStoreThroughLValue - Store the specified rvalue into the specified
324/// lvalue, where both are guaranteed to the have the same type, and that type
325/// is 'Ty'.
326void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
327 QualType Ty) {
Chris Lattner5bfdd232007-08-03 16:28:33 +0000328 if (!Dst.isSimple()) {
329 if (Dst.isVectorElt()) {
330 // Read/modify/write the vector, inserting the new element.
331 // FIXME: Volatility.
332 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(), "tmp");
333 Vec = Builder.CreateInsertElement(Vec, Src.getVal(),
334 Dst.getVectorIdx(), "vecins");
335 Builder.CreateStore(Vec, Dst.getVectorAddr());
336 return;
337 }
Chris Lattner4b009652007-07-25 00:24:17 +0000338
Chris Lattner5bfdd232007-08-03 16:28:33 +0000339 // If this is an update of elements of a vector, insert them as appropriate.
Chris Lattnera0d03a72007-08-03 17:31:20 +0000340 if (Dst.isOCUVectorElt())
Chris Lattner5bfdd232007-08-03 16:28:33 +0000341 return EmitStoreThroughOCUComponentLValue(Src, Dst, Ty);
342
343 assert(0 && "FIXME: Don't support store to bitfield yet");
344 }
Chris Lattner4b009652007-07-25 00:24:17 +0000345
346 llvm::Value *DstAddr = Dst.getAddress();
Chris Lattnerbdb8ffb2007-08-11 00:04:45 +0000347 assert(Src.isScalar() && "Can't emit an agg store with this method");
348 // FIXME: Handle volatility etc.
349 const llvm::Type *SrcTy = Src.getVal()->getType();
350 const llvm::Type *AddrTy =
351 cast<llvm::PointerType>(DstAddr->getType())->getElementType();
Chris Lattner4b009652007-07-25 00:24:17 +0000352
Chris Lattnerbdb8ffb2007-08-11 00:04:45 +0000353 if (AddrTy != SrcTy)
354 DstAddr = Builder.CreateBitCast(DstAddr, llvm::PointerType::get(SrcTy),
355 "storetmp");
356 Builder.CreateStore(Src.getVal(), DstAddr);
Chris Lattner4b009652007-07-25 00:24:17 +0000357}
358
Chris Lattner5bfdd232007-08-03 16:28:33 +0000359void CodeGenFunction::EmitStoreThroughOCUComponentLValue(RValue Src, LValue Dst,
360 QualType Ty) {
361 // This access turns into a read/modify/write of the vector. Load the input
362 // value now.
363 llvm::Value *Vec = Builder.CreateLoad(Dst.getOCUVectorAddr(), "tmp");
364 // FIXME: Volatility.
Chris Lattnera0d03a72007-08-03 17:31:20 +0000365 unsigned EncFields = Dst.getOCUVectorElts();
Chris Lattner5bfdd232007-08-03 16:28:33 +0000366
367 llvm::Value *SrcVal = Src.getVal();
368
Chris Lattner940966d2007-08-03 16:37:04 +0000369 if (const VectorType *VTy = Ty->getAsVectorType()) {
370 unsigned NumSrcElts = VTy->getNumElements();
371
372 // Extract/Insert each element.
373 for (unsigned i = 0; i != NumSrcElts; ++i) {
374 llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
375 Elt = Builder.CreateExtractElement(SrcVal, Elt, "tmp");
376
Chris Lattnera0d03a72007-08-03 17:31:20 +0000377 unsigned Idx = OCUVectorElementExpr::getAccessedFieldNo(i, EncFields);
Chris Lattner940966d2007-08-03 16:37:04 +0000378 llvm::Value *OutIdx = llvm::ConstantInt::get(llvm::Type::Int32Ty, Idx);
379 Vec = Builder.CreateInsertElement(Vec, Elt, OutIdx, "tmp");
380 }
381 } else {
382 // If the Src is a scalar (not a vector) it must be updating one element.
Chris Lattnera0d03a72007-08-03 17:31:20 +0000383 unsigned InIdx = OCUVectorElementExpr::getAccessedFieldNo(0, EncFields);
Chris Lattner5bfdd232007-08-03 16:28:33 +0000384 llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx);
385 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt, "tmp");
Chris Lattner5bfdd232007-08-03 16:28:33 +0000386 }
387
Chris Lattner5bfdd232007-08-03 16:28:33 +0000388 Builder.CreateStore(Vec, Dst.getOCUVectorAddr());
389}
390
Chris Lattner4b009652007-07-25 00:24:17 +0000391
392LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
393 const Decl *D = E->getDecl();
394 if (isa<BlockVarDecl>(D) || isa<ParmVarDecl>(D)) {
395 llvm::Value *V = LocalDeclMap[D];
396 assert(V && "BlockVarDecl not entered in LocalDeclMap?");
397 return LValue::MakeAddr(V);
398 } else if (isa<FunctionDecl>(D) || isa<FileVarDecl>(D)) {
399 return LValue::MakeAddr(CGM.GetAddrOfGlobalDecl(D));
400 }
401 assert(0 && "Unimp declref");
402}
403
404LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
405 // __extension__ doesn't affect lvalue-ness.
406 if (E->getOpcode() == UnaryOperator::Extension)
407 return EmitLValue(E->getSubExpr());
408
409 assert(E->getOpcode() == UnaryOperator::Deref &&
410 "'*' is the only unary operator that produces an lvalue");
411 return LValue::MakeAddr(EmitExpr(E->getSubExpr()).getVal());
412}
413
414LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
415 assert(!E->isWide() && "FIXME: Wide strings not supported yet!");
416 const char *StrData = E->getStrData();
417 unsigned Len = E->getByteLength();
418
419 // FIXME: Can cache/reuse these within the module.
420 llvm::Constant *C=llvm::ConstantArray::get(std::string(StrData, StrData+Len));
421
422 // Create a global variable for this.
423 C = new llvm::GlobalVariable(C->getType(), true,
424 llvm::GlobalValue::InternalLinkage,
425 C, ".str", CurFn->getParent());
426 llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
427 llvm::Constant *Zeros[] = { Zero, Zero };
428 C = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2);
429 return LValue::MakeAddr(C);
430}
431
432LValue CodeGenFunction::EmitPreDefinedLValue(const PreDefinedExpr *E) {
433 std::string FunctionName(CurFuncDecl->getName());
434 std::string GlobalVarName;
435
436 switch (E->getIdentType()) {
437 default:
438 assert(0 && "unknown pre-defined ident type");
439 case PreDefinedExpr::Func:
440 GlobalVarName = "__func__.";
441 break;
442 case PreDefinedExpr::Function:
443 GlobalVarName = "__FUNCTION__.";
444 break;
445 case PreDefinedExpr::PrettyFunction:
446 // FIXME:: Demangle C++ method names
447 GlobalVarName = "__PRETTY_FUNCTION__.";
448 break;
449 }
450
451 GlobalVarName += CurFuncDecl->getName();
452
453 // FIXME: Can cache/reuse these within the module.
454 llvm::Constant *C=llvm::ConstantArray::get(FunctionName);
455
456 // Create a global variable for this.
457 C = new llvm::GlobalVariable(C->getType(), true,
458 llvm::GlobalValue::InternalLinkage,
459 C, GlobalVarName, CurFn->getParent());
460 llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
461 llvm::Constant *Zeros[] = { Zero, Zero };
462 C = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2);
463 return LValue::MakeAddr(C);
464}
465
466LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
Ted Kremenek1c1700f2007-08-20 16:18:38 +0000467 // The index must always be an integer, which is not an aggregate. Emit it.
Chris Lattner2af72ac2007-08-08 17:43:05 +0000468 llvm::Value *Idx = EmitExpr(E->getIdx()).getVal();
Chris Lattner4b009652007-07-25 00:24:17 +0000469
470 // If the base is a vector type, then we are forming a vector element lvalue
471 // with this subscript.
Ted Kremenek1c1700f2007-08-20 16:18:38 +0000472 if (E->getLHS()->getType()->isVectorType()) {
Chris Lattner4b009652007-07-25 00:24:17 +0000473 // Emit the vector as an lvalue to get its address.
Ted Kremenek1c1700f2007-08-20 16:18:38 +0000474 LValue LHS = EmitLValue(E->getLHS());
475 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
Chris Lattner4b009652007-07-25 00:24:17 +0000476 // FIXME: This should properly sign/zero/extend or truncate Idx to i32.
Ted Kremenek1c1700f2007-08-20 16:18:38 +0000477 return LValue::MakeVectorElt(LHS.getAddress(), Idx);
Chris Lattner4b009652007-07-25 00:24:17 +0000478 }
479
Ted Kremenek1c1700f2007-08-20 16:18:38 +0000480 // The base must be a pointer, which is not an aggregate. Emit it.
Chris Lattner2af72ac2007-08-08 17:43:05 +0000481 llvm::Value *Base = EmitExpr(E->getBase()).getVal();
Chris Lattner4b009652007-07-25 00:24:17 +0000482
Ted Kremenek1c1700f2007-08-20 16:18:38 +0000483 // Extend or truncate the index type to 32 or 64-bits.
Chris Lattner2af72ac2007-08-08 17:43:05 +0000484 QualType IdxTy = E->getIdx()->getType();
Chris Lattner4b009652007-07-25 00:24:17 +0000485 bool IdxSigned = IdxTy->isSignedIntegerType();
486 unsigned IdxBitwidth = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
487 if (IdxBitwidth != LLVMPointerWidth)
488 Idx = Builder.CreateIntCast(Idx, llvm::IntegerType::get(LLVMPointerWidth),
489 IdxSigned, "idxprom");
490
491 // We know that the pointer points to a type of the correct size, unless the
492 // size is a VLA.
493 if (!E->getType()->isConstantSizeType(getContext()))
494 assert(0 && "VLA idx not implemented");
495 return LValue::MakeAddr(Builder.CreateGEP(Base, Idx, "arrayidx"));
496}
497
Chris Lattner65520192007-08-02 23:37:31 +0000498LValue CodeGenFunction::
Chris Lattnera0d03a72007-08-03 17:31:20 +0000499EmitOCUVectorElementExpr(const OCUVectorElementExpr *E) {
Chris Lattner65520192007-08-02 23:37:31 +0000500 // Emit the base vector as an l-value.
501 LValue Base = EmitLValue(E->getBase());
502 assert(Base.isSimple() && "Can only subscript lvalue vectors here!");
503
Chris Lattnera0d03a72007-08-03 17:31:20 +0000504 return LValue::MakeOCUVectorElt(Base.getAddress(),
505 E->getEncodedElementAccess());
Chris Lattner65520192007-08-02 23:37:31 +0000506}
507
Chris Lattner4b009652007-07-25 00:24:17 +0000508//===--------------------------------------------------------------------===//
509// Expression Emission
510//===--------------------------------------------------------------------===//
511
512RValue CodeGenFunction::EmitExpr(const Expr *E) {
Chris Lattnerbdb8ffb2007-08-11 00:04:45 +0000513 assert(E && !hasAggregateLLVMType(E->getType()) &&
514 "Invalid scalar expression to emit");
Chris Lattner4b009652007-07-25 00:24:17 +0000515
516 switch (E->getStmtClass()) {
517 default:
518 fprintf(stderr, "Unimplemented expr!\n");
519 E->dump();
520 return RValue::get(llvm::UndefValue::get(llvm::Type::Int32Ty));
521
522 // l-values.
523 case Expr::DeclRefExprClass:
524 // DeclRef's of EnumConstantDecl's are simple rvalues.
525 if (const EnumConstantDecl *EC =
526 dyn_cast<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
527 return RValue::get(llvm::ConstantInt::get(EC->getInitVal()));
528 return EmitLoadOfLValue(E);
529 case Expr::ArraySubscriptExprClass:
530 return EmitArraySubscriptExprRV(cast<ArraySubscriptExpr>(E));
Chris Lattnera0d03a72007-08-03 17:31:20 +0000531 case Expr::OCUVectorElementExprClass:
Chris Lattnera735fac2007-08-03 00:16:29 +0000532 return EmitLoadOfLValue(E);
Chris Lattner4b009652007-07-25 00:24:17 +0000533 case Expr::PreDefinedExprClass:
534 case Expr::StringLiteralClass:
535 return RValue::get(EmitLValue(E).getAddress());
536
537 // Leaf expressions.
538 case Expr::IntegerLiteralClass:
539 return EmitIntegerLiteral(cast<IntegerLiteral>(E));
540 case Expr::FloatingLiteralClass:
541 return EmitFloatingLiteral(cast<FloatingLiteral>(E));
542 case Expr::CharacterLiteralClass:
543 return EmitCharacterLiteral(cast<CharacterLiteral>(E));
Chris Lattner4ca7e752007-08-03 17:51:03 +0000544 case Expr::TypesCompatibleExprClass:
545 return EmitTypesCompatibleExpr(cast<TypesCompatibleExpr>(E));
Chris Lattner4b009652007-07-25 00:24:17 +0000546
547 // Operators.
548 case Expr::ParenExprClass:
549 return EmitExpr(cast<ParenExpr>(E)->getSubExpr());
550 case Expr::UnaryOperatorClass:
551 return EmitUnaryOperator(cast<UnaryOperator>(E));
552 case Expr::SizeOfAlignOfTypeExprClass:
553 return EmitSizeAlignOf(cast<SizeOfAlignOfTypeExpr>(E)->getArgumentType(),
554 E->getType(),
555 cast<SizeOfAlignOfTypeExpr>(E)->isSizeOf());
556 case Expr::ImplicitCastExprClass:
Chris Lattnerb2cb9cb2007-08-20 22:37:10 +0000557 return EmitImplicitCastExpr(cast<ImplicitCastExpr>(E));
Chris Lattner4b009652007-07-25 00:24:17 +0000558 case Expr::CastExprClass:
559 return EmitCastExpr(cast<CastExpr>(E)->getSubExpr(), E->getType());
560 case Expr::CallExprClass:
561 return EmitCallExpr(cast<CallExpr>(E));
562 case Expr::BinaryOperatorClass:
563 return EmitBinaryOperator(cast<BinaryOperator>(E));
564
565 case Expr::ConditionalOperatorClass:
566 return EmitConditionalOperator(cast<ConditionalOperator>(E));
Chris Lattner44fcf4f2007-08-04 00:20:15 +0000567 case Expr::ChooseExprClass:
568 return EmitChooseExpr(cast<ChooseExpr>(E));
Anders Carlssona66cad42007-08-21 17:43:55 +0000569 case Expr::ObjCStringLiteralClass:
570 return EmitObjCStringLiteral(cast<ObjCStringLiteral>(E));
Chris Lattner4b009652007-07-25 00:24:17 +0000571 }
Chris Lattner4b009652007-07-25 00:24:17 +0000572}
573
574RValue CodeGenFunction::EmitIntegerLiteral(const IntegerLiteral *E) {
575 return RValue::get(llvm::ConstantInt::get(E->getValue()));
576}
577RValue CodeGenFunction::EmitFloatingLiteral(const FloatingLiteral *E) {
578 return RValue::get(llvm::ConstantFP::get(ConvertType(E->getType()),
579 E->getValue()));
580}
581RValue CodeGenFunction::EmitCharacterLiteral(const CharacterLiteral *E) {
582 return RValue::get(llvm::ConstantInt::get(ConvertType(E->getType()),
583 E->getValue()));
584}
585
Chris Lattner4ca7e752007-08-03 17:51:03 +0000586RValue CodeGenFunction::EmitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
587 return RValue::get(llvm::ConstantInt::get(ConvertType(E->getType()),
588 E->typesAreCompatible()));
589}
590
Chris Lattner44fcf4f2007-08-04 00:20:15 +0000591/// EmitChooseExpr - Implement __builtin_choose_expr.
592RValue CodeGenFunction::EmitChooseExpr(const ChooseExpr *E) {
593 llvm::APSInt CondVal(32);
594 bool IsConst = E->getCond()->isIntegerConstantExpr(CondVal, getContext());
595 assert(IsConst && "Condition of choose expr must be i-c-e"); IsConst=IsConst;
596
597 // Emit the LHS or RHS as appropriate.
598 return EmitExpr(CondVal != 0 ? E->getLHS() : E->getRHS());
599}
600
Chris Lattner4ca7e752007-08-03 17:51:03 +0000601
Chris Lattner4b009652007-07-25 00:24:17 +0000602RValue CodeGenFunction::EmitArraySubscriptExprRV(const ArraySubscriptExpr *E) {
603 // Emit subscript expressions in rvalue context's. For most cases, this just
604 // loads the lvalue formed by the subscript expr. However, we have to be
605 // careful, because the base of a vector subscript is occasionally an rvalue,
606 // so we can't get it as an lvalue.
607 if (!E->getBase()->getType()->isVectorType())
608 return EmitLoadOfLValue(E);
609
610 // Handle the vector case. The base must be a vector, the index must be an
611 // integer value.
Chris Lattner2af72ac2007-08-08 17:43:05 +0000612 llvm::Value *Base = EmitExpr(E->getBase()).getVal();
613 llvm::Value *Idx = EmitExpr(E->getIdx()).getVal();
Chris Lattner4b009652007-07-25 00:24:17 +0000614
615 // FIXME: Convert Idx to i32 type.
616
617 return RValue::get(Builder.CreateExtractElement(Base, Idx, "vecext"));
618}
619
620// EmitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
621// have to handle a more broad range of conversions than explicit casts, as they
622// handle things like function to ptr-to-function decay etc.
623RValue CodeGenFunction::EmitCastExpr(const Expr *Op, QualType DestTy) {
Chris Lattner2af72ac2007-08-08 17:43:05 +0000624 RValue Src = EmitExpr(Op);
Chris Lattner4b009652007-07-25 00:24:17 +0000625
626 // If the destination is void, just evaluate the source.
627 if (DestTy->isVoidType())
628 return RValue::getAggregate(0);
629
Chris Lattner2af72ac2007-08-08 17:43:05 +0000630 return EmitConversion(Src, Op->getType(), DestTy);
Chris Lattner4b009652007-07-25 00:24:17 +0000631}
632
Chris Lattnerb2cb9cb2007-08-20 22:37:10 +0000633/// EmitImplicitCastExpr - Implicit casts are the same as normal casts, but also
634/// handle things like function to pointer-to-function decay, and array to
635/// pointer decay.
636RValue CodeGenFunction::EmitImplicitCastExpr(const ImplicitCastExpr *E) {
637 const Expr *Op = E->getSubExpr();
638 QualType OpTy = Op->getType().getCanonicalType();
639
640 // If this is due to array->pointer conversion, emit the array expression as
641 // an l-value.
642 if (isa<ArrayType>(OpTy)) {
643 // FIXME: For now we assume that all source arrays map to LLVM arrays. This
644 // will not true when we add support for VLAs.
645 llvm::Value *V = EmitLValue(Op).getAddress(); // Bitfields can't be arrays.
646
647 assert(isa<llvm::PointerType>(V->getType()) &&
648 isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
649 ->getElementType()) &&
650 "Doesn't support VLAs yet!");
651 llvm::Constant *Idx0 = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
652 return RValue::get(Builder.CreateGEP(V, Idx0, Idx0, "arraydecay"));
653 }
654
655 return EmitCastExpr(Op, E->getType());
656}
657
Chris Lattner4b009652007-07-25 00:24:17 +0000658RValue CodeGenFunction::EmitCallExpr(const CallExpr *E) {
Anders Carlsson49865302007-08-20 18:05:56 +0000659 if (const ImplicitCastExpr *IcExpr =
660 dyn_cast<const ImplicitCastExpr>(E->getCallee()))
661 if (const DeclRefExpr *DRExpr =
662 dyn_cast<const DeclRefExpr>(IcExpr->getSubExpr()))
663 if (const FunctionDecl *FDecl =
664 dyn_cast<const FunctionDecl>(DRExpr->getDecl()))
665 if (unsigned builtinID = FDecl->getIdentifier()->getBuiltinID())
666 return EmitBuiltinExpr(builtinID, E);
667
Chris Lattner2af72ac2007-08-08 17:43:05 +0000668 llvm::Value *Callee = EmitExpr(E->getCallee()).getVal();
Chris Lattner4b009652007-07-25 00:24:17 +0000669
670 // The callee type will always be a pointer to function type, get the function
671 // type.
Chris Lattner2af72ac2007-08-08 17:43:05 +0000672 QualType CalleeTy = E->getCallee()->getType();
Chris Lattner4b009652007-07-25 00:24:17 +0000673 CalleeTy = cast<PointerType>(CalleeTy.getCanonicalType())->getPointeeType();
674
675 // Get information about the argument types.
676 FunctionTypeProto::arg_type_iterator ArgTyIt = 0, ArgTyEnd = 0;
677
678 // Calling unprototyped functions provides no argument info.
679 if (const FunctionTypeProto *FTP = dyn_cast<FunctionTypeProto>(CalleeTy)) {
680 ArgTyIt = FTP->arg_type_begin();
681 ArgTyEnd = FTP->arg_type_end();
682 }
683
684 llvm::SmallVector<llvm::Value*, 16> Args;
685
Chris Lattner59802042007-08-10 17:02:28 +0000686 // Handle struct-return functions by passing a pointer to the location that
687 // we would like to return into.
688 if (hasAggregateLLVMType(E->getType())) {
689 // Create a temporary alloca to hold the result of the call. :(
690 Args.push_back(CreateTempAlloca(ConvertType(E->getType())));
691 // FIXME: set the stret attribute on the argument.
692 }
693
Chris Lattner4b009652007-07-25 00:24:17 +0000694 for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
Chris Lattner2af72ac2007-08-08 17:43:05 +0000695 QualType ArgTy = E->getArg(i)->getType();
696 RValue ArgVal = EmitExpr(E->getArg(i));
Chris Lattner4b009652007-07-25 00:24:17 +0000697
698 // If this argument has prototype information, convert it.
699 if (ArgTyIt != ArgTyEnd) {
700 ArgVal = EmitConversion(ArgVal, ArgTy, *ArgTyIt++);
701 } else {
702 // Otherwise, if passing through "..." or to a function with no prototype,
703 // perform the "default argument promotions" (C99 6.5.2.2p6), which
704 // includes the usual unary conversions, but also promotes float to
705 // double.
706 if (const BuiltinType *BT =
707 dyn_cast<BuiltinType>(ArgTy.getCanonicalType())) {
708 if (BT->getKind() == BuiltinType::Float)
709 ArgVal = RValue::get(Builder.CreateFPExt(ArgVal.getVal(),
710 llvm::Type::DoubleTy,"tmp"));
711 }
712 }
713
714
715 if (ArgVal.isScalar())
716 Args.push_back(ArgVal.getVal());
717 else // Pass by-address. FIXME: Set attribute bit on call.
718 Args.push_back(ArgVal.getAggregateAddr());
719 }
720
Chris Lattnera9572252007-08-01 06:24:52 +0000721 llvm::Value *V = Builder.CreateCall(Callee, &Args[0], &Args[0]+Args.size());
Chris Lattner4b009652007-07-25 00:24:17 +0000722 if (V->getType() != llvm::Type::VoidTy)
723 V->setName("call");
Chris Lattner59802042007-08-10 17:02:28 +0000724 else if (hasAggregateLLVMType(E->getType()))
725 // Struct return.
726 return RValue::getAggregate(Args[0]);
727
Chris Lattner4b009652007-07-25 00:24:17 +0000728 return RValue::get(V);
729}
730
731
732//===----------------------------------------------------------------------===//
733// Unary Operator Emission
734//===----------------------------------------------------------------------===//
735
Chris Lattner4b009652007-07-25 00:24:17 +0000736RValue CodeGenFunction::EmitUnaryOperator(const UnaryOperator *E) {
737 switch (E->getOpcode()) {
738 default:
739 printf("Unimplemented unary expr!\n");
740 E->dump();
741 return RValue::get(llvm::UndefValue::get(llvm::Type::Int32Ty));
742 case UnaryOperator::PostInc:
743 case UnaryOperator::PostDec:
744 case UnaryOperator::PreInc :
745 case UnaryOperator::PreDec : return EmitUnaryIncDec(E);
746 case UnaryOperator::AddrOf : return EmitUnaryAddrOf(E);
747 case UnaryOperator::Deref : return EmitLoadOfLValue(E);
748 case UnaryOperator::Plus : return EmitUnaryPlus(E);
749 case UnaryOperator::Minus : return EmitUnaryMinus(E);
750 case UnaryOperator::Not : return EmitUnaryNot(E);
751 case UnaryOperator::LNot : return EmitUnaryLNot(E);
752 case UnaryOperator::SizeOf :
753 return EmitSizeAlignOf(E->getSubExpr()->getType(), E->getType(), true);
754 case UnaryOperator::AlignOf :
755 return EmitSizeAlignOf(E->getSubExpr()->getType(), E->getType(), false);
756 // FIXME: real/imag
757 case UnaryOperator::Extension: return EmitExpr(E->getSubExpr());
758 }
759}
760
761RValue CodeGenFunction::EmitUnaryIncDec(const UnaryOperator *E) {
762 LValue LV = EmitLValue(E->getSubExpr());
763 RValue InVal = EmitLoadOfLValue(LV, E->getSubExpr()->getType());
764
765 // We know the operand is real or pointer type, so it must be an LLVM scalar.
766 assert(InVal.isScalar() && "Unknown thing to increment");
767 llvm::Value *InV = InVal.getVal();
768
769 int AmountVal = 1;
770 if (E->getOpcode() == UnaryOperator::PreDec ||
771 E->getOpcode() == UnaryOperator::PostDec)
772 AmountVal = -1;
773
774 llvm::Value *NextVal;
775 if (isa<llvm::IntegerType>(InV->getType())) {
776 NextVal = llvm::ConstantInt::get(InV->getType(), AmountVal);
777 NextVal = Builder.CreateAdd(InV, NextVal, AmountVal == 1 ? "inc" : "dec");
778 } else if (InV->getType()->isFloatingPoint()) {
779 NextVal = llvm::ConstantFP::get(InV->getType(), AmountVal);
780 NextVal = Builder.CreateAdd(InV, NextVal, AmountVal == 1 ? "inc" : "dec");
781 } else {
782 // FIXME: This is not right for pointers to VLA types.
783 assert(isa<llvm::PointerType>(InV->getType()));
784 NextVal = llvm::ConstantInt::get(llvm::Type::Int32Ty, AmountVal);
785 NextVal = Builder.CreateGEP(InV, NextVal, AmountVal == 1 ? "inc" : "dec");
786 }
787
788 RValue NextValToStore = RValue::get(NextVal);
789
790 // Store the updated result through the lvalue.
791 EmitStoreThroughLValue(NextValToStore, LV, E->getSubExpr()->getType());
792
793 // If this is a postinc, return the value read from memory, otherwise use the
794 // updated value.
795 if (E->getOpcode() == UnaryOperator::PreDec ||
796 E->getOpcode() == UnaryOperator::PreInc)
797 return NextValToStore;
798 else
799 return InVal;
800}
801
802/// C99 6.5.3.2
803RValue CodeGenFunction::EmitUnaryAddrOf(const UnaryOperator *E) {
804 // The address of the operand is just its lvalue. It cannot be a bitfield.
805 return RValue::get(EmitLValue(E->getSubExpr()).getAddress());
806}
807
808RValue CodeGenFunction::EmitUnaryPlus(const UnaryOperator *E) {
Chris Lattner2af72ac2007-08-08 17:43:05 +0000809 assert(E->getType().getCanonicalType() ==
810 E->getSubExpr()->getType().getCanonicalType() && "Bad unary plus!");
811 // Unary plus just returns its value.
812 return EmitExpr(E->getSubExpr());
Chris Lattner4b009652007-07-25 00:24:17 +0000813}
814
815RValue CodeGenFunction::EmitUnaryMinus(const UnaryOperator *E) {
Chris Lattner2af72ac2007-08-08 17:43:05 +0000816 assert(E->getType().getCanonicalType() ==
817 E->getSubExpr()->getType().getCanonicalType() && "Bad unary minus!");
818
Chris Lattner4b009652007-07-25 00:24:17 +0000819 // Unary minus performs promotions, then negates its arithmetic operand.
Chris Lattner2af72ac2007-08-08 17:43:05 +0000820 RValue V = EmitExpr(E->getSubExpr());
Chris Lattner4b009652007-07-25 00:24:17 +0000821
822 if (V.isScalar())
823 return RValue::get(Builder.CreateNeg(V.getVal(), "neg"));
824
825 assert(0 && "FIXME: This doesn't handle complex operands yet");
826}
827
828RValue CodeGenFunction::EmitUnaryNot(const UnaryOperator *E) {
829 // Unary not performs promotions, then complements its integer operand.
Chris Lattner2af72ac2007-08-08 17:43:05 +0000830 RValue V = EmitExpr(E->getSubExpr());
Chris Lattner4b009652007-07-25 00:24:17 +0000831
832 if (V.isScalar())
833 return RValue::get(Builder.CreateNot(V.getVal(), "neg"));
834
835 assert(0 && "FIXME: This doesn't handle integer complex operands yet (GNU)");
836}
837
838
839/// C99 6.5.3.3
840RValue CodeGenFunction::EmitUnaryLNot(const UnaryOperator *E) {
841 // Compare operand to zero.
842 llvm::Value *BoolVal = EvaluateExprAsBool(E->getSubExpr());
843
844 // Invert value.
845 // TODO: Could dynamically modify easy computations here. For example, if
846 // the operand is an icmp ne, turn into icmp eq.
847 BoolVal = Builder.CreateNot(BoolVal, "lnot");
848
849 // ZExt result to int.
850 return RValue::get(Builder.CreateZExt(BoolVal, LLVMIntTy, "lnot.ext"));
851}
852
853/// EmitSizeAlignOf - Return the size or alignment of the 'TypeToSize' type as
854/// an integer (RetType).
855RValue CodeGenFunction::EmitSizeAlignOf(QualType TypeToSize,
856 QualType RetType, bool isSizeOf) {
857 /// FIXME: This doesn't handle VLAs yet!
858 std::pair<uint64_t, unsigned> Info =
859 getContext().getTypeInfo(TypeToSize, SourceLocation());
860
861 uint64_t Val = isSizeOf ? Info.first : Info.second;
862 Val /= 8; // Return size in bytes, not bits.
863
864 assert(RetType->isIntegerType() && "Result type must be an integer!");
865
866 unsigned ResultWidth = getContext().getTypeSize(RetType, SourceLocation());
867 return RValue::get(llvm::ConstantInt::get(llvm::APInt(ResultWidth, Val)));
868}
869
870
871//===--------------------------------------------------------------------===//
872// Binary Operator Emission
873//===--------------------------------------------------------------------===//
874
Chris Lattner4b009652007-07-25 00:24:17 +0000875
876/// EmitCompoundAssignmentOperands - Compound assignment operations (like +=)
877/// are strange in that the result of the operation is not the same type as the
878/// intermediate computation. This function emits the LHS and RHS operands of
879/// the compound assignment, promoting them to their common computation type.
880///
881/// Since the LHS is an lvalue, and the result is stored back through it, we
882/// return the lvalue as well as the LHS/RHS rvalues. On return, the LHS and
883/// RHS values are both in the computation type for the operator.
884void CodeGenFunction::
885EmitCompoundAssignmentOperands(const CompoundAssignOperator *E,
886 LValue &LHSLV, RValue &LHS, RValue &RHS) {
887 LHSLV = EmitLValue(E->getLHS());
888
889 // Load the LHS and RHS operands.
890 QualType LHSTy = E->getLHS()->getType();
891 LHS = EmitLoadOfLValue(LHSLV, LHSTy);
Chris Lattner2af72ac2007-08-08 17:43:05 +0000892 RHS = EmitExpr(E->getRHS());
893 QualType RHSTy = E->getRHS()->getType();
Chris Lattner4b009652007-07-25 00:24:17 +0000894
895 // Convert the LHS and RHS to the common evaluation type.
896 LHS = EmitConversion(LHS, LHSTy, E->getComputationType());
897 RHS = EmitConversion(RHS, RHSTy, E->getComputationType());
898}
899
900/// EmitCompoundAssignmentResult - Given a result value in the computation type,
901/// truncate it down to the actual result type, store it through the LHS lvalue,
902/// and return it.
903RValue CodeGenFunction::
904EmitCompoundAssignmentResult(const CompoundAssignOperator *E,
905 LValue LHSLV, RValue ResV) {
906
907 // Truncate back to the destination type.
908 if (E->getComputationType() != E->getType())
909 ResV = EmitConversion(ResV, E->getComputationType(), E->getType());
910
911 // Store the result value into the LHS.
912 EmitStoreThroughLValue(ResV, LHSLV, E->getType());
913
914 // Return the result.
915 return ResV;
916}
917
918
919RValue CodeGenFunction::EmitBinaryOperator(const BinaryOperator *E) {
920 RValue LHS, RHS;
921 switch (E->getOpcode()) {
922 default:
923 fprintf(stderr, "Unimplemented binary expr!\n");
924 E->dump();
925 return RValue::get(llvm::UndefValue::get(llvm::Type::Int32Ty));
926 case BinaryOperator::Mul:
Chris Lattnerbf49e992007-08-08 17:49:18 +0000927 LHS = EmitExpr(E->getLHS());
928 RHS = EmitExpr(E->getRHS());
Chris Lattner4b009652007-07-25 00:24:17 +0000929 return EmitMul(LHS, RHS, E->getType());
930 case BinaryOperator::Div:
Chris Lattnerbf49e992007-08-08 17:49:18 +0000931 LHS = EmitExpr(E->getLHS());
932 RHS = EmitExpr(E->getRHS());
Chris Lattner4b009652007-07-25 00:24:17 +0000933 return EmitDiv(LHS, RHS, E->getType());
934 case BinaryOperator::Rem:
Chris Lattnerbf49e992007-08-08 17:49:18 +0000935 LHS = EmitExpr(E->getLHS());
936 RHS = EmitExpr(E->getRHS());
Chris Lattner4b009652007-07-25 00:24:17 +0000937 return EmitRem(LHS, RHS, E->getType());
Chris Lattnerbf49e992007-08-08 17:49:18 +0000938 case BinaryOperator::Add:
939 LHS = EmitExpr(E->getLHS());
940 RHS = EmitExpr(E->getRHS());
941 if (!E->getType()->isPointerType())
942 return EmitAdd(LHS, RHS, E->getType());
943
944 return EmitPointerAdd(LHS, E->getLHS()->getType(),
945 RHS, E->getRHS()->getType(), E->getType());
946 case BinaryOperator::Sub:
947 LHS = EmitExpr(E->getLHS());
948 RHS = EmitExpr(E->getRHS());
949
950 if (!E->getLHS()->getType()->isPointerType())
951 return EmitSub(LHS, RHS, E->getType());
952
953 return EmitPointerSub(LHS, E->getLHS()->getType(),
954 RHS, E->getRHS()->getType(), E->getType());
Chris Lattner4b009652007-07-25 00:24:17 +0000955 case BinaryOperator::Shl:
Chris Lattner2af72ac2007-08-08 17:43:05 +0000956 LHS = EmitExpr(E->getLHS());
957 RHS = EmitExpr(E->getRHS());
Chris Lattner4b009652007-07-25 00:24:17 +0000958 return EmitShl(LHS, RHS, E->getType());
959 case BinaryOperator::Shr:
Chris Lattner2af72ac2007-08-08 17:43:05 +0000960 LHS = EmitExpr(E->getLHS());
961 RHS = EmitExpr(E->getRHS());
Chris Lattner4b009652007-07-25 00:24:17 +0000962 return EmitShr(LHS, RHS, E->getType());
963 case BinaryOperator::And:
Chris Lattnerbf49e992007-08-08 17:49:18 +0000964 LHS = EmitExpr(E->getLHS());
965 RHS = EmitExpr(E->getRHS());
Chris Lattner4b009652007-07-25 00:24:17 +0000966 return EmitAnd(LHS, RHS, E->getType());
967 case BinaryOperator::Xor:
Chris Lattnerbf49e992007-08-08 17:49:18 +0000968 LHS = EmitExpr(E->getLHS());
969 RHS = EmitExpr(E->getRHS());
Chris Lattner4b009652007-07-25 00:24:17 +0000970 return EmitXor(LHS, RHS, E->getType());
971 case BinaryOperator::Or :
Chris Lattnerbf49e992007-08-08 17:49:18 +0000972 LHS = EmitExpr(E->getLHS());
973 RHS = EmitExpr(E->getRHS());
Chris Lattner4b009652007-07-25 00:24:17 +0000974 return EmitOr(LHS, RHS, E->getType());
975 case BinaryOperator::LAnd: return EmitBinaryLAnd(E);
976 case BinaryOperator::LOr: return EmitBinaryLOr(E);
977 case BinaryOperator::LT:
978 return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_ULT,
979 llvm::ICmpInst::ICMP_SLT,
980 llvm::FCmpInst::FCMP_OLT);
981 case BinaryOperator::GT:
982 return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_UGT,
983 llvm::ICmpInst::ICMP_SGT,
984 llvm::FCmpInst::FCMP_OGT);
985 case BinaryOperator::LE:
986 return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_ULE,
987 llvm::ICmpInst::ICMP_SLE,
988 llvm::FCmpInst::FCMP_OLE);
989 case BinaryOperator::GE:
990 return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_UGE,
991 llvm::ICmpInst::ICMP_SGE,
992 llvm::FCmpInst::FCMP_OGE);
993 case BinaryOperator::EQ:
994 return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_EQ,
995 llvm::ICmpInst::ICMP_EQ,
996 llvm::FCmpInst::FCMP_OEQ);
997 case BinaryOperator::NE:
998 return EmitBinaryCompare(E, llvm::ICmpInst::ICMP_NE,
999 llvm::ICmpInst::ICMP_NE,
1000 llvm::FCmpInst::FCMP_UNE);
1001 case BinaryOperator::Assign:
1002 return EmitBinaryAssign(E);
1003
1004 case BinaryOperator::MulAssign: {
1005 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
1006 LValue LHSLV;
1007 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
1008 LHS = EmitMul(LHS, RHS, CAO->getComputationType());
1009 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
1010 }
1011 case BinaryOperator::DivAssign: {
1012 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
1013 LValue LHSLV;
1014 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
1015 LHS = EmitDiv(LHS, RHS, CAO->getComputationType());
1016 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
1017 }
1018 case BinaryOperator::RemAssign: {
1019 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
1020 LValue LHSLV;
1021 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
1022 LHS = EmitRem(LHS, RHS, CAO->getComputationType());
1023 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
1024 }
1025 case BinaryOperator::AddAssign: {
1026 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
1027 LValue LHSLV;
1028 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
1029 LHS = EmitAdd(LHS, RHS, CAO->getComputationType());
1030 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
1031 }
1032 case BinaryOperator::SubAssign: {
1033 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
1034 LValue LHSLV;
1035 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
1036 LHS = EmitSub(LHS, RHS, CAO->getComputationType());
1037 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
1038 }
1039 case BinaryOperator::ShlAssign: {
1040 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
1041 LValue LHSLV;
1042 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
1043 LHS = EmitShl(LHS, RHS, CAO->getComputationType());
1044 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
1045 }
1046 case BinaryOperator::ShrAssign: {
1047 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
1048 LValue LHSLV;
1049 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
1050 LHS = EmitShr(LHS, RHS, CAO->getComputationType());
1051 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
1052 }
1053 case BinaryOperator::AndAssign: {
1054 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
1055 LValue LHSLV;
1056 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
1057 LHS = EmitAnd(LHS, RHS, CAO->getComputationType());
1058 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
1059 }
1060 case BinaryOperator::OrAssign: {
1061 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
1062 LValue LHSLV;
1063 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
1064 LHS = EmitOr(LHS, RHS, CAO->getComputationType());
1065 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
1066 }
1067 case BinaryOperator::XorAssign: {
1068 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(E);
1069 LValue LHSLV;
1070 EmitCompoundAssignmentOperands(CAO, LHSLV, LHS, RHS);
1071 LHS = EmitXor(LHS, RHS, CAO->getComputationType());
1072 return EmitCompoundAssignmentResult(CAO, LHSLV, LHS);
1073 }
1074 case BinaryOperator::Comma: return EmitBinaryComma(E);
1075 }
1076}
1077
1078RValue CodeGenFunction::EmitMul(RValue LHS, RValue RHS, QualType ResTy) {
Chris Lattnera7300102007-08-21 04:59:27 +00001079 return RValue::get(Builder.CreateMul(LHS.getVal(), RHS.getVal(), "mul"));
Chris Lattner4b009652007-07-25 00:24:17 +00001080}
1081
1082RValue CodeGenFunction::EmitDiv(RValue LHS, RValue RHS, QualType ResTy) {
Chris Lattner9a4e2c62007-08-21 16:34:16 +00001083 if (LHS.getVal()->getType()->isFloatingPoint())
1084 return RValue::get(Builder.CreateFDiv(LHS.getVal(), RHS.getVal(), "div"));
1085 else if (ResTy->isUnsignedIntegerType())
1086 return RValue::get(Builder.CreateUDiv(LHS.getVal(), RHS.getVal(), "div"));
1087 else
1088 return RValue::get(Builder.CreateSDiv(LHS.getVal(), RHS.getVal(), "div"));
Chris Lattner4b009652007-07-25 00:24:17 +00001089}
1090
1091RValue CodeGenFunction::EmitRem(RValue LHS, RValue RHS, QualType ResTy) {
Chris Lattner9a4e2c62007-08-21 16:34:16 +00001092 // Rem in C can't be a floating point type: C99 6.5.5p2.
1093 if (ResTy->isUnsignedIntegerType())
1094 return RValue::get(Builder.CreateURem(LHS.getVal(), RHS.getVal(), "rem"));
1095 else
1096 return RValue::get(Builder.CreateSRem(LHS.getVal(), RHS.getVal(), "rem"));
Chris Lattner4b009652007-07-25 00:24:17 +00001097}
1098
1099RValue CodeGenFunction::EmitAdd(RValue LHS, RValue RHS, QualType ResTy) {
Chris Lattnera7300102007-08-21 04:59:27 +00001100 return RValue::get(Builder.CreateAdd(LHS.getVal(), RHS.getVal(), "add"));
Chris Lattner4b009652007-07-25 00:24:17 +00001101}
1102
1103RValue CodeGenFunction::EmitPointerAdd(RValue LHS, QualType LHSTy,
1104 RValue RHS, QualType RHSTy,
1105 QualType ResTy) {
1106 llvm::Value *LHSValue = LHS.getVal();
1107 llvm::Value *RHSValue = RHS.getVal();
1108 if (LHSTy->isPointerType()) {
1109 // pointer + int
1110 return RValue::get(Builder.CreateGEP(LHSValue, RHSValue, "add.ptr"));
1111 } else {
1112 // int + pointer
1113 return RValue::get(Builder.CreateGEP(RHSValue, LHSValue, "add.ptr"));
1114 }
1115}
1116
1117RValue CodeGenFunction::EmitSub(RValue LHS, RValue RHS, QualType ResTy) {
Chris Lattner9a4e2c62007-08-21 16:34:16 +00001118 return RValue::get(Builder.CreateSub(LHS.getVal(), RHS.getVal(), "sub"));
Chris Lattner4b009652007-07-25 00:24:17 +00001119}
1120
1121RValue CodeGenFunction::EmitPointerSub(RValue LHS, QualType LHSTy,
1122 RValue RHS, QualType RHSTy,
1123 QualType ResTy) {
1124 llvm::Value *LHSValue = LHS.getVal();
1125 llvm::Value *RHSValue = RHS.getVal();
1126 if (const PointerType *RHSPtrType =
1127 dyn_cast<PointerType>(RHSTy.getTypePtr())) {
1128 // pointer - pointer
1129 const PointerType *LHSPtrType = cast<PointerType>(LHSTy.getTypePtr());
1130 QualType LHSElementType = LHSPtrType->getPointeeType();
1131 assert(LHSElementType == RHSPtrType->getPointeeType() &&
1132 "can't subtract pointers with differing element types");
1133 uint64_t ElementSize = getContext().getTypeSize(LHSElementType,
1134 SourceLocation()) / 8;
1135 const llvm::Type *ResultType = ConvertType(ResTy);
1136 llvm::Value *CastLHS = Builder.CreatePtrToInt(LHSValue, ResultType,
1137 "sub.ptr.lhs.cast");
1138 llvm::Value *CastRHS = Builder.CreatePtrToInt(RHSValue, ResultType,
1139 "sub.ptr.rhs.cast");
1140 llvm::Value *BytesBetween = Builder.CreateSub(CastLHS, CastRHS,
1141 "sub.ptr.sub");
1142
1143 // HACK: LLVM doesn't have an divide instruction that 'knows' there is no
1144 // remainder. As such, we handle common power-of-two cases here to generate
1145 // better code.
1146 if (llvm::isPowerOf2_64(ElementSize)) {
1147 llvm::Value *ShAmt =
1148 llvm::ConstantInt::get(ResultType, llvm::Log2_64(ElementSize));
1149 return RValue::get(Builder.CreateAShr(BytesBetween, ShAmt,"sub.ptr.shr"));
1150 } else {
1151 // Otherwise, do a full sdiv.
1152 llvm::Value *BytesPerElement =
1153 llvm::ConstantInt::get(ResultType, ElementSize);
1154 return RValue::get(Builder.CreateSDiv(BytesBetween, BytesPerElement,
1155 "sub.ptr.div"));
1156 }
1157 } else {
1158 // pointer - int
1159 llvm::Value *NegatedRHS = Builder.CreateNeg(RHSValue, "sub.ptr.neg");
1160 return RValue::get(Builder.CreateGEP(LHSValue, NegatedRHS, "sub.ptr"));
1161 }
1162}
1163
Chris Lattner4b009652007-07-25 00:24:17 +00001164RValue CodeGenFunction::EmitShl(RValue LHSV, RValue RHSV, QualType ResTy) {
1165 llvm::Value *LHS = LHSV.getVal(), *RHS = RHSV.getVal();
1166
1167 // LLVM requires the LHS and RHS to be the same type, promote or truncate the
1168 // RHS to the same size as the LHS.
1169 if (LHS->getType() != RHS->getType())
1170 RHS = Builder.CreateIntCast(RHS, LHS->getType(), false, "sh_prom");
1171
1172 return RValue::get(Builder.CreateShl(LHS, RHS, "shl"));
1173}
1174
1175RValue CodeGenFunction::EmitShr(RValue LHSV, RValue RHSV, QualType ResTy) {
1176 llvm::Value *LHS = LHSV.getVal(), *RHS = RHSV.getVal();
1177
1178 // LLVM requires the LHS and RHS to be the same type, promote or truncate the
1179 // RHS to the same size as the LHS.
1180 if (LHS->getType() != RHS->getType())
1181 RHS = Builder.CreateIntCast(RHS, LHS->getType(), false, "sh_prom");
1182
1183 if (ResTy->isUnsignedIntegerType())
1184 return RValue::get(Builder.CreateLShr(LHS, RHS, "shr"));
1185 else
1186 return RValue::get(Builder.CreateAShr(LHS, RHS, "shr"));
1187}
1188
1189RValue CodeGenFunction::EmitBinaryCompare(const BinaryOperator *E,
1190 unsigned UICmpOpc, unsigned SICmpOpc,
1191 unsigned FCmpOpc) {
Chris Lattner4b009652007-07-25 00:24:17 +00001192 llvm::Value *Result;
Chris Lattner5280c5f2007-08-21 16:57:55 +00001193 QualType LHSTy = E->getLHS()->getType();
1194 if (!LHSTy->isComplexType()) {
1195 RValue LHS = EmitExpr(E->getLHS());
1196 RValue RHS = EmitExpr(E->getRHS());
1197
1198 if (LHSTy->isRealFloatingType()) {
Chris Lattner4b009652007-07-25 00:24:17 +00001199 Result = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1200 LHS.getVal(), RHS.getVal(), "cmp");
Chris Lattner5280c5f2007-08-21 16:57:55 +00001201 } else if (LHSTy->isUnsignedIntegerType()) {
Chris Lattner4b009652007-07-25 00:24:17 +00001202 // FIXME: This check isn't right for "unsigned short < int" where ushort
1203 // promotes to int and does a signed compare.
1204 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1205 LHS.getVal(), RHS.getVal(), "cmp");
1206 } else {
1207 // Signed integers and pointers.
1208 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
1209 LHS.getVal(), RHS.getVal(), "cmp");
1210 }
1211 } else {
Chris Lattner5280c5f2007-08-21 16:57:55 +00001212 // Complex Comparison: can only be an equality comparison.
1213 ComplexPairTy LHS = EmitComplexExpr(E->getLHS());
1214 ComplexPairTy RHS = EmitComplexExpr(E->getRHS());
Chris Lattner4b009652007-07-25 00:24:17 +00001215
Chris Lattner5280c5f2007-08-21 16:57:55 +00001216 QualType CETy =
1217 cast<ComplexType>(LHSTy.getCanonicalType())->getElementType();
1218
1219 llvm::Value *ResultR, *ResultI;
1220 if (CETy->isRealFloatingType()) {
1221 ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1222 LHS.first, RHS.first, "cmp.r");
1223 ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1224 LHS.second, RHS.second, "cmp.i");
Chris Lattner4b009652007-07-25 00:24:17 +00001225 } else {
Chris Lattner14b0dad2007-08-21 17:03:38 +00001226 // Complex comparisons can only be equality comparisons. As such, signed
1227 // and unsigned opcodes are the same.
1228 ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
Chris Lattner5280c5f2007-08-21 16:57:55 +00001229 LHS.first, RHS.first, "cmp.r");
Chris Lattner14b0dad2007-08-21 17:03:38 +00001230 ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
Chris Lattner5280c5f2007-08-21 16:57:55 +00001231 LHS.second, RHS.second, "cmp.i");
Chris Lattner4b009652007-07-25 00:24:17 +00001232 }
Chris Lattner5280c5f2007-08-21 16:57:55 +00001233
1234 if (E->getOpcode() == BinaryOperator::EQ) {
1235 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
1236 } else {
1237 assert(E->getOpcode() == BinaryOperator::NE &&
1238 "Complex comparison other than == or != ?");
1239 Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
1240 }
Chris Lattner4b009652007-07-25 00:24:17 +00001241 }
1242
1243 // ZExt result to int.
1244 return RValue::get(Builder.CreateZExt(Result, LLVMIntTy, "cmp.ext"));
1245}
1246
1247RValue CodeGenFunction::EmitAnd(RValue LHS, RValue RHS, QualType ResTy) {
Chris Lattner7c257f42007-08-21 17:12:50 +00001248 return RValue::get(Builder.CreateAnd(LHS.getVal(), RHS.getVal(), "and"));
Chris Lattner4b009652007-07-25 00:24:17 +00001249}
1250
1251RValue CodeGenFunction::EmitXor(RValue LHS, RValue RHS, QualType ResTy) {
Chris Lattner7c257f42007-08-21 17:12:50 +00001252 return RValue::get(Builder.CreateXor(LHS.getVal(), RHS.getVal(), "xor"));
Chris Lattner4b009652007-07-25 00:24:17 +00001253}
1254
1255RValue CodeGenFunction::EmitOr(RValue LHS, RValue RHS, QualType ResTy) {
Chris Lattner7c257f42007-08-21 17:12:50 +00001256 return RValue::get(Builder.CreateOr(LHS.getVal(), RHS.getVal(), "or"));
Chris Lattner4b009652007-07-25 00:24:17 +00001257}
1258
1259RValue CodeGenFunction::EmitBinaryLAnd(const BinaryOperator *E) {
1260 llvm::Value *LHSCond = EvaluateExprAsBool(E->getLHS());
1261
1262 llvm::BasicBlock *ContBlock = new llvm::BasicBlock("land_cont");
1263 llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("land_rhs");
1264
1265 llvm::BasicBlock *OrigBlock = Builder.GetInsertBlock();
1266 Builder.CreateCondBr(LHSCond, RHSBlock, ContBlock);
1267
1268 EmitBlock(RHSBlock);
1269 llvm::Value *RHSCond = EvaluateExprAsBool(E->getRHS());
1270
1271 // Reaquire the RHS block, as there may be subblocks inserted.
1272 RHSBlock = Builder.GetInsertBlock();
1273 EmitBlock(ContBlock);
1274
1275 // Create a PHI node. If we just evaluted the LHS condition, the result is
1276 // false. If we evaluated both, the result is the RHS condition.
1277 llvm::PHINode *PN = Builder.CreatePHI(llvm::Type::Int1Ty, "land");
1278 PN->reserveOperandSpace(2);
1279 PN->addIncoming(llvm::ConstantInt::getFalse(), OrigBlock);
1280 PN->addIncoming(RHSCond, RHSBlock);
1281
1282 // ZExt result to int.
1283 return RValue::get(Builder.CreateZExt(PN, LLVMIntTy, "land.ext"));
1284}
1285
1286RValue CodeGenFunction::EmitBinaryLOr(const BinaryOperator *E) {
1287 llvm::Value *LHSCond = EvaluateExprAsBool(E->getLHS());
1288
1289 llvm::BasicBlock *ContBlock = new llvm::BasicBlock("lor_cont");
1290 llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("lor_rhs");
1291
1292 llvm::BasicBlock *OrigBlock = Builder.GetInsertBlock();
1293 Builder.CreateCondBr(LHSCond, ContBlock, RHSBlock);
1294
1295 EmitBlock(RHSBlock);
1296 llvm::Value *RHSCond = EvaluateExprAsBool(E->getRHS());
1297
1298 // Reaquire the RHS block, as there may be subblocks inserted.
1299 RHSBlock = Builder.GetInsertBlock();
1300 EmitBlock(ContBlock);
1301
1302 // Create a PHI node. If we just evaluted the LHS condition, the result is
1303 // true. If we evaluated both, the result is the RHS condition.
1304 llvm::PHINode *PN = Builder.CreatePHI(llvm::Type::Int1Ty, "lor");
1305 PN->reserveOperandSpace(2);
1306 PN->addIncoming(llvm::ConstantInt::getTrue(), OrigBlock);
1307 PN->addIncoming(RHSCond, RHSBlock);
1308
1309 // ZExt result to int.
1310 return RValue::get(Builder.CreateZExt(PN, LLVMIntTy, "lor.ext"));
1311}
1312
1313RValue CodeGenFunction::EmitBinaryAssign(const BinaryOperator *E) {
Chris Lattner2af72ac2007-08-08 17:43:05 +00001314 assert(E->getLHS()->getType().getCanonicalType() ==
1315 E->getRHS()->getType().getCanonicalType() && "Invalid assignment");
Chris Lattner4b009652007-07-25 00:24:17 +00001316 LValue LHS = EmitLValue(E->getLHS());
Chris Lattner2af72ac2007-08-08 17:43:05 +00001317 RValue RHS = EmitExpr(E->getRHS());
Chris Lattner4b009652007-07-25 00:24:17 +00001318
1319 // Store the value into the LHS.
1320 EmitStoreThroughLValue(RHS, LHS, E->getType());
Chris Lattnerbdb8ffb2007-08-11 00:04:45 +00001321
1322 // Return the RHS.
Chris Lattner4b009652007-07-25 00:24:17 +00001323 return RHS;
1324}
1325
1326
1327RValue CodeGenFunction::EmitBinaryComma(const BinaryOperator *E) {
Chris Lattnerc15b0db2007-08-21 17:15:50 +00001328 EmitStmt(E->getLHS());
Chris Lattner4b009652007-07-25 00:24:17 +00001329 return EmitExpr(E->getRHS());
1330}
1331
1332RValue CodeGenFunction::EmitConditionalOperator(const ConditionalOperator *E) {
1333 llvm::BasicBlock *LHSBlock = new llvm::BasicBlock("cond.?");
1334 llvm::BasicBlock *RHSBlock = new llvm::BasicBlock("cond.:");
1335 llvm::BasicBlock *ContBlock = new llvm::BasicBlock("cond.cont");
1336
1337 llvm::Value *Cond = EvaluateExprAsBool(E->getCond());
1338 Builder.CreateCondBr(Cond, LHSBlock, RHSBlock);
1339
Chris Lattner4b009652007-07-25 00:24:17 +00001340 EmitBlock(LHSBlock);
Chris Lattner2af72ac2007-08-08 17:43:05 +00001341 // Handle the GNU extension for missing LHS.
1342 llvm::Value *LHSValue = E->getLHS() ? EmitExpr(E->getLHS()).getVal() : Cond;
Chris Lattner4b009652007-07-25 00:24:17 +00001343 Builder.CreateBr(ContBlock);
1344 LHSBlock = Builder.GetInsertBlock();
1345
1346 EmitBlock(RHSBlock);
Chris Lattner2af72ac2007-08-08 17:43:05 +00001347
1348 llvm::Value *RHSValue = EmitExpr(E->getRHS()).getVal();
Chris Lattner4b009652007-07-25 00:24:17 +00001349 Builder.CreateBr(ContBlock);
1350 RHSBlock = Builder.GetInsertBlock();
1351
1352 const llvm::Type *LHSType = LHSValue->getType();
1353 assert(LHSType == RHSValue->getType() && "?: LHS & RHS must have same type");
1354
1355 EmitBlock(ContBlock);
1356 llvm::PHINode *PN = Builder.CreatePHI(LHSType, "cond");
1357 PN->reserveOperandSpace(2);
1358 PN->addIncoming(LHSValue, LHSBlock);
1359 PN->addIncoming(RHSValue, RHSBlock);
1360
1361 return RValue::get(PN);
1362}