blob: c719f56c4eef63886b78ebdfb7209e2551fc1d89 [file] [log] [blame]
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
Douglas Gregor94b1dd22008-10-24 04:54:22 +000015#include "SemaInherit.h"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000016#include "clang/Basic/Diagnostic.h"
Douglas Gregoreb8f3062008-11-12 17:17:38 +000017#include "clang/Lex/Preprocessor.h"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000018#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
Douglas Gregorf9eb9052008-11-19 21:05:33 +000020#include "clang/AST/ExprCXX.h"
Douglas Gregoreb8f3062008-11-12 17:17:38 +000021#include "clang/AST/TypeOrdering.h"
Douglas Gregorbf3af052008-11-13 20:12:29 +000022#include "llvm/ADT/SmallPtrSet.h"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000023#include "llvm/Support/Compiler.h"
24#include <algorithm>
25
26namespace clang {
27
28/// GetConversionCategory - Retrieve the implicit conversion
29/// category corresponding to the given implicit conversion kind.
30ImplicitConversionCategory
31GetConversionCategory(ImplicitConversionKind Kind) {
32 static const ImplicitConversionCategory
33 Category[(int)ICK_Num_Conversion_Kinds] = {
34 ICC_Identity,
35 ICC_Lvalue_Transformation,
36 ICC_Lvalue_Transformation,
37 ICC_Lvalue_Transformation,
38 ICC_Qualification_Adjustment,
39 ICC_Promotion,
40 ICC_Promotion,
41 ICC_Conversion,
42 ICC_Conversion,
43 ICC_Conversion,
44 ICC_Conversion,
45 ICC_Conversion,
Douglas Gregor15da57e2008-10-29 02:00:59 +000046 ICC_Conversion,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000047 ICC_Conversion
48 };
49 return Category[(int)Kind];
50}
51
52/// GetConversionRank - Retrieve the implicit conversion rank
53/// corresponding to the given implicit conversion kind.
54ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
55 static const ImplicitConversionRank
56 Rank[(int)ICK_Num_Conversion_Kinds] = {
57 ICR_Exact_Match,
58 ICR_Exact_Match,
59 ICR_Exact_Match,
60 ICR_Exact_Match,
61 ICR_Exact_Match,
62 ICR_Promotion,
63 ICR_Promotion,
64 ICR_Conversion,
65 ICR_Conversion,
66 ICR_Conversion,
67 ICR_Conversion,
68 ICR_Conversion,
Douglas Gregor15da57e2008-10-29 02:00:59 +000069 ICR_Conversion,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000070 ICR_Conversion
71 };
72 return Rank[(int)Kind];
73}
74
75/// GetImplicitConversionName - Return the name of this kind of
76/// implicit conversion.
77const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
78 static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
79 "No conversion",
80 "Lvalue-to-rvalue",
81 "Array-to-pointer",
82 "Function-to-pointer",
83 "Qualification",
84 "Integral promotion",
85 "Floating point promotion",
86 "Integral conversion",
87 "Floating conversion",
88 "Floating-integral conversion",
89 "Pointer conversion",
90 "Pointer-to-member conversion",
Douglas Gregor15da57e2008-10-29 02:00:59 +000091 "Boolean conversion",
92 "Derived-to-base conversion"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000093 };
94 return Name[Kind];
95}
96
Douglas Gregor60d62c22008-10-31 16:23:19 +000097/// StandardConversionSequence - Set the standard conversion
98/// sequence to the identity conversion.
99void StandardConversionSequence::setAsIdentityConversion() {
100 First = ICK_Identity;
101 Second = ICK_Identity;
102 Third = ICK_Identity;
103 Deprecated = false;
104 ReferenceBinding = false;
105 DirectBinding = false;
Douglas Gregor225c41e2008-11-03 19:09:14 +0000106 CopyConstructor = 0;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000107}
108
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000109/// getRank - Retrieve the rank of this standard conversion sequence
110/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
111/// implicit conversions.
112ImplicitConversionRank StandardConversionSequence::getRank() const {
113 ImplicitConversionRank Rank = ICR_Exact_Match;
114 if (GetConversionRank(First) > Rank)
115 Rank = GetConversionRank(First);
116 if (GetConversionRank(Second) > Rank)
117 Rank = GetConversionRank(Second);
118 if (GetConversionRank(Third) > Rank)
119 Rank = GetConversionRank(Third);
120 return Rank;
121}
122
123/// isPointerConversionToBool - Determines whether this conversion is
124/// a conversion of a pointer or pointer-to-member to bool. This is
125/// used as part of the ranking of standard conversion sequences
126/// (C++ 13.3.3.2p4).
127bool StandardConversionSequence::isPointerConversionToBool() const
128{
129 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
130 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
131
132 // Note that FromType has not necessarily been transformed by the
133 // array-to-pointer or function-to-pointer implicit conversions, so
134 // check for their presence as well as checking whether FromType is
135 // a pointer.
136 if (ToType->isBooleanType() &&
137 (FromType->isPointerType() ||
138 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
139 return true;
140
141 return false;
142}
143
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000144/// isPointerConversionToVoidPointer - Determines whether this
145/// conversion is a conversion of a pointer to a void pointer. This is
146/// used as part of the ranking of standard conversion sequences (C++
147/// 13.3.3.2p4).
148bool
149StandardConversionSequence::
150isPointerConversionToVoidPointer(ASTContext& Context) const
151{
152 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
153 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
154
155 // Note that FromType has not necessarily been transformed by the
156 // array-to-pointer implicit conversion, so check for its presence
157 // and redo the conversion to get a pointer.
158 if (First == ICK_Array_To_Pointer)
159 FromType = Context.getArrayDecayedType(FromType);
160
161 if (Second == ICK_Pointer_Conversion)
162 if (const PointerType* ToPtrType = ToType->getAsPointerType())
163 return ToPtrType->getPointeeType()->isVoidType();
164
165 return false;
166}
167
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000168/// DebugPrint - Print this standard conversion sequence to standard
169/// error. Useful for debugging overloading issues.
170void StandardConversionSequence::DebugPrint() const {
171 bool PrintedSomething = false;
172 if (First != ICK_Identity) {
173 fprintf(stderr, "%s", GetImplicitConversionName(First));
174 PrintedSomething = true;
175 }
176
177 if (Second != ICK_Identity) {
178 if (PrintedSomething) {
179 fprintf(stderr, " -> ");
180 }
181 fprintf(stderr, "%s", GetImplicitConversionName(Second));
Douglas Gregor225c41e2008-11-03 19:09:14 +0000182
183 if (CopyConstructor) {
184 fprintf(stderr, " (by copy constructor)");
185 } else if (DirectBinding) {
186 fprintf(stderr, " (direct reference binding)");
187 } else if (ReferenceBinding) {
188 fprintf(stderr, " (reference binding)");
189 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000190 PrintedSomething = true;
191 }
192
193 if (Third != ICK_Identity) {
194 if (PrintedSomething) {
195 fprintf(stderr, " -> ");
196 }
197 fprintf(stderr, "%s", GetImplicitConversionName(Third));
198 PrintedSomething = true;
199 }
200
201 if (!PrintedSomething) {
202 fprintf(stderr, "No conversions required");
203 }
204}
205
206/// DebugPrint - Print this user-defined conversion sequence to standard
207/// error. Useful for debugging overloading issues.
208void UserDefinedConversionSequence::DebugPrint() const {
209 if (Before.First || Before.Second || Before.Third) {
210 Before.DebugPrint();
211 fprintf(stderr, " -> ");
212 }
Chris Lattnerd9d22dd2008-11-24 05:29:24 +0000213 fprintf(stderr, "'%s'", ConversionFunction->getNameAsString().c_str());
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000214 if (After.First || After.Second || After.Third) {
215 fprintf(stderr, " -> ");
216 After.DebugPrint();
217 }
218}
219
220/// DebugPrint - Print this implicit conversion sequence to standard
221/// error. Useful for debugging overloading issues.
222void ImplicitConversionSequence::DebugPrint() const {
223 switch (ConversionKind) {
224 case StandardConversion:
225 fprintf(stderr, "Standard conversion: ");
226 Standard.DebugPrint();
227 break;
228 case UserDefinedConversion:
229 fprintf(stderr, "User-defined conversion: ");
230 UserDefined.DebugPrint();
231 break;
232 case EllipsisConversion:
233 fprintf(stderr, "Ellipsis conversion");
234 break;
235 case BadConversion:
236 fprintf(stderr, "Bad conversion");
237 break;
238 }
239
240 fprintf(stderr, "\n");
241}
242
243// IsOverload - Determine whether the given New declaration is an
244// overload of the Old declaration. This routine returns false if New
245// and Old cannot be overloaded, e.g., if they are functions with the
246// same signature (C++ 1.3.10) or if the Old declaration isn't a
247// function (or overload set). When it does return false and Old is an
248// OverloadedFunctionDecl, MatchedDecl will be set to point to the
249// FunctionDecl that New cannot be overloaded with.
250//
251// Example: Given the following input:
252//
253// void f(int, float); // #1
254// void f(int, int); // #2
255// int f(int, int); // #3
256//
257// When we process #1, there is no previous declaration of "f",
258// so IsOverload will not be used.
259//
260// When we process #2, Old is a FunctionDecl for #1. By comparing the
261// parameter types, we see that #1 and #2 are overloaded (since they
262// have different signatures), so this routine returns false;
263// MatchedDecl is unchanged.
264//
265// When we process #3, Old is an OverloadedFunctionDecl containing #1
266// and #2. We compare the signatures of #3 to #1 (they're overloaded,
267// so we do nothing) and then #3 to #2. Since the signatures of #3 and
268// #2 are identical (return types of functions are not part of the
269// signature), IsOverload returns false and MatchedDecl will be set to
270// point to the FunctionDecl for #2.
271bool
272Sema::IsOverload(FunctionDecl *New, Decl* OldD,
273 OverloadedFunctionDecl::function_iterator& MatchedDecl)
274{
275 if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
276 // Is this new function an overload of every function in the
277 // overload set?
278 OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
279 FuncEnd = Ovl->function_end();
280 for (; Func != FuncEnd; ++Func) {
281 if (!IsOverload(New, *Func, MatchedDecl)) {
282 MatchedDecl = Func;
283 return false;
284 }
285 }
286
287 // This function overloads every function in the overload set.
288 return true;
289 } else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
290 // Is the function New an overload of the function Old?
291 QualType OldQType = Context.getCanonicalType(Old->getType());
292 QualType NewQType = Context.getCanonicalType(New->getType());
293
294 // Compare the signatures (C++ 1.3.10) of the two functions to
295 // determine whether they are overloads. If we find any mismatch
296 // in the signature, they are overloads.
297
298 // If either of these functions is a K&R-style function (no
299 // prototype), then we consider them to have matching signatures.
300 if (isa<FunctionTypeNoProto>(OldQType.getTypePtr()) ||
301 isa<FunctionTypeNoProto>(NewQType.getTypePtr()))
302 return false;
303
304 FunctionTypeProto* OldType = cast<FunctionTypeProto>(OldQType.getTypePtr());
305 FunctionTypeProto* NewType = cast<FunctionTypeProto>(NewQType.getTypePtr());
306
307 // The signature of a function includes the types of its
308 // parameters (C++ 1.3.10), which includes the presence or absence
309 // of the ellipsis; see C++ DR 357).
310 if (OldQType != NewQType &&
311 (OldType->getNumArgs() != NewType->getNumArgs() ||
312 OldType->isVariadic() != NewType->isVariadic() ||
313 !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
314 NewType->arg_type_begin())))
315 return true;
316
317 // If the function is a class member, its signature includes the
318 // cv-qualifiers (if any) on the function itself.
319 //
320 // As part of this, also check whether one of the member functions
321 // is static, in which case they are not overloads (C++
322 // 13.1p2). While not part of the definition of the signature,
323 // this check is important to determine whether these functions
324 // can be overloaded.
325 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
326 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
327 if (OldMethod && NewMethod &&
328 !OldMethod->isStatic() && !NewMethod->isStatic() &&
Douglas Gregor1ca50c32008-11-21 15:36:28 +0000329 OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers())
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000330 return true;
331
332 // The signatures match; this is not an overload.
333 return false;
334 } else {
335 // (C++ 13p1):
336 // Only function declarations can be overloaded; object and type
337 // declarations cannot be overloaded.
338 return false;
339 }
340}
341
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000342/// TryImplicitConversion - Attempt to perform an implicit conversion
343/// from the given expression (Expr) to the given type (ToType). This
344/// function returns an implicit conversion sequence that can be used
345/// to perform the initialization. Given
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000346///
347/// void f(float f);
348/// void g(int i) { f(i); }
349///
350/// this routine would produce an implicit conversion sequence to
351/// describe the initialization of f from i, which will be a standard
352/// conversion sequence containing an lvalue-to-rvalue conversion (C++
353/// 4.1) followed by a floating-integral conversion (C++ 4.9).
354//
355/// Note that this routine only determines how the conversion can be
356/// performed; it does not actually perform the conversion. As such,
357/// it will not produce any diagnostics if no conversion is available,
358/// but will instead return an implicit conversion sequence of kind
359/// "BadConversion".
Douglas Gregor225c41e2008-11-03 19:09:14 +0000360///
361/// If @p SuppressUserConversions, then user-defined conversions are
362/// not permitted.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000363ImplicitConversionSequence
Douglas Gregor225c41e2008-11-03 19:09:14 +0000364Sema::TryImplicitConversion(Expr* From, QualType ToType,
365 bool SuppressUserConversions)
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000366{
367 ImplicitConversionSequence ICS;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000368 if (IsStandardConversion(From, ToType, ICS.Standard))
369 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
Douglas Gregor225c41e2008-11-03 19:09:14 +0000370 else if (!SuppressUserConversions &&
371 IsUserDefinedConversion(From, ToType, ICS.UserDefined)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000372 ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000373 // C++ [over.ics.user]p4:
374 // A conversion of an expression of class type to the same class
375 // type is given Exact Match rank, and a conversion of an
376 // expression of class type to a base class of that type is
377 // given Conversion rank, in spite of the fact that a copy
378 // constructor (i.e., a user-defined conversion function) is
379 // called for those cases.
380 if (CXXConstructorDecl *Constructor
381 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
382 if (Constructor->isCopyConstructor(Context)) {
Douglas Gregor225c41e2008-11-03 19:09:14 +0000383 // Turn this into a "standard" conversion sequence, so that it
384 // gets ranked with standard conversion sequences.
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000385 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
386 ICS.Standard.setAsIdentityConversion();
387 ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
388 ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
Douglas Gregor225c41e2008-11-03 19:09:14 +0000389 ICS.Standard.CopyConstructor = Constructor;
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000390 if (IsDerivedFrom(From->getType().getUnqualifiedType(),
391 ToType.getUnqualifiedType()))
392 ICS.Standard.Second = ICK_Derived_To_Base;
393 }
Douglas Gregor60d62c22008-10-31 16:23:19 +0000394 }
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000395 } else
Douglas Gregor60d62c22008-10-31 16:23:19 +0000396 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000397
398 return ICS;
399}
400
401/// IsStandardConversion - Determines whether there is a standard
402/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
403/// expression From to the type ToType. Standard conversion sequences
404/// only consider non-class types; for conversions that involve class
405/// types, use TryImplicitConversion. If a conversion exists, SCS will
406/// contain the standard conversion sequence required to perform this
407/// conversion and this routine will return true. Otherwise, this
408/// routine will return false and the value of SCS is unspecified.
409bool
410Sema::IsStandardConversion(Expr* From, QualType ToType,
411 StandardConversionSequence &SCS)
412{
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000413 QualType FromType = From->getType();
414
Douglas Gregor60d62c22008-10-31 16:23:19 +0000415 // There are no standard conversions for class types, so abort early.
416 if (FromType->isRecordType() || ToType->isRecordType())
417 return false;
418
419 // Standard conversions (C++ [conv])
Douglas Gregoreb8f3062008-11-12 17:17:38 +0000420 SCS.setAsIdentityConversion();
Douglas Gregor60d62c22008-10-31 16:23:19 +0000421 SCS.Deprecated = false;
Douglas Gregor45920e82008-12-19 17:40:08 +0000422 SCS.IncompatibleObjC = false;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000423 SCS.FromTypePtr = FromType.getAsOpaquePtr();
Douglas Gregor225c41e2008-11-03 19:09:14 +0000424 SCS.CopyConstructor = 0;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000425
426 // The first conversion can be an lvalue-to-rvalue conversion,
427 // array-to-pointer conversion, or function-to-pointer conversion
428 // (C++ 4p1).
429
430 // Lvalue-to-rvalue conversion (C++ 4.1):
431 // An lvalue (3.10) of a non-function, non-array type T can be
432 // converted to an rvalue.
433 Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
434 if (argIsLvalue == Expr::LV_Valid &&
Douglas Gregor904eed32008-11-10 20:40:00 +0000435 !FromType->isFunctionType() && !FromType->isArrayType() &&
436 !FromType->isOverloadType()) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000437 SCS.First = ICK_Lvalue_To_Rvalue;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000438
439 // If T is a non-class type, the type of the rvalue is the
440 // cv-unqualified version of T. Otherwise, the type of the rvalue
441 // is T (C++ 4.1p1).
Douglas Gregor60d62c22008-10-31 16:23:19 +0000442 FromType = FromType.getUnqualifiedType();
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000443 }
444 // Array-to-pointer conversion (C++ 4.2)
445 else if (FromType->isArrayType()) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000446 SCS.First = ICK_Array_To_Pointer;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000447
448 // An lvalue or rvalue of type "array of N T" or "array of unknown
449 // bound of T" can be converted to an rvalue of type "pointer to
450 // T" (C++ 4.2p1).
451 FromType = Context.getArrayDecayedType(FromType);
452
453 if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
454 // This conversion is deprecated. (C++ D.4).
Douglas Gregor60d62c22008-10-31 16:23:19 +0000455 SCS.Deprecated = true;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000456
457 // For the purpose of ranking in overload resolution
458 // (13.3.3.1.1), this conversion is considered an
459 // array-to-pointer conversion followed by a qualification
460 // conversion (4.4). (C++ 4.2p2)
Douglas Gregor60d62c22008-10-31 16:23:19 +0000461 SCS.Second = ICK_Identity;
462 SCS.Third = ICK_Qualification;
463 SCS.ToTypePtr = ToType.getAsOpaquePtr();
464 return true;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000465 }
466 }
467 // Function-to-pointer conversion (C++ 4.3).
468 else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000469 SCS.First = ICK_Function_To_Pointer;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000470
471 // An lvalue of function type T can be converted to an rvalue of
472 // type "pointer to T." The result is a pointer to the
473 // function. (C++ 4.3p1).
474 FromType = Context.getPointerType(FromType);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000475 }
Douglas Gregor904eed32008-11-10 20:40:00 +0000476 // Address of overloaded function (C++ [over.over]).
477 else if (FunctionDecl *Fn
478 = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
479 SCS.First = ICK_Function_To_Pointer;
480
481 // We were able to resolve the address of the overloaded function,
482 // so we can convert to the type of that function.
483 FromType = Fn->getType();
484 if (ToType->isReferenceType())
485 FromType = Context.getReferenceType(FromType);
486 else
487 FromType = Context.getPointerType(FromType);
488 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000489 // We don't require any conversions for the first step.
490 else {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000491 SCS.First = ICK_Identity;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000492 }
493
494 // The second conversion can be an integral promotion, floating
495 // point promotion, integral conversion, floating point conversion,
496 // floating-integral conversion, pointer conversion,
497 // pointer-to-member conversion, or boolean conversion (C++ 4p1).
Douglas Gregor45920e82008-12-19 17:40:08 +0000498 bool IncompatibleObjC = false;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000499 if (Context.getCanonicalType(FromType).getUnqualifiedType() ==
500 Context.getCanonicalType(ToType).getUnqualifiedType()) {
501 // The unqualified versions of the types are the same: there's no
502 // conversion to do.
Douglas Gregor60d62c22008-10-31 16:23:19 +0000503 SCS.Second = ICK_Identity;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000504 }
505 // Integral promotion (C++ 4.5).
506 else if (IsIntegralPromotion(From, FromType, ToType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000507 SCS.Second = ICK_Integral_Promotion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000508 FromType = ToType.getUnqualifiedType();
509 }
510 // Floating point promotion (C++ 4.6).
511 else if (IsFloatingPointPromotion(FromType, ToType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000512 SCS.Second = ICK_Floating_Promotion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000513 FromType = ToType.getUnqualifiedType();
514 }
515 // Integral conversions (C++ 4.7).
Sebastian Redl07779722008-10-31 14:43:28 +0000516 // FIXME: isIntegralType shouldn't be true for enums in C++.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000517 else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
Sebastian Redl07779722008-10-31 14:43:28 +0000518 (ToType->isIntegralType() && !ToType->isEnumeralType())) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000519 SCS.Second = ICK_Integral_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000520 FromType = ToType.getUnqualifiedType();
521 }
522 // Floating point conversions (C++ 4.8).
523 else if (FromType->isFloatingType() && ToType->isFloatingType()) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000524 SCS.Second = ICK_Floating_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000525 FromType = ToType.getUnqualifiedType();
526 }
527 // Floating-integral conversions (C++ 4.9).
Sebastian Redl07779722008-10-31 14:43:28 +0000528 // FIXME: isIntegralType shouldn't be true for enums in C++.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000529 else if ((FromType->isFloatingType() &&
Sebastian Redl07779722008-10-31 14:43:28 +0000530 ToType->isIntegralType() && !ToType->isBooleanType() &&
531 !ToType->isEnumeralType()) ||
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000532 ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
533 ToType->isFloatingType())) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000534 SCS.Second = ICK_Floating_Integral;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000535 FromType = ToType.getUnqualifiedType();
536 }
537 // Pointer conversions (C++ 4.10).
Douglas Gregor45920e82008-12-19 17:40:08 +0000538 else if (IsPointerConversion(From, FromType, ToType, FromType,
539 IncompatibleObjC)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000540 SCS.Second = ICK_Pointer_Conversion;
Douglas Gregor45920e82008-12-19 17:40:08 +0000541 SCS.IncompatibleObjC = IncompatibleObjC;
Sebastian Redl07779722008-10-31 14:43:28 +0000542 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000543 // FIXME: Pointer to member conversions (4.11).
544 // Boolean conversions (C++ 4.12).
545 // FIXME: pointer-to-member type
546 else if (ToType->isBooleanType() &&
547 (FromType->isArithmeticType() ||
548 FromType->isEnumeralType() ||
549 FromType->isPointerType())) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000550 SCS.Second = ICK_Boolean_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000551 FromType = Context.BoolTy;
552 } else {
553 // No second conversion required.
Douglas Gregor60d62c22008-10-31 16:23:19 +0000554 SCS.Second = ICK_Identity;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000555 }
556
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000557 QualType CanonFrom;
558 QualType CanonTo;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000559 // The third conversion can be a qualification conversion (C++ 4p1).
Douglas Gregor98cd5992008-10-21 23:43:52 +0000560 if (IsQualificationConversion(FromType, ToType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000561 SCS.Third = ICK_Qualification;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000562 FromType = ToType;
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000563 CanonFrom = Context.getCanonicalType(FromType);
564 CanonTo = Context.getCanonicalType(ToType);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000565 } else {
566 // No conversion required
Douglas Gregor60d62c22008-10-31 16:23:19 +0000567 SCS.Third = ICK_Identity;
568
569 // C++ [over.best.ics]p6:
570 // [...] Any difference in top-level cv-qualification is
571 // subsumed by the initialization itself and does not constitute
572 // a conversion. [...]
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000573 CanonFrom = Context.getCanonicalType(FromType);
574 CanonTo = Context.getCanonicalType(ToType);
Douglas Gregor60d62c22008-10-31 16:23:19 +0000575 if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000576 CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
577 FromType = ToType;
578 CanonFrom = CanonTo;
579 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000580 }
581
582 // If we have not converted the argument type to the parameter type,
583 // this is a bad conversion sequence.
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000584 if (CanonFrom != CanonTo)
Douglas Gregor60d62c22008-10-31 16:23:19 +0000585 return false;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000586
Douglas Gregor60d62c22008-10-31 16:23:19 +0000587 SCS.ToTypePtr = FromType.getAsOpaquePtr();
588 return true;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000589}
590
591/// IsIntegralPromotion - Determines whether the conversion from the
592/// expression From (whose potentially-adjusted type is FromType) to
593/// ToType is an integral promotion (C++ 4.5). If so, returns true and
594/// sets PromotedType to the promoted type.
595bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
596{
597 const BuiltinType *To = ToType->getAsBuiltinType();
Sebastian Redlf7be9442008-11-04 15:59:10 +0000598 // All integers are built-in.
Sebastian Redl07779722008-10-31 14:43:28 +0000599 if (!To) {
600 return false;
601 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000602
603 // An rvalue of type char, signed char, unsigned char, short int, or
604 // unsigned short int can be converted to an rvalue of type int if
605 // int can represent all the values of the source type; otherwise,
606 // the source rvalue can be converted to an rvalue of type unsigned
607 // int (C++ 4.5p1).
Sebastian Redl07779722008-10-31 14:43:28 +0000608 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000609 if (// We can promote any signed, promotable integer type to an int
610 (FromType->isSignedIntegerType() ||
611 // We can promote any unsigned integer type whose size is
612 // less than int to an int.
613 (!FromType->isSignedIntegerType() &&
Sebastian Redl07779722008-10-31 14:43:28 +0000614 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000615 return To->getKind() == BuiltinType::Int;
Sebastian Redl07779722008-10-31 14:43:28 +0000616 }
617
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000618 return To->getKind() == BuiltinType::UInt;
619 }
620
621 // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
622 // can be converted to an rvalue of the first of the following types
623 // that can represent all the values of its underlying type: int,
624 // unsigned int, long, or unsigned long (C++ 4.5p2).
625 if ((FromType->isEnumeralType() || FromType->isWideCharType())
626 && ToType->isIntegerType()) {
627 // Determine whether the type we're converting from is signed or
628 // unsigned.
629 bool FromIsSigned;
630 uint64_t FromSize = Context.getTypeSize(FromType);
631 if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
632 QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
633 FromIsSigned = UnderlyingType->isSignedIntegerType();
634 } else {
635 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
636 FromIsSigned = true;
637 }
638
639 // The types we'll try to promote to, in the appropriate
640 // order. Try each of these types.
Douglas Gregorc9467cf2008-12-12 02:00:36 +0000641 QualType PromoteTypes[6] = {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000642 Context.IntTy, Context.UnsignedIntTy,
Douglas Gregorc9467cf2008-12-12 02:00:36 +0000643 Context.LongTy, Context.UnsignedLongTy ,
644 Context.LongLongTy, Context.UnsignedLongLongTy
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000645 };
Douglas Gregorc9467cf2008-12-12 02:00:36 +0000646 for (int Idx = 0; Idx < 6; ++Idx) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000647 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
648 if (FromSize < ToSize ||
649 (FromSize == ToSize &&
650 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
651 // We found the type that we can promote to. If this is the
652 // type we wanted, we have a promotion. Otherwise, no
653 // promotion.
Sebastian Redl07779722008-10-31 14:43:28 +0000654 return Context.getCanonicalType(ToType).getUnqualifiedType()
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000655 == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
656 }
657 }
658 }
659
660 // An rvalue for an integral bit-field (9.6) can be converted to an
661 // rvalue of type int if int can represent all the values of the
662 // bit-field; otherwise, it can be converted to unsigned int if
663 // unsigned int can represent all the values of the bit-field. If
664 // the bit-field is larger yet, no integral promotion applies to
665 // it. If the bit-field has an enumerated type, it is treated as any
666 // other value of that type for promotion purposes (C++ 4.5p3).
667 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(From)) {
668 using llvm::APSInt;
669 FieldDecl *MemberDecl = MemRef->getMemberDecl();
670 APSInt BitWidth;
671 if (MemberDecl->isBitField() &&
672 FromType->isIntegralType() && !FromType->isEnumeralType() &&
673 From->isIntegerConstantExpr(BitWidth, Context)) {
674 APSInt ToSize(Context.getTypeSize(ToType));
675
676 // Are we promoting to an int from a bitfield that fits in an int?
677 if (BitWidth < ToSize ||
Sebastian Redl07779722008-10-31 14:43:28 +0000678 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000679 return To->getKind() == BuiltinType::Int;
Sebastian Redl07779722008-10-31 14:43:28 +0000680 }
681
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000682 // Are we promoting to an unsigned int from an unsigned bitfield
683 // that fits into an unsigned int?
Sebastian Redl07779722008-10-31 14:43:28 +0000684 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000685 return To->getKind() == BuiltinType::UInt;
Sebastian Redl07779722008-10-31 14:43:28 +0000686 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000687
688 return false;
689 }
690 }
691
692 // An rvalue of type bool can be converted to an rvalue of type int,
693 // with false becoming zero and true becoming one (C++ 4.5p4).
Sebastian Redl07779722008-10-31 14:43:28 +0000694 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000695 return true;
Sebastian Redl07779722008-10-31 14:43:28 +0000696 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000697
698 return false;
699}
700
701/// IsFloatingPointPromotion - Determines whether the conversion from
702/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
703/// returns true and sets PromotedType to the promoted type.
704bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
705{
706 /// An rvalue of type float can be converted to an rvalue of type
707 /// double. (C++ 4.6p1).
708 if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
709 if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType())
710 if (FromBuiltin->getKind() == BuiltinType::Float &&
711 ToBuiltin->getKind() == BuiltinType::Double)
712 return true;
713
714 return false;
715}
716
Douglas Gregorcb7de522008-11-26 23:31:11 +0000717/// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
718/// the pointer type FromPtr to a pointer to type ToPointee, with the
719/// same type qualifiers as FromPtr has on its pointee type. ToType,
720/// if non-empty, will be a pointer to ToType that may or may not have
721/// the right set of qualifiers on its pointee.
722static QualType
723BuildSimilarlyQualifiedPointerType(const PointerType *FromPtr,
724 QualType ToPointee, QualType ToType,
725 ASTContext &Context) {
726 QualType CanonFromPointee = Context.getCanonicalType(FromPtr->getPointeeType());
727 QualType CanonToPointee = Context.getCanonicalType(ToPointee);
728 unsigned Quals = CanonFromPointee.getCVRQualifiers();
729
730 // Exact qualifier match -> return the pointer type we're converting to.
731 if (CanonToPointee.getCVRQualifiers() == Quals) {
732 // ToType is exactly what we need. Return it.
733 if (ToType.getTypePtr())
734 return ToType;
735
736 // Build a pointer to ToPointee. It has the right qualifiers
737 // already.
738 return Context.getPointerType(ToPointee);
739 }
740
741 // Just build a canonical type that has the right qualifiers.
742 return Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
743}
744
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000745/// IsPointerConversion - Determines whether the conversion of the
746/// expression From, which has the (possibly adjusted) type FromType,
747/// can be converted to the type ToType via a pointer conversion (C++
748/// 4.10). If so, returns true and places the converted type (that
749/// might differ from ToType in its cv-qualifiers at some level) into
750/// ConvertedType.
Douglas Gregor071f2ae2008-11-27 00:15:41 +0000751///
Douglas Gregor7ca09762008-11-27 01:19:21 +0000752/// This routine also supports conversions to and from block pointers
753/// and conversions with Objective-C's 'id', 'id<protocols...>', and
754/// pointers to interfaces. FIXME: Once we've determined the
755/// appropriate overloading rules for Objective-C, we may want to
756/// split the Objective-C checks into a different routine; however,
757/// GCC seems to consider all of these conversions to be pointer
Douglas Gregor45920e82008-12-19 17:40:08 +0000758/// conversions, so for now they live here. IncompatibleObjC will be
759/// set if the conversion is an allowed Objective-C conversion that
760/// should result in a warning.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000761bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
Douglas Gregor45920e82008-12-19 17:40:08 +0000762 QualType& ConvertedType,
763 bool &IncompatibleObjC)
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000764{
Douglas Gregor45920e82008-12-19 17:40:08 +0000765 IncompatibleObjC = false;
Douglas Gregorc7887512008-12-19 19:13:09 +0000766 if (isObjCPointerConversion(FromType, ToType, ConvertedType, IncompatibleObjC))
767 return true;
Douglas Gregor45920e82008-12-19 17:40:08 +0000768
Douglas Gregor071f2ae2008-11-27 00:15:41 +0000769 // Blocks: Block pointers can be converted to void*.
770 if (FromType->isBlockPointerType() && ToType->isPointerType() &&
771 ToType->getAsPointerType()->getPointeeType()->isVoidType()) {
772 ConvertedType = ToType;
773 return true;
774 }
775 // Blocks: A null pointer constant can be converted to a block
776 // pointer type.
777 if (ToType->isBlockPointerType() && From->isNullPointerConstant(Context)) {
778 ConvertedType = ToType;
779 return true;
780 }
781
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000782 const PointerType* ToTypePtr = ToType->getAsPointerType();
783 if (!ToTypePtr)
784 return false;
785
786 // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
787 if (From->isNullPointerConstant(Context)) {
788 ConvertedType = ToType;
789 return true;
790 }
Sebastian Redl07779722008-10-31 14:43:28 +0000791
Douglas Gregorcb7de522008-11-26 23:31:11 +0000792 // Beyond this point, both types need to be pointers.
793 const PointerType *FromTypePtr = FromType->getAsPointerType();
794 if (!FromTypePtr)
795 return false;
796
797 QualType FromPointeeType = FromTypePtr->getPointeeType();
798 QualType ToPointeeType = ToTypePtr->getPointeeType();
799
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000800 // An rvalue of type "pointer to cv T," where T is an object type,
801 // can be converted to an rvalue of type "pointer to cv void" (C++
802 // 4.10p2).
Douglas Gregorc7887512008-12-19 19:13:09 +0000803 if (FromPointeeType->isIncompleteOrObjectType() &&
804 ToPointeeType->isVoidType()) {
Douglas Gregorbf408182008-11-27 00:52:49 +0000805 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
806 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +0000807 ToType, Context);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000808 return true;
809 }
810
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000811 // C++ [conv.ptr]p3:
812 //
813 // An rvalue of type "pointer to cv D," where D is a class type,
814 // can be converted to an rvalue of type "pointer to cv B," where
815 // B is a base class (clause 10) of D. If B is an inaccessible
816 // (clause 11) or ambiguous (10.2) base class of D, a program that
817 // necessitates this conversion is ill-formed. The result of the
818 // conversion is a pointer to the base class sub-object of the
819 // derived class object. The null pointer value is converted to
820 // the null pointer value of the destination type.
821 //
Douglas Gregor94b1dd22008-10-24 04:54:22 +0000822 // Note that we do not check for ambiguity or inaccessibility
823 // here. That is handled by CheckPointerConversion.
Douglas Gregorcb7de522008-11-26 23:31:11 +0000824 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
825 IsDerivedFrom(FromPointeeType, ToPointeeType)) {
Douglas Gregorbf408182008-11-27 00:52:49 +0000826 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
827 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +0000828 ToType, Context);
829 return true;
830 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000831
Douglas Gregorc7887512008-12-19 19:13:09 +0000832 return false;
833}
834
835/// isObjCPointerConversion - Determines whether this is an
836/// Objective-C pointer conversion. Subroutine of IsPointerConversion,
837/// with the same arguments and return values.
838bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
839 QualType& ConvertedType,
840 bool &IncompatibleObjC) {
841 if (!getLangOptions().ObjC1)
842 return false;
843
844 // Conversions with Objective-C's id<...>.
845 if ((FromType->isObjCQualifiedIdType() || ToType->isObjCQualifiedIdType()) &&
846 ObjCQualifiedIdTypesAreCompatible(ToType, FromType, /*compare=*/false)) {
847 ConvertedType = ToType;
848 return true;
849 }
850
851 const PointerType* ToTypePtr = ToType->getAsPointerType();
852 if (!ToTypePtr)
853 return false;
854
855 // Beyond this point, both types need to be pointers.
856 const PointerType *FromTypePtr = FromType->getAsPointerType();
857 if (!FromTypePtr)
858 return false;
859
860 QualType FromPointeeType = FromTypePtr->getPointeeType();
861 QualType ToPointeeType = ToTypePtr->getPointeeType();
862
Douglas Gregorcb7de522008-11-26 23:31:11 +0000863 // Objective C++: We're able to convert from a pointer to an
864 // interface to a pointer to a different interface.
865 const ObjCInterfaceType* FromIface = FromPointeeType->getAsObjCInterfaceType();
866 const ObjCInterfaceType* ToIface = ToPointeeType->getAsObjCInterfaceType();
867 if (FromIface && ToIface &&
868 Context.canAssignObjCInterfaces(ToIface, FromIface)) {
Douglas Gregorbf408182008-11-27 00:52:49 +0000869 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
870 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +0000871 ToType, Context);
872 return true;
873 }
874
Douglas Gregor45920e82008-12-19 17:40:08 +0000875 if (FromIface && ToIface &&
876 Context.canAssignObjCInterfaces(FromIface, ToIface)) {
877 // Okay: this is some kind of implicit downcast of Objective-C
878 // interfaces, which is permitted. However, we're going to
879 // complain about it.
880 IncompatibleObjC = true;
881 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
882 ToPointeeType,
883 ToType, Context);
884 return true;
885 }
886
Douglas Gregorcb7de522008-11-26 23:31:11 +0000887 // Objective C++: We're able to convert between "id" and a pointer
888 // to any interface (in both directions).
889 if ((FromIface && Context.isObjCIdType(ToPointeeType))
890 || (ToIface && Context.isObjCIdType(FromPointeeType))) {
Douglas Gregorbf408182008-11-27 00:52:49 +0000891 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
892 ToPointeeType,
Douglas Gregorcb7de522008-11-26 23:31:11 +0000893 ToType, Context);
894 return true;
895 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000896
Douglas Gregordda78892008-12-18 23:43:31 +0000897 // Objective C++: Allow conversions between the Objective-C "id" and
898 // "Class", in either direction.
899 if ((Context.isObjCIdType(FromPointeeType) &&
900 Context.isObjCClassType(ToPointeeType)) ||
901 (Context.isObjCClassType(FromPointeeType) &&
902 Context.isObjCIdType(ToPointeeType))) {
903 ConvertedType = ToType;
904 return true;
905 }
906
Douglas Gregorc7887512008-12-19 19:13:09 +0000907 // If we have pointers to pointers, recursively check whether this
908 // is an Objective-C conversion.
909 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
910 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
911 IncompatibleObjC)) {
912 // We always complain about this conversion.
913 IncompatibleObjC = true;
914 ConvertedType = ToType;
915 return true;
916 }
917
918 // If we have pointers to functions, check whether the only
919 // differences in the argument and result types are in Objective-C
920 // pointer conversions. If so, we permit the conversion (but
921 // complain about it).
922 const FunctionTypeProto *FromFunctionType
923 = FromPointeeType->getAsFunctionTypeProto();
924 const FunctionTypeProto *ToFunctionType
925 = ToPointeeType->getAsFunctionTypeProto();
926 if (FromFunctionType && ToFunctionType) {
927 // If the function types are exactly the same, this isn't an
928 // Objective-C pointer conversion.
929 if (Context.getCanonicalType(FromPointeeType)
930 == Context.getCanonicalType(ToPointeeType))
931 return false;
932
933 // Perform the quick checks that will tell us whether these
934 // function types are obviously different.
935 if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() ||
936 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
937 FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals())
938 return false;
939
940 bool HasObjCConversion = false;
941 if (Context.getCanonicalType(FromFunctionType->getResultType())
942 == Context.getCanonicalType(ToFunctionType->getResultType())) {
943 // Okay, the types match exactly. Nothing to do.
944 } else if (isObjCPointerConversion(FromFunctionType->getResultType(),
945 ToFunctionType->getResultType(),
946 ConvertedType, IncompatibleObjC)) {
947 // Okay, we have an Objective-C pointer conversion.
948 HasObjCConversion = true;
949 } else {
950 // Function types are too different. Abort.
951 return false;
952 }
953
954 // Check argument types.
955 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs();
956 ArgIdx != NumArgs; ++ArgIdx) {
957 QualType FromArgType = FromFunctionType->getArgType(ArgIdx);
958 QualType ToArgType = ToFunctionType->getArgType(ArgIdx);
959 if (Context.getCanonicalType(FromArgType)
960 == Context.getCanonicalType(ToArgType)) {
961 // Okay, the types match exactly. Nothing to do.
962 } else if (isObjCPointerConversion(FromArgType, ToArgType,
963 ConvertedType, IncompatibleObjC)) {
964 // Okay, we have an Objective-C pointer conversion.
965 HasObjCConversion = true;
966 } else {
967 // Argument types are too different. Abort.
968 return false;
969 }
970 }
971
972 if (HasObjCConversion) {
973 // We had an Objective-C conversion. Allow this pointer
974 // conversion, but complain about it.
975 ConvertedType = ToType;
976 IncompatibleObjC = true;
977 return true;
978 }
979 }
980
981 return false;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000982}
983
Douglas Gregor94b1dd22008-10-24 04:54:22 +0000984/// CheckPointerConversion - Check the pointer conversion from the
985/// expression From to the type ToType. This routine checks for
986/// ambiguous (FIXME: or inaccessible) derived-to-base pointer
987/// conversions for which IsPointerConversion has already returned
988/// true. It returns true and produces a diagnostic if there was an
989/// error, or returns false otherwise.
990bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
991 QualType FromType = From->getType();
992
993 if (const PointerType *FromPtrType = FromType->getAsPointerType())
994 if (const PointerType *ToPtrType = ToType->getAsPointerType()) {
Sebastian Redl07779722008-10-31 14:43:28 +0000995 BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
996 /*DetectVirtual=*/false);
Douglas Gregor94b1dd22008-10-24 04:54:22 +0000997 QualType FromPointeeType = FromPtrType->getPointeeType(),
998 ToPointeeType = ToPtrType->getPointeeType();
Douglas Gregordda78892008-12-18 23:43:31 +0000999
1000 // Objective-C++ conversions are always okay.
1001 // FIXME: We should have a different class of conversions for
1002 // the Objective-C++ implicit conversions.
1003 if (Context.isObjCIdType(FromPointeeType) ||
1004 Context.isObjCIdType(ToPointeeType) ||
1005 Context.isObjCClassType(FromPointeeType) ||
1006 Context.isObjCClassType(ToPointeeType))
1007 return false;
1008
Douglas Gregor94b1dd22008-10-24 04:54:22 +00001009 if (FromPointeeType->isRecordType() &&
1010 ToPointeeType->isRecordType()) {
1011 // We must have a derived-to-base conversion. Check an
1012 // ambiguous or inaccessible conversion.
Douglas Gregor0575d4a2008-10-24 16:17:19 +00001013 return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
1014 From->getExprLoc(),
1015 From->getSourceRange());
Douglas Gregor94b1dd22008-10-24 04:54:22 +00001016 }
1017 }
1018
1019 return false;
1020}
1021
Douglas Gregor98cd5992008-10-21 23:43:52 +00001022/// IsQualificationConversion - Determines whether the conversion from
1023/// an rvalue of type FromType to ToType is a qualification conversion
1024/// (C++ 4.4).
1025bool
1026Sema::IsQualificationConversion(QualType FromType, QualType ToType)
1027{
1028 FromType = Context.getCanonicalType(FromType);
1029 ToType = Context.getCanonicalType(ToType);
1030
1031 // If FromType and ToType are the same type, this is not a
1032 // qualification conversion.
1033 if (FromType == ToType)
1034 return false;
1035
1036 // (C++ 4.4p4):
1037 // A conversion can add cv-qualifiers at levels other than the first
1038 // in multi-level pointers, subject to the following rules: [...]
1039 bool PreviousToQualsIncludeConst = true;
Douglas Gregor98cd5992008-10-21 23:43:52 +00001040 bool UnwrappedAnyPointer = false;
Douglas Gregor57373262008-10-22 14:17:15 +00001041 while (UnwrapSimilarPointerTypes(FromType, ToType)) {
Douglas Gregor98cd5992008-10-21 23:43:52 +00001042 // Within each iteration of the loop, we check the qualifiers to
1043 // determine if this still looks like a qualification
1044 // conversion. Then, if all is well, we unwrap one more level of
Douglas Gregorf8268ae2008-10-22 17:49:05 +00001045 // pointers or pointers-to-members and do it all again
Douglas Gregor98cd5992008-10-21 23:43:52 +00001046 // until there are no more pointers or pointers-to-members left to
1047 // unwrap.
Douglas Gregor57373262008-10-22 14:17:15 +00001048 UnwrappedAnyPointer = true;
Douglas Gregor98cd5992008-10-21 23:43:52 +00001049
1050 // -- for every j > 0, if const is in cv 1,j then const is in cv
1051 // 2,j, and similarly for volatile.
Douglas Gregor9b6e2d22008-10-22 00:38:21 +00001052 if (!ToType.isAtLeastAsQualifiedAs(FromType))
Douglas Gregor98cd5992008-10-21 23:43:52 +00001053 return false;
Douglas Gregor57373262008-10-22 14:17:15 +00001054
Douglas Gregor98cd5992008-10-21 23:43:52 +00001055 // -- if the cv 1,j and cv 2,j are different, then const is in
1056 // every cv for 0 < k < j.
1057 if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
Douglas Gregor57373262008-10-22 14:17:15 +00001058 && !PreviousToQualsIncludeConst)
Douglas Gregor98cd5992008-10-21 23:43:52 +00001059 return false;
Douglas Gregor57373262008-10-22 14:17:15 +00001060
Douglas Gregor98cd5992008-10-21 23:43:52 +00001061 // Keep track of whether all prior cv-qualifiers in the "to" type
1062 // include const.
1063 PreviousToQualsIncludeConst
1064 = PreviousToQualsIncludeConst && ToType.isConstQualified();
Douglas Gregor57373262008-10-22 14:17:15 +00001065 }
Douglas Gregor98cd5992008-10-21 23:43:52 +00001066
1067 // We are left with FromType and ToType being the pointee types
1068 // after unwrapping the original FromType and ToType the same number
1069 // of types. If we unwrapped any pointers, and if FromType and
1070 // ToType have the same unqualified type (since we checked
1071 // qualifiers above), then this is a qualification conversion.
1072 return UnwrappedAnyPointer &&
1073 FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
1074}
1075
Douglas Gregor60d62c22008-10-31 16:23:19 +00001076/// IsUserDefinedConversion - Determines whether there is a
1077/// user-defined conversion sequence (C++ [over.ics.user]) that
1078/// converts expression From to the type ToType. If such a conversion
1079/// exists, User will contain the user-defined conversion sequence
1080/// that performs such a conversion and this routine will return
1081/// true. Otherwise, this routine returns false and User is
1082/// unspecified.
1083bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
1084 UserDefinedConversionSequence& User)
1085{
1086 OverloadCandidateSet CandidateSet;
1087 if (const CXXRecordType *ToRecordType
1088 = dyn_cast_or_null<CXXRecordType>(ToType->getAsRecordType())) {
1089 // C++ [over.match.ctor]p1:
1090 // When objects of class type are direct-initialized (8.5), or
1091 // copy-initialized from an expression of the same or a
1092 // derived class type (8.5), overload resolution selects the
1093 // constructor. [...] For copy-initialization, the candidate
1094 // functions are all the converting constructors (12.3.1) of
1095 // that class. The argument list is the expression-list within
1096 // the parentheses of the initializer.
1097 CXXRecordDecl *ToRecordDecl = ToRecordType->getDecl();
Douglas Gregor9e7d9de2008-12-15 21:24:18 +00001098 DeclarationName ConstructorName
1099 = Context.DeclarationNames.getCXXConstructorName(
1100 Context.getCanonicalType(ToType));
1101 DeclContext::lookup_result Lookup
1102 = ToRecordDecl->lookup(Context, ConstructorName);
1103 if (Lookup.first == Lookup.second)
1104 /* No constructors. FIXME: Implicit copy constructor? */;
1105 else if (OverloadedFunctionDecl *Constructors
1106 = dyn_cast<OverloadedFunctionDecl>(*Lookup.first)) {
1107 for (OverloadedFunctionDecl::function_const_iterator func
1108 = Constructors->function_begin();
1109 func != Constructors->function_end(); ++func) {
1110 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*func);
1111 if (Constructor->isConvertingConstructor())
1112 AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
1113 /*SuppressUserConversions=*/true);
1114 }
1115 } else if (CXXConstructorDecl *Constructor
1116 = dyn_cast<CXXConstructorDecl>(*Lookup.first)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +00001117 if (Constructor->isConvertingConstructor())
Douglas Gregor225c41e2008-11-03 19:09:14 +00001118 AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
1119 /*SuppressUserConversions=*/true);
Douglas Gregor60d62c22008-10-31 16:23:19 +00001120 }
1121 }
1122
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001123 if (const CXXRecordType *FromRecordType
1124 = dyn_cast_or_null<CXXRecordType>(From->getType()->getAsRecordType())) {
1125 // Add all of the conversion functions as candidates.
1126 // FIXME: Look for conversions in base classes!
1127 CXXRecordDecl *FromRecordDecl = FromRecordType->getDecl();
1128 OverloadedFunctionDecl *Conversions
1129 = FromRecordDecl->getConversionFunctions();
1130 for (OverloadedFunctionDecl::function_iterator Func
1131 = Conversions->function_begin();
1132 Func != Conversions->function_end(); ++Func) {
1133 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
1134 AddConversionCandidate(Conv, From, ToType, CandidateSet);
1135 }
1136 }
Douglas Gregor60d62c22008-10-31 16:23:19 +00001137
1138 OverloadCandidateSet::iterator Best;
1139 switch (BestViableFunction(CandidateSet, Best)) {
1140 case OR_Success:
1141 // Record the standard conversion we used and the conversion function.
Douglas Gregor60d62c22008-10-31 16:23:19 +00001142 if (CXXConstructorDecl *Constructor
1143 = dyn_cast<CXXConstructorDecl>(Best->Function)) {
1144 // C++ [over.ics.user]p1:
1145 // If the user-defined conversion is specified by a
1146 // constructor (12.3.1), the initial standard conversion
1147 // sequence converts the source type to the type required by
1148 // the argument of the constructor.
1149 //
1150 // FIXME: What about ellipsis conversions?
1151 QualType ThisType = Constructor->getThisType(Context);
1152 User.Before = Best->Conversions[0].Standard;
1153 User.ConversionFunction = Constructor;
1154 User.After.setAsIdentityConversion();
1155 User.After.FromTypePtr
1156 = ThisType->getAsPointerType()->getPointeeType().getAsOpaquePtr();
1157 User.After.ToTypePtr = ToType.getAsOpaquePtr();
1158 return true;
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001159 } else if (CXXConversionDecl *Conversion
1160 = dyn_cast<CXXConversionDecl>(Best->Function)) {
1161 // C++ [over.ics.user]p1:
1162 //
1163 // [...] If the user-defined conversion is specified by a
1164 // conversion function (12.3.2), the initial standard
1165 // conversion sequence converts the source type to the
1166 // implicit object parameter of the conversion function.
1167 User.Before = Best->Conversions[0].Standard;
1168 User.ConversionFunction = Conversion;
1169
1170 // C++ [over.ics.user]p2:
1171 // The second standard conversion sequence converts the
1172 // result of the user-defined conversion to the target type
1173 // for the sequence. Since an implicit conversion sequence
1174 // is an initialization, the special rules for
1175 // initialization by user-defined conversion apply when
1176 // selecting the best user-defined conversion for a
1177 // user-defined conversion sequence (see 13.3.3 and
1178 // 13.3.3.1).
1179 User.After = Best->FinalConversion;
1180 return true;
Douglas Gregor60d62c22008-10-31 16:23:19 +00001181 } else {
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001182 assert(false && "Not a constructor or conversion function?");
Douglas Gregor60d62c22008-10-31 16:23:19 +00001183 return false;
1184 }
1185
1186 case OR_No_Viable_Function:
1187 // No conversion here! We're done.
1188 return false;
1189
1190 case OR_Ambiguous:
1191 // FIXME: See C++ [over.best.ics]p10 for the handling of
1192 // ambiguous conversion sequences.
1193 return false;
1194 }
1195
1196 return false;
1197}
1198
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001199/// CompareImplicitConversionSequences - Compare two implicit
1200/// conversion sequences to determine whether one is better than the
1201/// other or if they are indistinguishable (C++ 13.3.3.2).
1202ImplicitConversionSequence::CompareKind
1203Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
1204 const ImplicitConversionSequence& ICS2)
1205{
1206 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
1207 // conversion sequences (as defined in 13.3.3.1)
1208 // -- a standard conversion sequence (13.3.3.1.1) is a better
1209 // conversion sequence than a user-defined conversion sequence or
1210 // an ellipsis conversion sequence, and
1211 // -- a user-defined conversion sequence (13.3.3.1.2) is a better
1212 // conversion sequence than an ellipsis conversion sequence
1213 // (13.3.3.1.3).
1214 //
1215 if (ICS1.ConversionKind < ICS2.ConversionKind)
1216 return ImplicitConversionSequence::Better;
1217 else if (ICS2.ConversionKind < ICS1.ConversionKind)
1218 return ImplicitConversionSequence::Worse;
1219
1220 // Two implicit conversion sequences of the same form are
1221 // indistinguishable conversion sequences unless one of the
1222 // following rules apply: (C++ 13.3.3.2p3):
1223 if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1224 return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1225 else if (ICS1.ConversionKind ==
1226 ImplicitConversionSequence::UserDefinedConversion) {
1227 // User-defined conversion sequence U1 is a better conversion
1228 // sequence than another user-defined conversion sequence U2 if
1229 // they contain the same user-defined conversion function or
1230 // constructor and if the second standard conversion sequence of
1231 // U1 is better than the second standard conversion sequence of
1232 // U2 (C++ 13.3.3.2p3).
1233 if (ICS1.UserDefined.ConversionFunction ==
1234 ICS2.UserDefined.ConversionFunction)
1235 return CompareStandardConversionSequences(ICS1.UserDefined.After,
1236 ICS2.UserDefined.After);
1237 }
1238
1239 return ImplicitConversionSequence::Indistinguishable;
1240}
1241
1242/// CompareStandardConversionSequences - Compare two standard
1243/// conversion sequences to determine whether one is better than the
1244/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1245ImplicitConversionSequence::CompareKind
1246Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1247 const StandardConversionSequence& SCS2)
1248{
1249 // Standard conversion sequence S1 is a better conversion sequence
1250 // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1251
1252 // -- S1 is a proper subsequence of S2 (comparing the conversion
1253 // sequences in the canonical form defined by 13.3.3.1.1,
1254 // excluding any Lvalue Transformation; the identity conversion
1255 // sequence is considered to be a subsequence of any
1256 // non-identity conversion sequence) or, if not that,
1257 if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1258 // Neither is a proper subsequence of the other. Do nothing.
1259 ;
1260 else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1261 (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1262 (SCS1.Second == ICK_Identity &&
1263 SCS1.Third == ICK_Identity))
1264 // SCS1 is a proper subsequence of SCS2.
1265 return ImplicitConversionSequence::Better;
1266 else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1267 (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1268 (SCS2.Second == ICK_Identity &&
1269 SCS2.Third == ICK_Identity))
1270 // SCS2 is a proper subsequence of SCS1.
1271 return ImplicitConversionSequence::Worse;
1272
1273 // -- the rank of S1 is better than the rank of S2 (by the rules
1274 // defined below), or, if not that,
1275 ImplicitConversionRank Rank1 = SCS1.getRank();
1276 ImplicitConversionRank Rank2 = SCS2.getRank();
1277 if (Rank1 < Rank2)
1278 return ImplicitConversionSequence::Better;
1279 else if (Rank2 < Rank1)
1280 return ImplicitConversionSequence::Worse;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001281
Douglas Gregor57373262008-10-22 14:17:15 +00001282 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1283 // are indistinguishable unless one of the following rules
1284 // applies:
1285
1286 // A conversion that is not a conversion of a pointer, or
1287 // pointer to member, to bool is better than another conversion
1288 // that is such a conversion.
1289 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1290 return SCS2.isPointerConversionToBool()
1291 ? ImplicitConversionSequence::Better
1292 : ImplicitConversionSequence::Worse;
1293
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001294 // C++ [over.ics.rank]p4b2:
1295 //
1296 // If class B is derived directly or indirectly from class A,
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001297 // conversion of B* to A* is better than conversion of B* to
1298 // void*, and conversion of A* to void* is better than conversion
1299 // of B* to void*.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001300 bool SCS1ConvertsToVoid
1301 = SCS1.isPointerConversionToVoidPointer(Context);
1302 bool SCS2ConvertsToVoid
1303 = SCS2.isPointerConversionToVoidPointer(Context);
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001304 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1305 // Exactly one of the conversion sequences is a conversion to
1306 // a void pointer; it's the worse conversion.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001307 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1308 : ImplicitConversionSequence::Worse;
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001309 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1310 // Neither conversion sequence converts to a void pointer; compare
1311 // their derived-to-base conversions.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001312 if (ImplicitConversionSequence::CompareKind DerivedCK
1313 = CompareDerivedToBaseConversions(SCS1, SCS2))
1314 return DerivedCK;
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001315 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1316 // Both conversion sequences are conversions to void
1317 // pointers. Compare the source types to determine if there's an
1318 // inheritance relationship in their sources.
1319 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1320 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1321
1322 // Adjust the types we're converting from via the array-to-pointer
1323 // conversion, if we need to.
1324 if (SCS1.First == ICK_Array_To_Pointer)
1325 FromType1 = Context.getArrayDecayedType(FromType1);
1326 if (SCS2.First == ICK_Array_To_Pointer)
1327 FromType2 = Context.getArrayDecayedType(FromType2);
1328
1329 QualType FromPointee1
1330 = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1331 QualType FromPointee2
1332 = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1333
1334 if (IsDerivedFrom(FromPointee2, FromPointee1))
1335 return ImplicitConversionSequence::Better;
1336 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1337 return ImplicitConversionSequence::Worse;
Douglas Gregorcb7de522008-11-26 23:31:11 +00001338
1339 // Objective-C++: If one interface is more specific than the
1340 // other, it is the better one.
1341 const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1342 const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1343 if (FromIface1 && FromIface1) {
1344 if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1345 return ImplicitConversionSequence::Better;
1346 else if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1347 return ImplicitConversionSequence::Worse;
1348 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001349 }
Douglas Gregor57373262008-10-22 14:17:15 +00001350
1351 // Compare based on qualification conversions (C++ 13.3.3.2p3,
1352 // bullet 3).
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001353 if (ImplicitConversionSequence::CompareKind QualCK
Douglas Gregor57373262008-10-22 14:17:15 +00001354 = CompareQualificationConversions(SCS1, SCS2))
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001355 return QualCK;
Douglas Gregor57373262008-10-22 14:17:15 +00001356
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001357 // C++ [over.ics.rank]p3b4:
1358 // -- S1 and S2 are reference bindings (8.5.3), and the types to
1359 // which the references refer are the same type except for
1360 // top-level cv-qualifiers, and the type to which the reference
1361 // initialized by S2 refers is more cv-qualified than the type
1362 // to which the reference initialized by S1 refers.
1363 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1364 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1365 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1366 T1 = Context.getCanonicalType(T1);
1367 T2 = Context.getCanonicalType(T2);
1368 if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1369 if (T2.isMoreQualifiedThan(T1))
1370 return ImplicitConversionSequence::Better;
1371 else if (T1.isMoreQualifiedThan(T2))
1372 return ImplicitConversionSequence::Worse;
1373 }
1374 }
Douglas Gregor57373262008-10-22 14:17:15 +00001375
1376 return ImplicitConversionSequence::Indistinguishable;
1377}
1378
1379/// CompareQualificationConversions - Compares two standard conversion
1380/// sequences to determine whether they can be ranked based on their
1381/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1382ImplicitConversionSequence::CompareKind
1383Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1384 const StandardConversionSequence& SCS2)
1385{
Douglas Gregorba7e2102008-10-22 15:04:37 +00001386 // C++ 13.3.3.2p3:
Douglas Gregor57373262008-10-22 14:17:15 +00001387 // -- S1 and S2 differ only in their qualification conversion and
1388 // yield similar types T1 and T2 (C++ 4.4), respectively, and the
1389 // cv-qualification signature of type T1 is a proper subset of
1390 // the cv-qualification signature of type T2, and S1 is not the
1391 // deprecated string literal array-to-pointer conversion (4.2).
1392 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1393 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1394 return ImplicitConversionSequence::Indistinguishable;
1395
1396 // FIXME: the example in the standard doesn't use a qualification
1397 // conversion (!)
1398 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1399 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1400 T1 = Context.getCanonicalType(T1);
1401 T2 = Context.getCanonicalType(T2);
1402
1403 // If the types are the same, we won't learn anything by unwrapped
1404 // them.
1405 if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1406 return ImplicitConversionSequence::Indistinguishable;
1407
1408 ImplicitConversionSequence::CompareKind Result
1409 = ImplicitConversionSequence::Indistinguishable;
1410 while (UnwrapSimilarPointerTypes(T1, T2)) {
1411 // Within each iteration of the loop, we check the qualifiers to
1412 // determine if this still looks like a qualification
1413 // conversion. Then, if all is well, we unwrap one more level of
Douglas Gregorf8268ae2008-10-22 17:49:05 +00001414 // pointers or pointers-to-members and do it all again
Douglas Gregor57373262008-10-22 14:17:15 +00001415 // until there are no more pointers or pointers-to-members left
1416 // to unwrap. This essentially mimics what
1417 // IsQualificationConversion does, but here we're checking for a
1418 // strict subset of qualifiers.
1419 if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1420 // The qualifiers are the same, so this doesn't tell us anything
1421 // about how the sequences rank.
1422 ;
1423 else if (T2.isMoreQualifiedThan(T1)) {
1424 // T1 has fewer qualifiers, so it could be the better sequence.
1425 if (Result == ImplicitConversionSequence::Worse)
1426 // Neither has qualifiers that are a subset of the other's
1427 // qualifiers.
1428 return ImplicitConversionSequence::Indistinguishable;
1429
1430 Result = ImplicitConversionSequence::Better;
1431 } else if (T1.isMoreQualifiedThan(T2)) {
1432 // T2 has fewer qualifiers, so it could be the better sequence.
1433 if (Result == ImplicitConversionSequence::Better)
1434 // Neither has qualifiers that are a subset of the other's
1435 // qualifiers.
1436 return ImplicitConversionSequence::Indistinguishable;
1437
1438 Result = ImplicitConversionSequence::Worse;
1439 } else {
1440 // Qualifiers are disjoint.
1441 return ImplicitConversionSequence::Indistinguishable;
1442 }
1443
1444 // If the types after this point are equivalent, we're done.
1445 if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1446 break;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001447 }
1448
Douglas Gregor57373262008-10-22 14:17:15 +00001449 // Check that the winning standard conversion sequence isn't using
1450 // the deprecated string literal array to pointer conversion.
1451 switch (Result) {
1452 case ImplicitConversionSequence::Better:
1453 if (SCS1.Deprecated)
1454 Result = ImplicitConversionSequence::Indistinguishable;
1455 break;
1456
1457 case ImplicitConversionSequence::Indistinguishable:
1458 break;
1459
1460 case ImplicitConversionSequence::Worse:
1461 if (SCS2.Deprecated)
1462 Result = ImplicitConversionSequence::Indistinguishable;
1463 break;
1464 }
1465
1466 return Result;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001467}
1468
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001469/// CompareDerivedToBaseConversions - Compares two standard conversion
1470/// sequences to determine whether they can be ranked based on their
Douglas Gregorcb7de522008-11-26 23:31:11 +00001471/// various kinds of derived-to-base conversions (C++
1472/// [over.ics.rank]p4b3). As part of these checks, we also look at
1473/// conversions between Objective-C interface types.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001474ImplicitConversionSequence::CompareKind
1475Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1476 const StandardConversionSequence& SCS2) {
1477 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1478 QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1479 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1480 QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1481
1482 // Adjust the types we're converting from via the array-to-pointer
1483 // conversion, if we need to.
1484 if (SCS1.First == ICK_Array_To_Pointer)
1485 FromType1 = Context.getArrayDecayedType(FromType1);
1486 if (SCS2.First == ICK_Array_To_Pointer)
1487 FromType2 = Context.getArrayDecayedType(FromType2);
1488
1489 // Canonicalize all of the types.
1490 FromType1 = Context.getCanonicalType(FromType1);
1491 ToType1 = Context.getCanonicalType(ToType1);
1492 FromType2 = Context.getCanonicalType(FromType2);
1493 ToType2 = Context.getCanonicalType(ToType2);
1494
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001495 // C++ [over.ics.rank]p4b3:
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001496 //
1497 // If class B is derived directly or indirectly from class A and
1498 // class C is derived directly or indirectly from B,
Douglas Gregorcb7de522008-11-26 23:31:11 +00001499 //
1500 // For Objective-C, we let A, B, and C also be Objective-C
1501 // interfaces.
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001502
1503 // Compare based on pointer conversions.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001504 if (SCS1.Second == ICK_Pointer_Conversion &&
Douglas Gregor7ca09762008-11-27 01:19:21 +00001505 SCS2.Second == ICK_Pointer_Conversion &&
1506 /*FIXME: Remove if Objective-C id conversions get their own rank*/
1507 FromType1->isPointerType() && FromType2->isPointerType() &&
1508 ToType1->isPointerType() && ToType2->isPointerType()) {
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001509 QualType FromPointee1
1510 = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1511 QualType ToPointee1
1512 = ToType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1513 QualType FromPointee2
1514 = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1515 QualType ToPointee2
1516 = ToType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
Douglas Gregorcb7de522008-11-26 23:31:11 +00001517
1518 const ObjCInterfaceType* FromIface1 = FromPointee1->getAsObjCInterfaceType();
1519 const ObjCInterfaceType* FromIface2 = FromPointee2->getAsObjCInterfaceType();
1520 const ObjCInterfaceType* ToIface1 = ToPointee1->getAsObjCInterfaceType();
1521 const ObjCInterfaceType* ToIface2 = ToPointee2->getAsObjCInterfaceType();
1522
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001523 // -- conversion of C* to B* is better than conversion of C* to A*,
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001524 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1525 if (IsDerivedFrom(ToPointee1, ToPointee2))
1526 return ImplicitConversionSequence::Better;
1527 else if (IsDerivedFrom(ToPointee2, ToPointee1))
1528 return ImplicitConversionSequence::Worse;
Douglas Gregorcb7de522008-11-26 23:31:11 +00001529
1530 if (ToIface1 && ToIface2) {
1531 if (Context.canAssignObjCInterfaces(ToIface2, ToIface1))
1532 return ImplicitConversionSequence::Better;
1533 else if (Context.canAssignObjCInterfaces(ToIface1, ToIface2))
1534 return ImplicitConversionSequence::Worse;
1535 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001536 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001537
1538 // -- conversion of B* to A* is better than conversion of C* to A*,
1539 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1540 if (IsDerivedFrom(FromPointee2, FromPointee1))
1541 return ImplicitConversionSequence::Better;
1542 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1543 return ImplicitConversionSequence::Worse;
Douglas Gregorcb7de522008-11-26 23:31:11 +00001544
1545 if (FromIface1 && FromIface2) {
1546 if (Context.canAssignObjCInterfaces(FromIface1, FromIface2))
1547 return ImplicitConversionSequence::Better;
1548 else if (Context.canAssignObjCInterfaces(FromIface2, FromIface1))
1549 return ImplicitConversionSequence::Worse;
1550 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001551 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001552 }
1553
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001554 // Compare based on reference bindings.
1555 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1556 SCS1.Second == ICK_Derived_To_Base) {
1557 // -- binding of an expression of type C to a reference of type
1558 // B& is better than binding an expression of type C to a
1559 // reference of type A&,
1560 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1561 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1562 if (IsDerivedFrom(ToType1, ToType2))
1563 return ImplicitConversionSequence::Better;
1564 else if (IsDerivedFrom(ToType2, ToType1))
1565 return ImplicitConversionSequence::Worse;
1566 }
1567
Douglas Gregor225c41e2008-11-03 19:09:14 +00001568 // -- binding of an expression of type B to a reference of type
1569 // A& is better than binding an expression of type C to a
1570 // reference of type A&,
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001571 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1572 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1573 if (IsDerivedFrom(FromType2, FromType1))
1574 return ImplicitConversionSequence::Better;
1575 else if (IsDerivedFrom(FromType1, FromType2))
1576 return ImplicitConversionSequence::Worse;
1577 }
1578 }
1579
1580
1581 // FIXME: conversion of A::* to B::* is better than conversion of
1582 // A::* to C::*,
1583
1584 // FIXME: conversion of B::* to C::* is better than conversion of
1585 // A::* to C::*, and
1586
Douglas Gregor225c41e2008-11-03 19:09:14 +00001587 if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1588 SCS1.Second == ICK_Derived_To_Base) {
1589 // -- conversion of C to B is better than conversion of C to A,
1590 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1591 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1592 if (IsDerivedFrom(ToType1, ToType2))
1593 return ImplicitConversionSequence::Better;
1594 else if (IsDerivedFrom(ToType2, ToType1))
1595 return ImplicitConversionSequence::Worse;
1596 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001597
Douglas Gregor225c41e2008-11-03 19:09:14 +00001598 // -- conversion of B to A is better than conversion of C to A.
1599 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1600 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1601 if (IsDerivedFrom(FromType2, FromType1))
1602 return ImplicitConversionSequence::Better;
1603 else if (IsDerivedFrom(FromType1, FromType2))
1604 return ImplicitConversionSequence::Worse;
1605 }
1606 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001607
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001608 return ImplicitConversionSequence::Indistinguishable;
1609}
1610
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001611/// TryCopyInitialization - Try to copy-initialize a value of type
1612/// ToType from the expression From. Return the implicit conversion
1613/// sequence required to pass this argument, which may be a bad
1614/// conversion sequence (meaning that the argument cannot be passed to
Douglas Gregor225c41e2008-11-03 19:09:14 +00001615/// a parameter of this type). If @p SuppressUserConversions, then we
1616/// do not permit any user-defined conversion sequences.
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001617ImplicitConversionSequence
Douglas Gregor225c41e2008-11-03 19:09:14 +00001618Sema::TryCopyInitialization(Expr *From, QualType ToType,
1619 bool SuppressUserConversions) {
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001620 if (!getLangOptions().CPlusPlus) {
Douglas Gregor60d62c22008-10-31 16:23:19 +00001621 // In C, copy initialization is the same as performing an assignment.
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001622 AssignConvertType ConvTy =
1623 CheckSingleAssignmentConstraints(ToType, From);
1624 ImplicitConversionSequence ICS;
1625 if (getLangOptions().NoExtensions? ConvTy != Compatible
1626 : ConvTy == Incompatible)
1627 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1628 else
1629 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1630 return ICS;
1631 } else if (ToType->isReferenceType()) {
1632 ImplicitConversionSequence ICS;
Douglas Gregor225c41e2008-11-03 19:09:14 +00001633 CheckReferenceInit(From, ToType, &ICS, SuppressUserConversions);
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001634 return ICS;
1635 } else {
Douglas Gregor225c41e2008-11-03 19:09:14 +00001636 return TryImplicitConversion(From, ToType, SuppressUserConversions);
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001637 }
1638}
1639
1640/// PerformArgumentPassing - Pass the argument Arg into a parameter of
1641/// type ToType. Returns true (and emits a diagnostic) if there was
1642/// an error, returns false if the initialization succeeded.
1643bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
1644 const char* Flavor) {
1645 if (!getLangOptions().CPlusPlus) {
1646 // In C, argument passing is the same as performing an assignment.
1647 QualType FromType = From->getType();
1648 AssignConvertType ConvTy =
1649 CheckSingleAssignmentConstraints(ToType, From);
1650
1651 return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
1652 FromType, From, Flavor);
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001653 }
Chris Lattnerd9d22dd2008-11-24 05:29:24 +00001654
1655 if (ToType->isReferenceType())
1656 return CheckReferenceInit(From, ToType);
1657
Douglas Gregor45920e82008-12-19 17:40:08 +00001658 if (!PerformImplicitConversion(From, ToType, Flavor))
Chris Lattnerd9d22dd2008-11-24 05:29:24 +00001659 return false;
1660
1661 return Diag(From->getSourceRange().getBegin(),
1662 diag::err_typecheck_convert_incompatible)
1663 << ToType << From->getType() << Flavor << From->getSourceRange();
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001664}
1665
Douglas Gregor96176b32008-11-18 23:14:02 +00001666/// TryObjectArgumentInitialization - Try to initialize the object
1667/// parameter of the given member function (@c Method) from the
1668/// expression @p From.
1669ImplicitConversionSequence
1670Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
1671 QualType ClassType = Context.getTypeDeclType(Method->getParent());
1672 unsigned MethodQuals = Method->getTypeQualifiers();
1673 QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals);
1674
1675 // Set up the conversion sequence as a "bad" conversion, to allow us
1676 // to exit early.
1677 ImplicitConversionSequence ICS;
1678 ICS.Standard.setAsIdentityConversion();
1679 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1680
1681 // We need to have an object of class type.
1682 QualType FromType = From->getType();
1683 if (!FromType->isRecordType())
1684 return ICS;
1685
1686 // The implicit object parmeter is has the type "reference to cv X",
1687 // where X is the class of which the function is a member
1688 // (C++ [over.match.funcs]p4). However, when finding an implicit
1689 // conversion sequence for the argument, we are not allowed to
1690 // create temporaries or perform user-defined conversions
1691 // (C++ [over.match.funcs]p5). We perform a simplified version of
1692 // reference binding here, that allows class rvalues to bind to
1693 // non-constant references.
1694
1695 // First check the qualifiers. We don't care about lvalue-vs-rvalue
1696 // with the implicit object parameter (C++ [over.match.funcs]p5).
1697 QualType FromTypeCanon = Context.getCanonicalType(FromType);
1698 if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
1699 !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
1700 return ICS;
1701
1702 // Check that we have either the same type or a derived type. It
1703 // affects the conversion rank.
1704 QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
1705 if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
1706 ICS.Standard.Second = ICK_Identity;
1707 else if (IsDerivedFrom(FromType, ClassType))
1708 ICS.Standard.Second = ICK_Derived_To_Base;
1709 else
1710 return ICS;
1711
1712 // Success. Mark this as a reference binding.
1713 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1714 ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
1715 ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
1716 ICS.Standard.ReferenceBinding = true;
1717 ICS.Standard.DirectBinding = true;
1718 return ICS;
1719}
1720
1721/// PerformObjectArgumentInitialization - Perform initialization of
1722/// the implicit object parameter for the given Method with the given
1723/// expression.
1724bool
1725Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
1726 QualType ImplicitParamType
1727 = Method->getThisType(Context)->getAsPointerType()->getPointeeType();
1728 ImplicitConversionSequence ICS
1729 = TryObjectArgumentInitialization(From, Method);
1730 if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
1731 return Diag(From->getSourceRange().getBegin(),
Chris Lattnerfa25bbb2008-11-19 05:08:23 +00001732 diag::err_implicit_object_parameter_init)
Chris Lattnerd1625842008-11-24 06:25:27 +00001733 << ImplicitParamType << From->getType() << From->getSourceRange();
Douglas Gregor96176b32008-11-18 23:14:02 +00001734
1735 if (ICS.Standard.Second == ICK_Derived_To_Base &&
1736 CheckDerivedToBaseConversion(From->getType(), ImplicitParamType,
1737 From->getSourceRange().getBegin(),
1738 From->getSourceRange()))
1739 return true;
1740
1741 ImpCastExprToType(From, ImplicitParamType, /*isLvalue=*/true);
1742 return false;
1743}
1744
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001745/// AddOverloadCandidate - Adds the given function to the set of
Douglas Gregor225c41e2008-11-03 19:09:14 +00001746/// candidate functions, using the given function call arguments. If
1747/// @p SuppressUserConversions, then don't allow user-defined
1748/// conversions via constructors or conversion operators.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001749void
1750Sema::AddOverloadCandidate(FunctionDecl *Function,
1751 Expr **Args, unsigned NumArgs,
Douglas Gregor225c41e2008-11-03 19:09:14 +00001752 OverloadCandidateSet& CandidateSet,
1753 bool SuppressUserConversions)
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001754{
1755 const FunctionTypeProto* Proto
1756 = dyn_cast<FunctionTypeProto>(Function->getType()->getAsFunctionType());
1757 assert(Proto && "Functions without a prototype cannot be overloaded");
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001758 assert(!isa<CXXConversionDecl>(Function) &&
1759 "Use AddConversionCandidate for conversion functions");
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001760
1761 // Add this candidate
1762 CandidateSet.push_back(OverloadCandidate());
1763 OverloadCandidate& Candidate = CandidateSet.back();
1764 Candidate.Function = Function;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00001765 Candidate.IsSurrogate = false;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001766
1767 unsigned NumArgsInProto = Proto->getNumArgs();
1768
1769 // (C++ 13.3.2p2): A candidate function having fewer than m
1770 // parameters is viable only if it has an ellipsis in its parameter
1771 // list (8.3.5).
1772 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
1773 Candidate.Viable = false;
1774 return;
1775 }
1776
1777 // (C++ 13.3.2p2): A candidate function having more than m parameters
1778 // is viable only if the (m+1)st parameter has a default argument
1779 // (8.3.6). For the purposes of overload resolution, the
1780 // parameter list is truncated on the right, so that there are
1781 // exactly m parameters.
1782 unsigned MinRequiredArgs = Function->getMinRequiredArguments();
1783 if (NumArgs < MinRequiredArgs) {
1784 // Not enough arguments.
1785 Candidate.Viable = false;
1786 return;
1787 }
1788
1789 // Determine the implicit conversion sequences for each of the
1790 // arguments.
1791 Candidate.Viable = true;
1792 Candidate.Conversions.resize(NumArgs);
1793 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1794 if (ArgIdx < NumArgsInProto) {
1795 // (C++ 13.3.2p3): for F to be a viable function, there shall
1796 // exist for each argument an implicit conversion sequence
1797 // (13.3.3.1) that converts that argument to the corresponding
1798 // parameter of F.
1799 QualType ParamType = Proto->getArgType(ArgIdx);
1800 Candidate.Conversions[ArgIdx]
Douglas Gregor225c41e2008-11-03 19:09:14 +00001801 = TryCopyInitialization(Args[ArgIdx], ParamType,
1802 SuppressUserConversions);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001803 if (Candidate.Conversions[ArgIdx].ConversionKind
Douglas Gregor96176b32008-11-18 23:14:02 +00001804 == ImplicitConversionSequence::BadConversion) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001805 Candidate.Viable = false;
Douglas Gregor96176b32008-11-18 23:14:02 +00001806 break;
1807 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001808 } else {
1809 // (C++ 13.3.2p2): For the purposes of overload resolution, any
1810 // argument for which there is no corresponding parameter is
1811 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
1812 Candidate.Conversions[ArgIdx].ConversionKind
1813 = ImplicitConversionSequence::EllipsisConversion;
1814 }
1815 }
1816}
1817
Douglas Gregor96176b32008-11-18 23:14:02 +00001818/// AddMethodCandidate - Adds the given C++ member function to the set
1819/// of candidate functions, using the given function call arguments
1820/// and the object argument (@c Object). For example, in a call
1821/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
1822/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
1823/// allow user-defined conversions via constructors or conversion
1824/// operators.
1825void
1826Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
1827 Expr **Args, unsigned NumArgs,
1828 OverloadCandidateSet& CandidateSet,
1829 bool SuppressUserConversions)
1830{
1831 const FunctionTypeProto* Proto
1832 = dyn_cast<FunctionTypeProto>(Method->getType()->getAsFunctionType());
1833 assert(Proto && "Methods without a prototype cannot be overloaded");
1834 assert(!isa<CXXConversionDecl>(Method) &&
1835 "Use AddConversionCandidate for conversion functions");
1836
1837 // Add this candidate
1838 CandidateSet.push_back(OverloadCandidate());
1839 OverloadCandidate& Candidate = CandidateSet.back();
1840 Candidate.Function = Method;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00001841 Candidate.IsSurrogate = false;
Douglas Gregor96176b32008-11-18 23:14:02 +00001842
1843 unsigned NumArgsInProto = Proto->getNumArgs();
1844
1845 // (C++ 13.3.2p2): A candidate function having fewer than m
1846 // parameters is viable only if it has an ellipsis in its parameter
1847 // list (8.3.5).
1848 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
1849 Candidate.Viable = false;
1850 return;
1851 }
1852
1853 // (C++ 13.3.2p2): A candidate function having more than m parameters
1854 // is viable only if the (m+1)st parameter has a default argument
1855 // (8.3.6). For the purposes of overload resolution, the
1856 // parameter list is truncated on the right, so that there are
1857 // exactly m parameters.
1858 unsigned MinRequiredArgs = Method->getMinRequiredArguments();
1859 if (NumArgs < MinRequiredArgs) {
1860 // Not enough arguments.
1861 Candidate.Viable = false;
1862 return;
1863 }
1864
1865 Candidate.Viable = true;
1866 Candidate.Conversions.resize(NumArgs + 1);
1867
1868 // Determine the implicit conversion sequence for the object
1869 // parameter.
1870 Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
1871 if (Candidate.Conversions[0].ConversionKind
1872 == ImplicitConversionSequence::BadConversion) {
1873 Candidate.Viable = false;
1874 return;
1875 }
1876
1877 // Determine the implicit conversion sequences for each of the
1878 // arguments.
1879 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1880 if (ArgIdx < NumArgsInProto) {
1881 // (C++ 13.3.2p3): for F to be a viable function, there shall
1882 // exist for each argument an implicit conversion sequence
1883 // (13.3.3.1) that converts that argument to the corresponding
1884 // parameter of F.
1885 QualType ParamType = Proto->getArgType(ArgIdx);
1886 Candidate.Conversions[ArgIdx + 1]
1887 = TryCopyInitialization(Args[ArgIdx], ParamType,
1888 SuppressUserConversions);
1889 if (Candidate.Conversions[ArgIdx + 1].ConversionKind
1890 == ImplicitConversionSequence::BadConversion) {
1891 Candidate.Viable = false;
1892 break;
1893 }
1894 } else {
1895 // (C++ 13.3.2p2): For the purposes of overload resolution, any
1896 // argument for which there is no corresponding parameter is
1897 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
1898 Candidate.Conversions[ArgIdx + 1].ConversionKind
1899 = ImplicitConversionSequence::EllipsisConversion;
1900 }
1901 }
1902}
1903
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001904/// AddConversionCandidate - Add a C++ conversion function as a
1905/// candidate in the candidate set (C++ [over.match.conv],
1906/// C++ [over.match.copy]). From is the expression we're converting from,
1907/// and ToType is the type that we're eventually trying to convert to
1908/// (which may or may not be the same type as the type that the
1909/// conversion function produces).
1910void
1911Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
1912 Expr *From, QualType ToType,
1913 OverloadCandidateSet& CandidateSet) {
1914 // Add this candidate
1915 CandidateSet.push_back(OverloadCandidate());
1916 OverloadCandidate& Candidate = CandidateSet.back();
1917 Candidate.Function = Conversion;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00001918 Candidate.IsSurrogate = false;
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001919 Candidate.FinalConversion.setAsIdentityConversion();
1920 Candidate.FinalConversion.FromTypePtr
1921 = Conversion->getConversionType().getAsOpaquePtr();
1922 Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
1923
Douglas Gregor96176b32008-11-18 23:14:02 +00001924 // Determine the implicit conversion sequence for the implicit
1925 // object parameter.
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001926 Candidate.Viable = true;
1927 Candidate.Conversions.resize(1);
Douglas Gregor96176b32008-11-18 23:14:02 +00001928 Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001929
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001930 if (Candidate.Conversions[0].ConversionKind
1931 == ImplicitConversionSequence::BadConversion) {
1932 Candidate.Viable = false;
1933 return;
1934 }
1935
1936 // To determine what the conversion from the result of calling the
1937 // conversion function to the type we're eventually trying to
1938 // convert to (ToType), we need to synthesize a call to the
1939 // conversion function and attempt copy initialization from it. This
1940 // makes sure that we get the right semantics with respect to
1941 // lvalues/rvalues and the type. Fortunately, we can allocate this
1942 // call on the stack and we don't need its arguments to be
1943 // well-formed.
1944 DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
1945 SourceLocation());
1946 ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
Douglas Gregoreb8f3062008-11-12 17:17:38 +00001947 &ConversionRef, false);
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001948 CallExpr Call(&ConversionFn, 0, 0,
1949 Conversion->getConversionType().getNonReferenceType(),
1950 SourceLocation());
1951 ImplicitConversionSequence ICS = TryCopyInitialization(&Call, ToType, true);
1952 switch (ICS.ConversionKind) {
1953 case ImplicitConversionSequence::StandardConversion:
1954 Candidate.FinalConversion = ICS.Standard;
1955 break;
1956
1957 case ImplicitConversionSequence::BadConversion:
1958 Candidate.Viable = false;
1959 break;
1960
1961 default:
1962 assert(false &&
1963 "Can only end up with a standard conversion sequence or failure");
1964 }
1965}
1966
Douglas Gregor106c6eb2008-11-19 22:57:39 +00001967/// AddSurrogateCandidate - Adds a "surrogate" candidate function that
1968/// converts the given @c Object to a function pointer via the
1969/// conversion function @c Conversion, and then attempts to call it
1970/// with the given arguments (C++ [over.call.object]p2-4). Proto is
1971/// the type of function that we'll eventually be calling.
1972void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
1973 const FunctionTypeProto *Proto,
1974 Expr *Object, Expr **Args, unsigned NumArgs,
1975 OverloadCandidateSet& CandidateSet) {
1976 CandidateSet.push_back(OverloadCandidate());
1977 OverloadCandidate& Candidate = CandidateSet.back();
1978 Candidate.Function = 0;
1979 Candidate.Surrogate = Conversion;
1980 Candidate.Viable = true;
1981 Candidate.IsSurrogate = true;
1982 Candidate.Conversions.resize(NumArgs + 1);
1983
1984 // Determine the implicit conversion sequence for the implicit
1985 // object parameter.
1986 ImplicitConversionSequence ObjectInit
1987 = TryObjectArgumentInitialization(Object, Conversion);
1988 if (ObjectInit.ConversionKind == ImplicitConversionSequence::BadConversion) {
1989 Candidate.Viable = false;
1990 return;
1991 }
1992
1993 // The first conversion is actually a user-defined conversion whose
1994 // first conversion is ObjectInit's standard conversion (which is
1995 // effectively a reference binding). Record it as such.
1996 Candidate.Conversions[0].ConversionKind
1997 = ImplicitConversionSequence::UserDefinedConversion;
1998 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
1999 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
2000 Candidate.Conversions[0].UserDefined.After
2001 = Candidate.Conversions[0].UserDefined.Before;
2002 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
2003
2004 // Find the
2005 unsigned NumArgsInProto = Proto->getNumArgs();
2006
2007 // (C++ 13.3.2p2): A candidate function having fewer than m
2008 // parameters is viable only if it has an ellipsis in its parameter
2009 // list (8.3.5).
2010 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
2011 Candidate.Viable = false;
2012 return;
2013 }
2014
2015 // Function types don't have any default arguments, so just check if
2016 // we have enough arguments.
2017 if (NumArgs < NumArgsInProto) {
2018 // Not enough arguments.
2019 Candidate.Viable = false;
2020 return;
2021 }
2022
2023 // Determine the implicit conversion sequences for each of the
2024 // arguments.
2025 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2026 if (ArgIdx < NumArgsInProto) {
2027 // (C++ 13.3.2p3): for F to be a viable function, there shall
2028 // exist for each argument an implicit conversion sequence
2029 // (13.3.3.1) that converts that argument to the corresponding
2030 // parameter of F.
2031 QualType ParamType = Proto->getArgType(ArgIdx);
2032 Candidate.Conversions[ArgIdx + 1]
2033 = TryCopyInitialization(Args[ArgIdx], ParamType,
2034 /*SuppressUserConversions=*/false);
2035 if (Candidate.Conversions[ArgIdx + 1].ConversionKind
2036 == ImplicitConversionSequence::BadConversion) {
2037 Candidate.Viable = false;
2038 break;
2039 }
2040 } else {
2041 // (C++ 13.3.2p2): For the purposes of overload resolution, any
2042 // argument for which there is no corresponding parameter is
2043 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
2044 Candidate.Conversions[ArgIdx + 1].ConversionKind
2045 = ImplicitConversionSequence::EllipsisConversion;
2046 }
2047 }
2048}
2049
Douglas Gregor447b69e2008-11-19 03:25:36 +00002050/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
2051/// an acceptable non-member overloaded operator for a call whose
2052/// arguments have types T1 (and, if non-empty, T2). This routine
2053/// implements the check in C++ [over.match.oper]p3b2 concerning
2054/// enumeration types.
2055static bool
2056IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
2057 QualType T1, QualType T2,
2058 ASTContext &Context) {
2059 if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
2060 return true;
2061
2062 const FunctionTypeProto *Proto = Fn->getType()->getAsFunctionTypeProto();
2063 if (Proto->getNumArgs() < 1)
2064 return false;
2065
2066 if (T1->isEnumeralType()) {
2067 QualType ArgType = Proto->getArgType(0).getNonReferenceType();
2068 if (Context.getCanonicalType(T1).getUnqualifiedType()
2069 == Context.getCanonicalType(ArgType).getUnqualifiedType())
2070 return true;
2071 }
2072
2073 if (Proto->getNumArgs() < 2)
2074 return false;
2075
2076 if (!T2.isNull() && T2->isEnumeralType()) {
2077 QualType ArgType = Proto->getArgType(1).getNonReferenceType();
2078 if (Context.getCanonicalType(T2).getUnqualifiedType()
2079 == Context.getCanonicalType(ArgType).getUnqualifiedType())
2080 return true;
2081 }
2082
2083 return false;
2084}
2085
Douglas Gregor96176b32008-11-18 23:14:02 +00002086/// AddOperatorCandidates - Add the overloaded operator candidates for
2087/// the operator Op that was used in an operator expression such as "x
2088/// Op y". S is the scope in which the expression occurred (used for
2089/// name lookup of the operator), Args/NumArgs provides the operator
2090/// arguments, and CandidateSet will store the added overload
2091/// candidates. (C++ [over.match.oper]).
2092void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
2093 Expr **Args, unsigned NumArgs,
2094 OverloadCandidateSet& CandidateSet) {
2095 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2096
2097 // C++ [over.match.oper]p3:
2098 // For a unary operator @ with an operand of a type whose
2099 // cv-unqualified version is T1, and for a binary operator @ with
2100 // a left operand of a type whose cv-unqualified version is T1 and
2101 // a right operand of a type whose cv-unqualified version is T2,
2102 // three sets of candidate functions, designated member
2103 // candidates, non-member candidates and built-in candidates, are
2104 // constructed as follows:
2105 QualType T1 = Args[0]->getType();
2106 QualType T2;
2107 if (NumArgs > 1)
2108 T2 = Args[1]->getType();
2109
2110 // -- If T1 is a class type, the set of member candidates is the
2111 // result of the qualified lookup of T1::operator@
2112 // (13.3.1.1.1); otherwise, the set of member candidates is
2113 // empty.
2114 if (const RecordType *T1Rec = T1->getAsRecordType()) {
Douglas Gregor44b43212008-12-11 16:49:14 +00002115 DeclContext::lookup_const_result Lookup
Douglas Gregore267ff32008-12-11 20:41:00 +00002116 = T1Rec->getDecl()->lookup(Context, OpName);
Douglas Gregor44b43212008-12-11 16:49:14 +00002117 NamedDecl *MemberOps = (Lookup.first == Lookup.second)? 0 : *Lookup.first;
Douglas Gregor96176b32008-11-18 23:14:02 +00002118 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(MemberOps))
2119 AddMethodCandidate(Method, Args[0], Args+1, NumArgs - 1, CandidateSet,
2120 /*SuppressUserConversions=*/false);
2121 else if (OverloadedFunctionDecl *Ovl
2122 = dyn_cast_or_null<OverloadedFunctionDecl>(MemberOps)) {
2123 for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
2124 FEnd = Ovl->function_end();
2125 F != FEnd; ++F) {
2126 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*F))
2127 AddMethodCandidate(Method, Args[0], Args+1, NumArgs - 1, CandidateSet,
2128 /*SuppressUserConversions=*/false);
2129 }
2130 }
2131 }
2132
2133 // -- The set of non-member candidates is the result of the
2134 // unqualified lookup of operator@ in the context of the
2135 // expression according to the usual rules for name lookup in
2136 // unqualified function calls (3.4.2) except that all member
2137 // functions are ignored. However, if no operand has a class
2138 // type, only those non-member functions in the lookup set
2139 // that have a first parameter of type T1 or “reference to
2140 // (possibly cv-qualified) T1”, when T1 is an enumeration
2141 // type, or (if there is a right operand) a second parameter
2142 // of type T2 or “reference to (possibly cv-qualified) T2”,
2143 // when T2 is an enumeration type, are candidate functions.
2144 {
2145 NamedDecl *NonMemberOps = 0;
2146 for (IdentifierResolver::iterator I
2147 = IdResolver.begin(OpName, CurContext, true/*LookInParentCtx*/);
2148 I != IdResolver.end(); ++I) {
2149 // We don't need to check the identifier namespace, because
2150 // operator names can only be ordinary identifiers.
2151
2152 // Ignore member functions.
2153 if (ScopedDecl *SD = dyn_cast<ScopedDecl>(*I)) {
2154 if (SD->getDeclContext()->isCXXRecord())
2155 continue;
2156 }
2157
2158 // We found something with this name. We're done.
2159 NonMemberOps = *I;
2160 break;
2161 }
2162
Douglas Gregor447b69e2008-11-19 03:25:36 +00002163 if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NonMemberOps)) {
2164 if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
2165 AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
2166 /*SuppressUserConversions=*/false);
2167 } else if (OverloadedFunctionDecl *Ovl
2168 = dyn_cast_or_null<OverloadedFunctionDecl>(NonMemberOps)) {
Douglas Gregor96176b32008-11-18 23:14:02 +00002169 for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
2170 FEnd = Ovl->function_end();
Douglas Gregor447b69e2008-11-19 03:25:36 +00002171 F != FEnd; ++F) {
2172 if (IsAcceptableNonMemberOperatorCandidate(*F, T1, T2, Context))
2173 AddOverloadCandidate(*F, Args, NumArgs, CandidateSet,
2174 /*SuppressUserConversions=*/false);
2175 }
Douglas Gregor96176b32008-11-18 23:14:02 +00002176 }
2177 }
2178
2179 // Add builtin overload candidates (C++ [over.built]).
Douglas Gregor74253732008-11-19 15:42:04 +00002180 AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
Douglas Gregor96176b32008-11-18 23:14:02 +00002181}
2182
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002183/// AddBuiltinCandidate - Add a candidate for a built-in
2184/// operator. ResultTy and ParamTys are the result and parameter types
2185/// of the built-in candidate, respectively. Args and NumArgs are the
2186/// arguments being passed to the candidate.
2187void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
2188 Expr **Args, unsigned NumArgs,
2189 OverloadCandidateSet& CandidateSet) {
2190 // Add this candidate
2191 CandidateSet.push_back(OverloadCandidate());
2192 OverloadCandidate& Candidate = CandidateSet.back();
2193 Candidate.Function = 0;
Douglas Gregorc9467cf2008-12-12 02:00:36 +00002194 Candidate.IsSurrogate = false;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002195 Candidate.BuiltinTypes.ResultTy = ResultTy;
2196 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2197 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
2198
2199 // Determine the implicit conversion sequences for each of the
2200 // arguments.
2201 Candidate.Viable = true;
2202 Candidate.Conversions.resize(NumArgs);
2203 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2204 Candidate.Conversions[ArgIdx]
2205 = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx], false);
2206 if (Candidate.Conversions[ArgIdx].ConversionKind
Douglas Gregor96176b32008-11-18 23:14:02 +00002207 == ImplicitConversionSequence::BadConversion) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002208 Candidate.Viable = false;
Douglas Gregor96176b32008-11-18 23:14:02 +00002209 break;
2210 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002211 }
2212}
2213
2214/// BuiltinCandidateTypeSet - A set of types that will be used for the
2215/// candidate operator functions for built-in operators (C++
2216/// [over.built]). The types are separated into pointer types and
2217/// enumeration types.
2218class BuiltinCandidateTypeSet {
2219 /// TypeSet - A set of types.
Douglas Gregorbf3af052008-11-13 20:12:29 +00002220 typedef llvm::SmallPtrSet<void*, 8> TypeSet;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002221
2222 /// PointerTypes - The set of pointer types that will be used in the
2223 /// built-in candidates.
2224 TypeSet PointerTypes;
2225
2226 /// EnumerationTypes - The set of enumeration types that will be
2227 /// used in the built-in candidates.
2228 TypeSet EnumerationTypes;
2229
2230 /// Context - The AST context in which we will build the type sets.
2231 ASTContext &Context;
2232
2233 bool AddWithMoreQualifiedTypeVariants(QualType Ty);
2234
2235public:
2236 /// iterator - Iterates through the types that are part of the set.
Douglas Gregorbf3af052008-11-13 20:12:29 +00002237 class iterator {
2238 TypeSet::iterator Base;
2239
2240 public:
2241 typedef QualType value_type;
2242 typedef QualType reference;
2243 typedef QualType pointer;
2244 typedef std::ptrdiff_t difference_type;
2245 typedef std::input_iterator_tag iterator_category;
2246
2247 iterator(TypeSet::iterator B) : Base(B) { }
2248
2249 iterator& operator++() {
2250 ++Base;
2251 return *this;
2252 }
2253
2254 iterator operator++(int) {
2255 iterator tmp(*this);
2256 ++(*this);
2257 return tmp;
2258 }
2259
2260 reference operator*() const {
2261 return QualType::getFromOpaquePtr(*Base);
2262 }
2263
2264 pointer operator->() const {
2265 return **this;
2266 }
2267
2268 friend bool operator==(iterator LHS, iterator RHS) {
2269 return LHS.Base == RHS.Base;
2270 }
2271
2272 friend bool operator!=(iterator LHS, iterator RHS) {
2273 return LHS.Base != RHS.Base;
2274 }
2275 };
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002276
2277 BuiltinCandidateTypeSet(ASTContext &Context) : Context(Context) { }
2278
2279 void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions = true);
2280
2281 /// pointer_begin - First pointer type found;
2282 iterator pointer_begin() { return PointerTypes.begin(); }
2283
2284 /// pointer_end - Last pointer type found;
2285 iterator pointer_end() { return PointerTypes.end(); }
2286
2287 /// enumeration_begin - First enumeration type found;
2288 iterator enumeration_begin() { return EnumerationTypes.begin(); }
2289
2290 /// enumeration_end - Last enumeration type found;
2291 iterator enumeration_end() { return EnumerationTypes.end(); }
2292};
2293
2294/// AddWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
2295/// the set of pointer types along with any more-qualified variants of
2296/// that type. For example, if @p Ty is "int const *", this routine
2297/// will add "int const *", "int const volatile *", "int const
2298/// restrict *", and "int const volatile restrict *" to the set of
2299/// pointer types. Returns true if the add of @p Ty itself succeeded,
2300/// false otherwise.
2301bool BuiltinCandidateTypeSet::AddWithMoreQualifiedTypeVariants(QualType Ty) {
2302 // Insert this type.
Douglas Gregorbf3af052008-11-13 20:12:29 +00002303 if (!PointerTypes.insert(Ty.getAsOpaquePtr()))
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002304 return false;
2305
2306 if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2307 QualType PointeeTy = PointerTy->getPointeeType();
2308 // FIXME: Optimize this so that we don't keep trying to add the same types.
2309
2310 // FIXME: Do we have to add CVR qualifiers at *all* levels to deal
2311 // with all pointer conversions that don't cast away constness?
2312 if (!PointeeTy.isConstQualified())
2313 AddWithMoreQualifiedTypeVariants
2314 (Context.getPointerType(PointeeTy.withConst()));
2315 if (!PointeeTy.isVolatileQualified())
2316 AddWithMoreQualifiedTypeVariants
2317 (Context.getPointerType(PointeeTy.withVolatile()));
2318 if (!PointeeTy.isRestrictQualified())
2319 AddWithMoreQualifiedTypeVariants
2320 (Context.getPointerType(PointeeTy.withRestrict()));
2321 }
2322
2323 return true;
2324}
2325
2326/// AddTypesConvertedFrom - Add each of the types to which the type @p
2327/// Ty can be implicit converted to the given set of @p Types. We're
2328/// primarily interested in pointer types, enumeration types,
2329void BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
2330 bool AllowUserConversions) {
2331 // Only deal with canonical types.
2332 Ty = Context.getCanonicalType(Ty);
2333
2334 // Look through reference types; they aren't part of the type of an
2335 // expression for the purposes of conversions.
2336 if (const ReferenceType *RefTy = Ty->getAsReferenceType())
2337 Ty = RefTy->getPointeeType();
2338
2339 // We don't care about qualifiers on the type.
2340 Ty = Ty.getUnqualifiedType();
2341
2342 if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2343 QualType PointeeTy = PointerTy->getPointeeType();
2344
2345 // Insert our type, and its more-qualified variants, into the set
2346 // of types.
2347 if (!AddWithMoreQualifiedTypeVariants(Ty))
2348 return;
2349
2350 // Add 'cv void*' to our set of types.
2351 if (!Ty->isVoidType()) {
2352 QualType QualVoid
2353 = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2354 AddWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid));
2355 }
2356
2357 // If this is a pointer to a class type, add pointers to its bases
2358 // (with the same level of cv-qualification as the original
2359 // derived class, of course).
2360 if (const RecordType *PointeeRec = PointeeTy->getAsRecordType()) {
2361 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
2362 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2363 Base != ClassDecl->bases_end(); ++Base) {
2364 QualType BaseTy = Context.getCanonicalType(Base->getType());
2365 BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2366
2367 // Add the pointer type, recursively, so that we get all of
2368 // the indirect base classes, too.
2369 AddTypesConvertedFrom(Context.getPointerType(BaseTy), false);
2370 }
2371 }
2372 } else if (Ty->isEnumeralType()) {
Douglas Gregorbf3af052008-11-13 20:12:29 +00002373 EnumerationTypes.insert(Ty.getAsOpaquePtr());
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002374 } else if (AllowUserConversions) {
2375 if (const RecordType *TyRec = Ty->getAsRecordType()) {
2376 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
2377 // FIXME: Visit conversion functions in the base classes, too.
2378 OverloadedFunctionDecl *Conversions
2379 = ClassDecl->getConversionFunctions();
2380 for (OverloadedFunctionDecl::function_iterator Func
2381 = Conversions->function_begin();
2382 Func != Conversions->function_end(); ++Func) {
2383 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2384 AddTypesConvertedFrom(Conv->getConversionType(), false);
2385 }
2386 }
2387 }
2388}
2389
Douglas Gregor74253732008-11-19 15:42:04 +00002390/// AddBuiltinOperatorCandidates - Add the appropriate built-in
2391/// operator overloads to the candidate set (C++ [over.built]), based
2392/// on the operator @p Op and the arguments given. For example, if the
2393/// operator is a binary '+', this routine might add "int
2394/// operator+(int, int)" to cover integer addition.
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002395void
Douglas Gregor74253732008-11-19 15:42:04 +00002396Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
2397 Expr **Args, unsigned NumArgs,
2398 OverloadCandidateSet& CandidateSet) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002399 // The set of "promoted arithmetic types", which are the arithmetic
2400 // types are that preserved by promotion (C++ [over.built]p2). Note
2401 // that the first few of these types are the promoted integral
2402 // types; these types need to be first.
2403 // FIXME: What about complex?
2404 const unsigned FirstIntegralType = 0;
2405 const unsigned LastIntegralType = 13;
2406 const unsigned FirstPromotedIntegralType = 7,
2407 LastPromotedIntegralType = 13;
2408 const unsigned FirstPromotedArithmeticType = 7,
2409 LastPromotedArithmeticType = 16;
2410 const unsigned NumArithmeticTypes = 16;
2411 QualType ArithmeticTypes[NumArithmeticTypes] = {
2412 Context.BoolTy, Context.CharTy, Context.WCharTy,
2413 Context.SignedCharTy, Context.ShortTy,
2414 Context.UnsignedCharTy, Context.UnsignedShortTy,
2415 Context.IntTy, Context.LongTy, Context.LongLongTy,
2416 Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
2417 Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
2418 };
2419
2420 // Find all of the types that the arguments can convert to, but only
2421 // if the operator we're looking at has built-in operator candidates
2422 // that make use of these types.
2423 BuiltinCandidateTypeSet CandidateTypes(Context);
2424 if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
2425 Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
Douglas Gregor74253732008-11-19 15:42:04 +00002426 Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002427 Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
Douglas Gregor74253732008-11-19 15:42:04 +00002428 Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
2429 (Op == OO_Star && NumArgs == 1)) {
2430 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002431 CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType());
2432 }
2433
2434 bool isComparison = false;
2435 switch (Op) {
2436 case OO_None:
2437 case NUM_OVERLOADED_OPERATORS:
2438 assert(false && "Expected an overloaded operator");
2439 break;
2440
Douglas Gregor74253732008-11-19 15:42:04 +00002441 case OO_Star: // '*' is either unary or binary
2442 if (NumArgs == 1)
2443 goto UnaryStar;
2444 else
2445 goto BinaryStar;
2446 break;
2447
2448 case OO_Plus: // '+' is either unary or binary
2449 if (NumArgs == 1)
2450 goto UnaryPlus;
2451 else
2452 goto BinaryPlus;
2453 break;
2454
2455 case OO_Minus: // '-' is either unary or binary
2456 if (NumArgs == 1)
2457 goto UnaryMinus;
2458 else
2459 goto BinaryMinus;
2460 break;
2461
2462 case OO_Amp: // '&' is either unary or binary
2463 if (NumArgs == 1)
2464 goto UnaryAmp;
2465 else
2466 goto BinaryAmp;
2467
2468 case OO_PlusPlus:
2469 case OO_MinusMinus:
2470 // C++ [over.built]p3:
2471 //
2472 // For every pair (T, VQ), where T is an arithmetic type, and VQ
2473 // is either volatile or empty, there exist candidate operator
2474 // functions of the form
2475 //
2476 // VQ T& operator++(VQ T&);
2477 // T operator++(VQ T&, int);
2478 //
2479 // C++ [over.built]p4:
2480 //
2481 // For every pair (T, VQ), where T is an arithmetic type other
2482 // than bool, and VQ is either volatile or empty, there exist
2483 // candidate operator functions of the form
2484 //
2485 // VQ T& operator--(VQ T&);
2486 // T operator--(VQ T&, int);
2487 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
2488 Arith < NumArithmeticTypes; ++Arith) {
2489 QualType ArithTy = ArithmeticTypes[Arith];
2490 QualType ParamTypes[2]
2491 = { Context.getReferenceType(ArithTy), Context.IntTy };
2492
2493 // Non-volatile version.
2494 if (NumArgs == 1)
2495 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2496 else
2497 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2498
2499 // Volatile version
2500 ParamTypes[0] = Context.getReferenceType(ArithTy.withVolatile());
2501 if (NumArgs == 1)
2502 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2503 else
2504 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2505 }
2506
2507 // C++ [over.built]p5:
2508 //
2509 // For every pair (T, VQ), where T is a cv-qualified or
2510 // cv-unqualified object type, and VQ is either volatile or
2511 // empty, there exist candidate operator functions of the form
2512 //
2513 // T*VQ& operator++(T*VQ&);
2514 // T*VQ& operator--(T*VQ&);
2515 // T* operator++(T*VQ&, int);
2516 // T* operator--(T*VQ&, int);
2517 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2518 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2519 // Skip pointer types that aren't pointers to object types.
Douglas Gregorcb7de522008-11-26 23:31:11 +00002520 if (!(*Ptr)->getAsPointerType()->getPointeeType()->isIncompleteOrObjectType())
Douglas Gregor74253732008-11-19 15:42:04 +00002521 continue;
2522
2523 QualType ParamTypes[2] = {
2524 Context.getReferenceType(*Ptr), Context.IntTy
2525 };
2526
2527 // Without volatile
2528 if (NumArgs == 1)
2529 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2530 else
2531 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2532
2533 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2534 // With volatile
2535 ParamTypes[0] = Context.getReferenceType((*Ptr).withVolatile());
2536 if (NumArgs == 1)
2537 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2538 else
2539 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2540 }
2541 }
2542 break;
2543
2544 UnaryStar:
2545 // C++ [over.built]p6:
2546 // For every cv-qualified or cv-unqualified object type T, there
2547 // exist candidate operator functions of the form
2548 //
2549 // T& operator*(T*);
2550 //
2551 // C++ [over.built]p7:
2552 // For every function type T, there exist candidate operator
2553 // functions of the form
2554 // T& operator*(T*);
2555 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2556 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2557 QualType ParamTy = *Ptr;
2558 QualType PointeeTy = ParamTy->getAsPointerType()->getPointeeType();
2559 AddBuiltinCandidate(Context.getReferenceType(PointeeTy),
2560 &ParamTy, Args, 1, CandidateSet);
2561 }
2562 break;
2563
2564 UnaryPlus:
2565 // C++ [over.built]p8:
2566 // For every type T, there exist candidate operator functions of
2567 // the form
2568 //
2569 // T* operator+(T*);
2570 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2571 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2572 QualType ParamTy = *Ptr;
2573 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2574 }
2575
2576 // Fall through
2577
2578 UnaryMinus:
2579 // C++ [over.built]p9:
2580 // For every promoted arithmetic type T, there exist candidate
2581 // operator functions of the form
2582 //
2583 // T operator+(T);
2584 // T operator-(T);
2585 for (unsigned Arith = FirstPromotedArithmeticType;
2586 Arith < LastPromotedArithmeticType; ++Arith) {
2587 QualType ArithTy = ArithmeticTypes[Arith];
2588 AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
2589 }
2590 break;
2591
2592 case OO_Tilde:
2593 // C++ [over.built]p10:
2594 // For every promoted integral type T, there exist candidate
2595 // operator functions of the form
2596 //
2597 // T operator~(T);
2598 for (unsigned Int = FirstPromotedIntegralType;
2599 Int < LastPromotedIntegralType; ++Int) {
2600 QualType IntTy = ArithmeticTypes[Int];
2601 AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
2602 }
2603 break;
2604
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002605 case OO_New:
2606 case OO_Delete:
2607 case OO_Array_New:
2608 case OO_Array_Delete:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002609 case OO_Call:
Douglas Gregor74253732008-11-19 15:42:04 +00002610 assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002611 break;
2612
2613 case OO_Comma:
Douglas Gregor74253732008-11-19 15:42:04 +00002614 UnaryAmp:
2615 case OO_Arrow:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002616 // C++ [over.match.oper]p3:
2617 // -- For the operator ',', the unary operator '&', or the
2618 // operator '->', the built-in candidates set is empty.
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002619 break;
2620
2621 case OO_Less:
2622 case OO_Greater:
2623 case OO_LessEqual:
2624 case OO_GreaterEqual:
2625 case OO_EqualEqual:
2626 case OO_ExclaimEqual:
2627 // C++ [over.built]p15:
2628 //
2629 // For every pointer or enumeration type T, there exist
2630 // candidate operator functions of the form
2631 //
2632 // bool operator<(T, T);
2633 // bool operator>(T, T);
2634 // bool operator<=(T, T);
2635 // bool operator>=(T, T);
2636 // bool operator==(T, T);
2637 // bool operator!=(T, T);
2638 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2639 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2640 QualType ParamTypes[2] = { *Ptr, *Ptr };
2641 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2642 }
2643 for (BuiltinCandidateTypeSet::iterator Enum
2644 = CandidateTypes.enumeration_begin();
2645 Enum != CandidateTypes.enumeration_end(); ++Enum) {
2646 QualType ParamTypes[2] = { *Enum, *Enum };
2647 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2648 }
2649
2650 // Fall through.
2651 isComparison = true;
2652
Douglas Gregor74253732008-11-19 15:42:04 +00002653 BinaryPlus:
2654 BinaryMinus:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002655 if (!isComparison) {
2656 // We didn't fall through, so we must have OO_Plus or OO_Minus.
2657
2658 // C++ [over.built]p13:
2659 //
2660 // For every cv-qualified or cv-unqualified object type T
2661 // there exist candidate operator functions of the form
2662 //
2663 // T* operator+(T*, ptrdiff_t);
2664 // T& operator[](T*, ptrdiff_t); [BELOW]
2665 // T* operator-(T*, ptrdiff_t);
2666 // T* operator+(ptrdiff_t, T*);
2667 // T& operator[](ptrdiff_t, T*); [BELOW]
2668 //
2669 // C++ [over.built]p14:
2670 //
2671 // For every T, where T is a pointer to object type, there
2672 // exist candidate operator functions of the form
2673 //
2674 // ptrdiff_t operator-(T, T);
2675 for (BuiltinCandidateTypeSet::iterator Ptr
2676 = CandidateTypes.pointer_begin();
2677 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2678 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
2679
2680 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
2681 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2682
2683 if (Op == OO_Plus) {
2684 // T* operator+(ptrdiff_t, T*);
2685 ParamTypes[0] = ParamTypes[1];
2686 ParamTypes[1] = *Ptr;
2687 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2688 } else {
2689 // ptrdiff_t operator-(T, T);
2690 ParamTypes[1] = *Ptr;
2691 AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
2692 Args, 2, CandidateSet);
2693 }
2694 }
2695 }
2696 // Fall through
2697
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002698 case OO_Slash:
Douglas Gregor74253732008-11-19 15:42:04 +00002699 BinaryStar:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002700 // C++ [over.built]p12:
2701 //
2702 // For every pair of promoted arithmetic types L and R, there
2703 // exist candidate operator functions of the form
2704 //
2705 // LR operator*(L, R);
2706 // LR operator/(L, R);
2707 // LR operator+(L, R);
2708 // LR operator-(L, R);
2709 // bool operator<(L, R);
2710 // bool operator>(L, R);
2711 // bool operator<=(L, R);
2712 // bool operator>=(L, R);
2713 // bool operator==(L, R);
2714 // bool operator!=(L, R);
2715 //
2716 // where LR is the result of the usual arithmetic conversions
2717 // between types L and R.
2718 for (unsigned Left = FirstPromotedArithmeticType;
2719 Left < LastPromotedArithmeticType; ++Left) {
2720 for (unsigned Right = FirstPromotedArithmeticType;
2721 Right < LastPromotedArithmeticType; ++Right) {
2722 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
2723 QualType Result
2724 = isComparison? Context.BoolTy
2725 : UsualArithmeticConversionsType(LandR[0], LandR[1]);
2726 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
2727 }
2728 }
2729 break;
2730
2731 case OO_Percent:
Douglas Gregor74253732008-11-19 15:42:04 +00002732 BinaryAmp:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002733 case OO_Caret:
2734 case OO_Pipe:
2735 case OO_LessLess:
2736 case OO_GreaterGreater:
2737 // C++ [over.built]p17:
2738 //
2739 // For every pair of promoted integral types L and R, there
2740 // exist candidate operator functions of the form
2741 //
2742 // LR operator%(L, R);
2743 // LR operator&(L, R);
2744 // LR operator^(L, R);
2745 // LR operator|(L, R);
2746 // L operator<<(L, R);
2747 // L operator>>(L, R);
2748 //
2749 // where LR is the result of the usual arithmetic conversions
2750 // between types L and R.
2751 for (unsigned Left = FirstPromotedIntegralType;
2752 Left < LastPromotedIntegralType; ++Left) {
2753 for (unsigned Right = FirstPromotedIntegralType;
2754 Right < LastPromotedIntegralType; ++Right) {
2755 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
2756 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
2757 ? LandR[0]
2758 : UsualArithmeticConversionsType(LandR[0], LandR[1]);
2759 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
2760 }
2761 }
2762 break;
2763
2764 case OO_Equal:
2765 // C++ [over.built]p20:
2766 //
2767 // For every pair (T, VQ), where T is an enumeration or
2768 // (FIXME:) pointer to member type and VQ is either volatile or
2769 // empty, there exist candidate operator functions of the form
2770 //
2771 // VQ T& operator=(VQ T&, T);
2772 for (BuiltinCandidateTypeSet::iterator Enum
2773 = CandidateTypes.enumeration_begin();
2774 Enum != CandidateTypes.enumeration_end(); ++Enum) {
2775 QualType ParamTypes[2];
2776
2777 // T& operator=(T&, T)
2778 ParamTypes[0] = Context.getReferenceType(*Enum);
2779 ParamTypes[1] = *Enum;
2780 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2781
Douglas Gregor74253732008-11-19 15:42:04 +00002782 if (!Context.getCanonicalType(*Enum).isVolatileQualified()) {
2783 // volatile T& operator=(volatile T&, T)
2784 ParamTypes[0] = Context.getReferenceType((*Enum).withVolatile());
2785 ParamTypes[1] = *Enum;
2786 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2787 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002788 }
2789 // Fall through.
2790
2791 case OO_PlusEqual:
2792 case OO_MinusEqual:
2793 // C++ [over.built]p19:
2794 //
2795 // For every pair (T, VQ), where T is any type and VQ is either
2796 // volatile or empty, there exist candidate operator functions
2797 // of the form
2798 //
2799 // T*VQ& operator=(T*VQ&, T*);
2800 //
2801 // C++ [over.built]p21:
2802 //
2803 // For every pair (T, VQ), where T is a cv-qualified or
2804 // cv-unqualified object type and VQ is either volatile or
2805 // empty, there exist candidate operator functions of the form
2806 //
2807 // T*VQ& operator+=(T*VQ&, ptrdiff_t);
2808 // T*VQ& operator-=(T*VQ&, ptrdiff_t);
2809 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2810 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2811 QualType ParamTypes[2];
2812 ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
2813
2814 // non-volatile version
2815 ParamTypes[0] = Context.getReferenceType(*Ptr);
2816 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2817
Douglas Gregor74253732008-11-19 15:42:04 +00002818 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2819 // volatile version
2820 ParamTypes[0] = Context.getReferenceType((*Ptr).withVolatile());
2821 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2822 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002823 }
2824 // Fall through.
2825
2826 case OO_StarEqual:
2827 case OO_SlashEqual:
2828 // C++ [over.built]p18:
2829 //
2830 // For every triple (L, VQ, R), where L is an arithmetic type,
2831 // VQ is either volatile or empty, and R is a promoted
2832 // arithmetic type, there exist candidate operator functions of
2833 // the form
2834 //
2835 // VQ L& operator=(VQ L&, R);
2836 // VQ L& operator*=(VQ L&, R);
2837 // VQ L& operator/=(VQ L&, R);
2838 // VQ L& operator+=(VQ L&, R);
2839 // VQ L& operator-=(VQ L&, R);
2840 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
2841 for (unsigned Right = FirstPromotedArithmeticType;
2842 Right < LastPromotedArithmeticType; ++Right) {
2843 QualType ParamTypes[2];
2844 ParamTypes[1] = ArithmeticTypes[Right];
2845
2846 // Add this built-in operator as a candidate (VQ is empty).
2847 ParamTypes[0] = Context.getReferenceType(ArithmeticTypes[Left]);
2848 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2849
2850 // Add this built-in operator as a candidate (VQ is 'volatile').
2851 ParamTypes[0] = ArithmeticTypes[Left].withVolatile();
2852 ParamTypes[0] = Context.getReferenceType(ParamTypes[0]);
2853 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2854 }
2855 }
2856 break;
2857
2858 case OO_PercentEqual:
2859 case OO_LessLessEqual:
2860 case OO_GreaterGreaterEqual:
2861 case OO_AmpEqual:
2862 case OO_CaretEqual:
2863 case OO_PipeEqual:
2864 // C++ [over.built]p22:
2865 //
2866 // For every triple (L, VQ, R), where L is an integral type, VQ
2867 // is either volatile or empty, and R is a promoted integral
2868 // type, there exist candidate operator functions of the form
2869 //
2870 // VQ L& operator%=(VQ L&, R);
2871 // VQ L& operator<<=(VQ L&, R);
2872 // VQ L& operator>>=(VQ L&, R);
2873 // VQ L& operator&=(VQ L&, R);
2874 // VQ L& operator^=(VQ L&, R);
2875 // VQ L& operator|=(VQ L&, R);
2876 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
2877 for (unsigned Right = FirstPromotedIntegralType;
2878 Right < LastPromotedIntegralType; ++Right) {
2879 QualType ParamTypes[2];
2880 ParamTypes[1] = ArithmeticTypes[Right];
2881
2882 // Add this built-in operator as a candidate (VQ is empty).
2883 // FIXME: We should be caching these declarations somewhere,
2884 // rather than re-building them every time.
2885 ParamTypes[0] = Context.getReferenceType(ArithmeticTypes[Left]);
2886 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2887
2888 // Add this built-in operator as a candidate (VQ is 'volatile').
2889 ParamTypes[0] = ArithmeticTypes[Left];
2890 ParamTypes[0].addVolatile();
2891 ParamTypes[0] = Context.getReferenceType(ParamTypes[0]);
2892 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2893 }
2894 }
2895 break;
2896
Douglas Gregor74253732008-11-19 15:42:04 +00002897 case OO_Exclaim: {
2898 // C++ [over.operator]p23:
2899 //
2900 // There also exist candidate operator functions of the form
2901 //
2902 // bool operator!(bool);
2903 // bool operator&&(bool, bool); [BELOW]
2904 // bool operator||(bool, bool); [BELOW]
2905 QualType ParamTy = Context.BoolTy;
2906 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2907 break;
2908 }
2909
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002910 case OO_AmpAmp:
2911 case OO_PipePipe: {
2912 // C++ [over.operator]p23:
2913 //
2914 // There also exist candidate operator functions of the form
2915 //
Douglas Gregor74253732008-11-19 15:42:04 +00002916 // bool operator!(bool); [ABOVE]
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002917 // bool operator&&(bool, bool);
2918 // bool operator||(bool, bool);
2919 QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
2920 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2921 break;
2922 }
2923
2924 case OO_Subscript:
2925 // C++ [over.built]p13:
2926 //
2927 // For every cv-qualified or cv-unqualified object type T there
2928 // exist candidate operator functions of the form
2929 //
2930 // T* operator+(T*, ptrdiff_t); [ABOVE]
2931 // T& operator[](T*, ptrdiff_t);
2932 // T* operator-(T*, ptrdiff_t); [ABOVE]
2933 // T* operator+(ptrdiff_t, T*); [ABOVE]
2934 // T& operator[](ptrdiff_t, T*);
2935 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2936 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2937 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
2938 QualType PointeeType = (*Ptr)->getAsPointerType()->getPointeeType();
2939 QualType ResultTy = Context.getReferenceType(PointeeType);
2940
2941 // T& operator[](T*, ptrdiff_t)
2942 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
2943
2944 // T& operator[](ptrdiff_t, T*);
2945 ParamTypes[0] = ParamTypes[1];
2946 ParamTypes[1] = *Ptr;
2947 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
2948 }
2949 break;
2950
2951 case OO_ArrowStar:
2952 // FIXME: No support for pointer-to-members yet.
2953 break;
2954 }
2955}
2956
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002957/// AddOverloadCandidates - Add all of the function overloads in Ovl
2958/// to the candidate set.
2959void
Douglas Gregor18fe5682008-11-03 20:45:27 +00002960Sema::AddOverloadCandidates(const OverloadedFunctionDecl *Ovl,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002961 Expr **Args, unsigned NumArgs,
Douglas Gregor225c41e2008-11-03 19:09:14 +00002962 OverloadCandidateSet& CandidateSet,
2963 bool SuppressUserConversions)
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002964{
Douglas Gregor18fe5682008-11-03 20:45:27 +00002965 for (OverloadedFunctionDecl::function_const_iterator Func
2966 = Ovl->function_begin();
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002967 Func != Ovl->function_end(); ++Func)
Douglas Gregor225c41e2008-11-03 19:09:14 +00002968 AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet,
2969 SuppressUserConversions);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002970}
2971
2972/// isBetterOverloadCandidate - Determines whether the first overload
2973/// candidate is a better candidate than the second (C++ 13.3.3p1).
2974bool
2975Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
2976 const OverloadCandidate& Cand2)
2977{
2978 // Define viable functions to be better candidates than non-viable
2979 // functions.
2980 if (!Cand2.Viable)
2981 return Cand1.Viable;
2982 else if (!Cand1.Viable)
2983 return false;
2984
2985 // FIXME: Deal with the implicit object parameter for static member
2986 // functions. (C++ 13.3.3p1).
2987
2988 // (C++ 13.3.3p1): a viable function F1 is defined to be a better
2989 // function than another viable function F2 if for all arguments i,
2990 // ICSi(F1) is not a worse conversion sequence than ICSi(F2), and
2991 // then...
2992 unsigned NumArgs = Cand1.Conversions.size();
2993 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
2994 bool HasBetterConversion = false;
2995 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2996 switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
2997 Cand2.Conversions[ArgIdx])) {
2998 case ImplicitConversionSequence::Better:
2999 // Cand1 has a better conversion sequence.
3000 HasBetterConversion = true;
3001 break;
3002
3003 case ImplicitConversionSequence::Worse:
3004 // Cand1 can't be better than Cand2.
3005 return false;
3006
3007 case ImplicitConversionSequence::Indistinguishable:
3008 // Do nothing.
3009 break;
3010 }
3011 }
3012
3013 if (HasBetterConversion)
3014 return true;
3015
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003016 // FIXME: Several other bullets in (C++ 13.3.3p1) need to be
3017 // implemented, but they require template support.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003018
Douglas Gregorf1991ea2008-11-07 22:36:19 +00003019 // C++ [over.match.best]p1b4:
3020 //
3021 // -- the context is an initialization by user-defined conversion
3022 // (see 8.5, 13.3.1.5) and the standard conversion sequence
3023 // from the return type of F1 to the destination type (i.e.,
3024 // the type of the entity being initialized) is a better
3025 // conversion sequence than the standard conversion sequence
3026 // from the return type of F2 to the destination type.
Douglas Gregor447b69e2008-11-19 03:25:36 +00003027 if (Cand1.Function && Cand2.Function &&
3028 isa<CXXConversionDecl>(Cand1.Function) &&
Douglas Gregorf1991ea2008-11-07 22:36:19 +00003029 isa<CXXConversionDecl>(Cand2.Function)) {
3030 switch (CompareStandardConversionSequences(Cand1.FinalConversion,
3031 Cand2.FinalConversion)) {
3032 case ImplicitConversionSequence::Better:
3033 // Cand1 has a better conversion sequence.
3034 return true;
3035
3036 case ImplicitConversionSequence::Worse:
3037 // Cand1 can't be better than Cand2.
3038 return false;
3039
3040 case ImplicitConversionSequence::Indistinguishable:
3041 // Do nothing
3042 break;
3043 }
3044 }
3045
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003046 return false;
3047}
3048
3049/// BestViableFunction - Computes the best viable function (C++ 13.3.3)
3050/// within an overload candidate set. If overloading is successful,
3051/// the result will be OR_Success and Best will be set to point to the
3052/// best viable function within the candidate set. Otherwise, one of
3053/// several kinds of errors will be returned; see
3054/// Sema::OverloadingResult.
3055Sema::OverloadingResult
3056Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
3057 OverloadCandidateSet::iterator& Best)
3058{
3059 // Find the best viable function.
3060 Best = CandidateSet.end();
3061 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3062 Cand != CandidateSet.end(); ++Cand) {
3063 if (Cand->Viable) {
3064 if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
3065 Best = Cand;
3066 }
3067 }
3068
3069 // If we didn't find any viable functions, abort.
3070 if (Best == CandidateSet.end())
3071 return OR_No_Viable_Function;
3072
3073 // Make sure that this function is better than every other viable
3074 // function. If not, we have an ambiguity.
3075 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3076 Cand != CandidateSet.end(); ++Cand) {
3077 if (Cand->Viable &&
3078 Cand != Best &&
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003079 !isBetterOverloadCandidate(*Best, *Cand)) {
3080 Best = CandidateSet.end();
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003081 return OR_Ambiguous;
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003082 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003083 }
3084
3085 // Best is the best viable function.
3086 return OR_Success;
3087}
3088
3089/// PrintOverloadCandidates - When overload resolution fails, prints
3090/// diagnostic messages containing the candidates in the candidate
3091/// set. If OnlyViable is true, only viable candidates will be printed.
3092void
3093Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
3094 bool OnlyViable)
3095{
3096 OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
3097 LastCand = CandidateSet.end();
3098 for (; Cand != LastCand; ++Cand) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003099 if (Cand->Viable || !OnlyViable) {
3100 if (Cand->Function) {
3101 // Normal function
3102 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003103 } else if (Cand->IsSurrogate) {
Douglas Gregor621b3932008-11-21 02:54:28 +00003104 // Desugar the type of the surrogate down to a function type,
3105 // retaining as many typedefs as possible while still showing
3106 // the function type (and, therefore, its parameter types).
3107 QualType FnType = Cand->Surrogate->getConversionType();
3108 bool isReference = false;
3109 bool isPointer = false;
3110 if (const ReferenceType *FnTypeRef = FnType->getAsReferenceType()) {
3111 FnType = FnTypeRef->getPointeeType();
3112 isReference = true;
3113 }
3114 if (const PointerType *FnTypePtr = FnType->getAsPointerType()) {
3115 FnType = FnTypePtr->getPointeeType();
3116 isPointer = true;
3117 }
3118 // Desugar down to a function type.
3119 FnType = QualType(FnType->getAsFunctionType(), 0);
3120 // Reconstruct the pointer/reference as appropriate.
3121 if (isPointer) FnType = Context.getPointerType(FnType);
3122 if (isReference) FnType = Context.getReferenceType(FnType);
3123
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003124 Diag(Cand->Surrogate->getLocation(), diag::err_ovl_surrogate_cand)
Chris Lattnerd1625842008-11-24 06:25:27 +00003125 << FnType;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003126 } else {
3127 // FIXME: We need to get the identifier in here
3128 // FIXME: Do we want the error message to point at the
3129 // operator? (built-ins won't have a location)
3130 QualType FnType
3131 = Context.getFunctionType(Cand->BuiltinTypes.ResultTy,
3132 Cand->BuiltinTypes.ParamTypes,
3133 Cand->Conversions.size(),
3134 false, 0);
3135
Chris Lattnerd1625842008-11-24 06:25:27 +00003136 Diag(SourceLocation(), diag::err_ovl_builtin_candidate) << FnType;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00003137 }
3138 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003139 }
3140}
3141
Douglas Gregor904eed32008-11-10 20:40:00 +00003142/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
3143/// an overloaded function (C++ [over.over]), where @p From is an
3144/// expression with overloaded function type and @p ToType is the type
3145/// we're trying to resolve to. For example:
3146///
3147/// @code
3148/// int f(double);
3149/// int f(int);
3150///
3151/// int (*pfd)(double) = f; // selects f(double)
3152/// @endcode
3153///
3154/// This routine returns the resulting FunctionDecl if it could be
3155/// resolved, and NULL otherwise. When @p Complain is true, this
3156/// routine will emit diagnostics if there is an error.
3157FunctionDecl *
3158Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
3159 bool Complain) {
3160 QualType FunctionType = ToType;
3161 if (const PointerLikeType *ToTypePtr = ToType->getAsPointerLikeType())
3162 FunctionType = ToTypePtr->getPointeeType();
3163
3164 // We only look at pointers or references to functions.
3165 if (!FunctionType->isFunctionType())
3166 return 0;
3167
3168 // Find the actual overloaded function declaration.
3169 OverloadedFunctionDecl *Ovl = 0;
3170
3171 // C++ [over.over]p1:
3172 // [...] [Note: any redundant set of parentheses surrounding the
3173 // overloaded function name is ignored (5.1). ]
3174 Expr *OvlExpr = From->IgnoreParens();
3175
3176 // C++ [over.over]p1:
3177 // [...] The overloaded function name can be preceded by the &
3178 // operator.
3179 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
3180 if (UnOp->getOpcode() == UnaryOperator::AddrOf)
3181 OvlExpr = UnOp->getSubExpr()->IgnoreParens();
3182 }
3183
3184 // Try to dig out the overloaded function.
3185 if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr))
3186 Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
3187
3188 // If there's no overloaded function declaration, we're done.
3189 if (!Ovl)
3190 return 0;
3191
3192 // Look through all of the overloaded functions, searching for one
3193 // whose type matches exactly.
3194 // FIXME: When templates or using declarations come along, we'll actually
3195 // have to deal with duplicates, partial ordering, etc. For now, we
3196 // can just do a simple search.
3197 FunctionType = Context.getCanonicalType(FunctionType.getUnqualifiedType());
3198 for (OverloadedFunctionDecl::function_iterator Fun = Ovl->function_begin();
3199 Fun != Ovl->function_end(); ++Fun) {
3200 // C++ [over.over]p3:
3201 // Non-member functions and static member functions match
3202 // targets of type “pointer-to-function”or
3203 // “reference-to-function.”
3204 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun))
3205 if (!Method->isStatic())
3206 continue;
3207
3208 if (FunctionType == Context.getCanonicalType((*Fun)->getType()))
3209 return *Fun;
3210 }
3211
3212 return 0;
3213}
3214
Douglas Gregorf6b89692008-11-26 05:54:23 +00003215/// ResolveOverloadedCallFn - Given the call expression that calls Fn
3216/// (which eventually refers to the set of overloaded functions in
3217/// Ovl) and the call arguments Args/NumArgs, attempt to resolve the
3218/// function call down to a specific function. If overload resolution
Douglas Gregor0a396682008-11-26 06:01:48 +00003219/// succeeds, returns the function declaration produced by overload
3220/// resolution. Otherwise, emits diagnostics, deletes all of the
Douglas Gregorf6b89692008-11-26 05:54:23 +00003221/// arguments and Fn, and returns NULL.
Douglas Gregor0a396682008-11-26 06:01:48 +00003222FunctionDecl *Sema::ResolveOverloadedCallFn(Expr *Fn, OverloadedFunctionDecl *Ovl,
3223 SourceLocation LParenLoc,
3224 Expr **Args, unsigned NumArgs,
3225 SourceLocation *CommaLocs,
3226 SourceLocation RParenLoc) {
Douglas Gregorf6b89692008-11-26 05:54:23 +00003227 OverloadCandidateSet CandidateSet;
3228 AddOverloadCandidates(Ovl, Args, NumArgs, CandidateSet);
3229 OverloadCandidateSet::iterator Best;
3230 switch (BestViableFunction(CandidateSet, Best)) {
Douglas Gregor0a396682008-11-26 06:01:48 +00003231 case OR_Success:
3232 return Best->Function;
Douglas Gregorf6b89692008-11-26 05:54:23 +00003233
3234 case OR_No_Viable_Function:
3235 Diag(Fn->getSourceRange().getBegin(),
3236 diag::err_ovl_no_viable_function_in_call)
3237 << Ovl->getDeclName() << (unsigned)CandidateSet.size()
3238 << Fn->getSourceRange();
3239 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3240 break;
3241
3242 case OR_Ambiguous:
3243 Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
3244 << Ovl->getDeclName() << Fn->getSourceRange();
3245 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3246 break;
3247 }
3248
3249 // Overload resolution failed. Destroy all of the subexpressions and
3250 // return NULL.
3251 Fn->Destroy(Context);
3252 for (unsigned Arg = 0; Arg < NumArgs; ++Arg)
3253 Args[Arg]->Destroy(Context);
3254 return 0;
3255}
3256
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003257/// BuildCallToObjectOfClassType - Build a call to an object of class
3258/// type (C++ [over.call.object]), which can end up invoking an
3259/// overloaded function call operator (@c operator()) or performing a
3260/// user-defined conversion on the object argument.
3261Action::ExprResult
Douglas Gregor5c37de72008-12-06 00:22:45 +00003262Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Object,
3263 SourceLocation LParenLoc,
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003264 Expr **Args, unsigned NumArgs,
3265 SourceLocation *CommaLocs,
3266 SourceLocation RParenLoc) {
3267 assert(Object->getType()->isRecordType() && "Requires object type argument");
3268 const RecordType *Record = Object->getType()->getAsRecordType();
3269
3270 // C++ [over.call.object]p1:
3271 // If the primary-expression E in the function call syntax
3272 // evaluates to a class object of type “cv T”, then the set of
3273 // candidate functions includes at least the function call
3274 // operators of T. The function call operators of T are obtained by
3275 // ordinary lookup of the name operator() in the context of
3276 // (E).operator().
3277 OverloadCandidateSet CandidateSet;
Douglas Gregor44b43212008-12-11 16:49:14 +00003278 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
3279 DeclContext::lookup_const_result Lookup
Douglas Gregore267ff32008-12-11 20:41:00 +00003280 = Record->getDecl()->lookup(Context, OpName);
Douglas Gregor44b43212008-12-11 16:49:14 +00003281 NamedDecl *MemberOps = (Lookup.first == Lookup.second)? 0 : *Lookup.first;
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003282 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(MemberOps))
3283 AddMethodCandidate(Method, Object, Args, NumArgs, CandidateSet,
3284 /*SuppressUserConversions=*/false);
3285 else if (OverloadedFunctionDecl *Ovl
3286 = dyn_cast_or_null<OverloadedFunctionDecl>(MemberOps)) {
3287 for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
3288 FEnd = Ovl->function_end();
3289 F != FEnd; ++F) {
3290 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*F))
3291 AddMethodCandidate(Method, Object, Args, NumArgs, CandidateSet,
3292 /*SuppressUserConversions=*/false);
3293 }
3294 }
3295
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003296 // C++ [over.call.object]p2:
3297 // In addition, for each conversion function declared in T of the
3298 // form
3299 //
3300 // operator conversion-type-id () cv-qualifier;
3301 //
3302 // where cv-qualifier is the same cv-qualification as, or a
3303 // greater cv-qualification than, cv, and where conversion-type-id
Douglas Gregora967a6f2008-11-20 13:33:37 +00003304 // denotes the type "pointer to function of (P1,...,Pn) returning
3305 // R", or the type "reference to pointer to function of
3306 // (P1,...,Pn) returning R", or the type "reference to function
3307 // of (P1,...,Pn) returning R", a surrogate call function [...]
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003308 // is also considered as a candidate function. Similarly,
3309 // surrogate call functions are added to the set of candidate
3310 // functions for each conversion function declared in an
3311 // accessible base class provided the function is not hidden
3312 // within T by another intervening declaration.
3313 //
3314 // FIXME: Look in base classes for more conversion operators!
3315 OverloadedFunctionDecl *Conversions
3316 = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
Douglas Gregor621b3932008-11-21 02:54:28 +00003317 for (OverloadedFunctionDecl::function_iterator
3318 Func = Conversions->function_begin(),
3319 FuncEnd = Conversions->function_end();
3320 Func != FuncEnd; ++Func) {
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003321 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
3322
3323 // Strip the reference type (if any) and then the pointer type (if
3324 // any) to get down to what might be a function type.
3325 QualType ConvType = Conv->getConversionType().getNonReferenceType();
3326 if (const PointerType *ConvPtrType = ConvType->getAsPointerType())
3327 ConvType = ConvPtrType->getPointeeType();
3328
3329 if (const FunctionTypeProto *Proto = ConvType->getAsFunctionTypeProto())
3330 AddSurrogateCandidate(Conv, Proto, Object, Args, NumArgs, CandidateSet);
3331 }
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003332
3333 // Perform overload resolution.
3334 OverloadCandidateSet::iterator Best;
3335 switch (BestViableFunction(CandidateSet, Best)) {
3336 case OR_Success:
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003337 // Overload resolution succeeded; we'll build the appropriate call
3338 // below.
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003339 break;
3340
3341 case OR_No_Viable_Function:
Sebastian Redle4c452c2008-11-22 13:44:36 +00003342 Diag(Object->getSourceRange().getBegin(),
3343 diag::err_ovl_no_viable_object_call)
Chris Lattnerd1625842008-11-24 06:25:27 +00003344 << Object->getType() << (unsigned)CandidateSet.size()
Sebastian Redle4c452c2008-11-22 13:44:36 +00003345 << Object->getSourceRange();
3346 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003347 break;
3348
3349 case OR_Ambiguous:
3350 Diag(Object->getSourceRange().getBegin(),
3351 diag::err_ovl_ambiguous_object_call)
Chris Lattnerd1625842008-11-24 06:25:27 +00003352 << Object->getType() << Object->getSourceRange();
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003353 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3354 break;
3355 }
3356
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003357 if (Best == CandidateSet.end()) {
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003358 // We had an error; delete all of the subexpressions and return
3359 // the error.
3360 delete Object;
3361 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3362 delete Args[ArgIdx];
3363 return true;
3364 }
3365
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003366 if (Best->Function == 0) {
3367 // Since there is no function declaration, this is one of the
3368 // surrogate candidates. Dig out the conversion function.
3369 CXXConversionDecl *Conv
3370 = cast<CXXConversionDecl>(
3371 Best->Conversions[0].UserDefined.ConversionFunction);
3372
3373 // We selected one of the surrogate functions that converts the
3374 // object parameter to a function pointer. Perform the conversion
3375 // on the object argument, then let ActOnCallExpr finish the job.
3376 // FIXME: Represent the user-defined conversion in the AST!
3377 ImpCastExprToType(Object,
3378 Conv->getConversionType().getNonReferenceType(),
3379 Conv->getConversionType()->isReferenceType());
Douglas Gregor5c37de72008-12-06 00:22:45 +00003380 return ActOnCallExpr(S, (ExprTy*)Object, LParenLoc, (ExprTy**)Args, NumArgs,
Douglas Gregor106c6eb2008-11-19 22:57:39 +00003381 CommaLocs, RParenLoc);
3382 }
3383
3384 // We found an overloaded operator(). Build a CXXOperatorCallExpr
3385 // that calls this method, using Object for the implicit object
3386 // parameter and passing along the remaining arguments.
3387 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
Douglas Gregorf9eb9052008-11-19 21:05:33 +00003388 const FunctionTypeProto *Proto = Method->getType()->getAsFunctionTypeProto();
3389
3390 unsigned NumArgsInProto = Proto->getNumArgs();
3391 unsigned NumArgsToCheck = NumArgs;
3392
3393 // Build the full argument list for the method call (the
3394 // implicit object parameter is placed at the beginning of the
3395 // list).
3396 Expr **MethodArgs;
3397 if (NumArgs < NumArgsInProto) {
3398 NumArgsToCheck = NumArgsInProto;
3399 MethodArgs = new Expr*[NumArgsInProto + 1];
3400 } else {
3401 MethodArgs = new Expr*[NumArgs + 1];
3402 }
3403 MethodArgs[0] = Object;
3404 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
3405 MethodArgs[ArgIdx + 1] = Args[ArgIdx];
3406
3407 Expr *NewFn = new DeclRefExpr(Method, Method->getType(),
3408 SourceLocation());
3409 UsualUnaryConversions(NewFn);
3410
3411 // Once we've built TheCall, all of the expressions are properly
3412 // owned.
3413 QualType ResultTy = Method->getResultType().getNonReferenceType();
3414 llvm::OwningPtr<CXXOperatorCallExpr>
3415 TheCall(new CXXOperatorCallExpr(NewFn, MethodArgs, NumArgs + 1,
3416 ResultTy, RParenLoc));
3417 delete [] MethodArgs;
3418
3419 // Initialize the implicit object parameter.
3420 if (!PerformObjectArgumentInitialization(Object, Method))
3421 return true;
3422 TheCall->setArg(0, Object);
3423
3424 // Check the argument types.
3425 for (unsigned i = 0; i != NumArgsToCheck; i++) {
3426 QualType ProtoArgType = Proto->getArgType(i);
3427
3428 Expr *Arg;
3429 if (i < NumArgs)
3430 Arg = Args[i];
3431 else
3432 Arg = new CXXDefaultArgExpr(Method->getParamDecl(i));
3433 QualType ArgType = Arg->getType();
3434
3435 // Pass the argument.
3436 if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
3437 return true;
3438
3439 TheCall->setArg(i + 1, Arg);
3440 }
3441
3442 // If this is a variadic call, handle args passed through "...".
3443 if (Proto->isVariadic()) {
3444 // Promote the arguments (C99 6.5.2.2p7).
3445 for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
3446 Expr *Arg = Args[i];
3447 DefaultArgumentPromotion(Arg);
3448 TheCall->setArg(i + 1, Arg);
3449 }
3450 }
3451
3452 return CheckFunctionCall(Method, TheCall.take());
3453}
3454
Douglas Gregor8ba10742008-11-20 16:27:02 +00003455/// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
3456/// (if one exists), where @c Base is an expression of class type and
3457/// @c Member is the name of the member we're trying to find.
3458Action::ExprResult
3459Sema::BuildOverloadedArrowExpr(Expr *Base, SourceLocation OpLoc,
3460 SourceLocation MemberLoc,
3461 IdentifierInfo &Member) {
3462 assert(Base->getType()->isRecordType() && "left-hand side must have class type");
3463
3464 // C++ [over.ref]p1:
3465 //
3466 // [...] An expression x->m is interpreted as (x.operator->())->m
3467 // for a class object x of type T if T::operator->() exists and if
3468 // the operator is selected as the best match function by the
3469 // overload resolution mechanism (13.3).
3470 // FIXME: look in base classes.
3471 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
3472 OverloadCandidateSet CandidateSet;
3473 const RecordType *BaseRecord = Base->getType()->getAsRecordType();
Douglas Gregor44b43212008-12-11 16:49:14 +00003474 DeclContext::lookup_const_result Lookup
Douglas Gregore267ff32008-12-11 20:41:00 +00003475 = BaseRecord->getDecl()->lookup(Context, OpName);
Douglas Gregor44b43212008-12-11 16:49:14 +00003476 NamedDecl *MemberOps = (Lookup.first == Lookup.second)? 0 : *Lookup.first;
Douglas Gregor8ba10742008-11-20 16:27:02 +00003477 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(MemberOps))
3478 AddMethodCandidate(Method, Base, 0, 0, CandidateSet,
3479 /*SuppressUserConversions=*/false);
3480 else if (OverloadedFunctionDecl *Ovl
3481 = dyn_cast_or_null<OverloadedFunctionDecl>(MemberOps)) {
3482 for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
3483 FEnd = Ovl->function_end();
3484 F != FEnd; ++F) {
3485 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*F))
3486 AddMethodCandidate(Method, Base, 0, 0, CandidateSet,
3487 /*SuppressUserConversions=*/false);
3488 }
3489 }
3490
Douglas Gregorfc195ef2008-11-21 03:04:22 +00003491 llvm::OwningPtr<Expr> BasePtr(Base);
3492
Douglas Gregor8ba10742008-11-20 16:27:02 +00003493 // Perform overload resolution.
3494 OverloadCandidateSet::iterator Best;
3495 switch (BestViableFunction(CandidateSet, Best)) {
3496 case OR_Success:
3497 // Overload resolution succeeded; we'll build the call below.
3498 break;
3499
3500 case OR_No_Viable_Function:
3501 if (CandidateSet.empty())
3502 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
Chris Lattnerd1625842008-11-24 06:25:27 +00003503 << BasePtr->getType() << BasePtr->getSourceRange();
Douglas Gregor8ba10742008-11-20 16:27:02 +00003504 else
3505 Diag(OpLoc, diag::err_ovl_no_viable_oper)
Sebastian Redle4c452c2008-11-22 13:44:36 +00003506 << "operator->" << (unsigned)CandidateSet.size()
3507 << BasePtr->getSourceRange();
Douglas Gregor8ba10742008-11-20 16:27:02 +00003508 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
Douglas Gregor8ba10742008-11-20 16:27:02 +00003509 return true;
3510
3511 case OR_Ambiguous:
3512 Diag(OpLoc, diag::err_ovl_ambiguous_oper)
Chris Lattnerd1625842008-11-24 06:25:27 +00003513 << "operator->" << BasePtr->getSourceRange();
Douglas Gregor8ba10742008-11-20 16:27:02 +00003514 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
Douglas Gregor8ba10742008-11-20 16:27:02 +00003515 return true;
3516 }
3517
3518 // Convert the object parameter.
3519 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
Douglas Gregorfc195ef2008-11-21 03:04:22 +00003520 if (PerformObjectArgumentInitialization(Base, Method))
Douglas Gregor8ba10742008-11-20 16:27:02 +00003521 return true;
Douglas Gregorfc195ef2008-11-21 03:04:22 +00003522
3523 // No concerns about early exits now.
3524 BasePtr.take();
Douglas Gregor8ba10742008-11-20 16:27:02 +00003525
3526 // Build the operator call.
3527 Expr *FnExpr = new DeclRefExpr(Method, Method->getType(), SourceLocation());
3528 UsualUnaryConversions(FnExpr);
3529 Base = new CXXOperatorCallExpr(FnExpr, &Base, 1,
3530 Method->getResultType().getNonReferenceType(),
3531 OpLoc);
3532 return ActOnMemberReferenceExpr(Base, OpLoc, tok::arrow, MemberLoc, Member);
3533}
3534
Douglas Gregor904eed32008-11-10 20:40:00 +00003535/// FixOverloadedFunctionReference - E is an expression that refers to
3536/// a C++ overloaded function (possibly with some parentheses and
3537/// perhaps a '&' around it). We have resolved the overloaded function
3538/// to the function declaration Fn, so patch up the expression E to
3539/// refer (possibly indirectly) to Fn.
3540void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
3541 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
3542 FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
3543 E->setType(PE->getSubExpr()->getType());
3544 } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
3545 assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
3546 "Can only take the address of an overloaded function");
3547 FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
3548 E->setType(Context.getPointerType(E->getType()));
3549 } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
3550 assert(isa<OverloadedFunctionDecl>(DR->getDecl()) &&
3551 "Expected overloaded function");
3552 DR->setDecl(Fn);
3553 E->setType(Fn->getType());
3554 } else {
3555 assert(false && "Invalid reference to overloaded function");
3556 }
3557}
3558
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003559} // end namespace clang