blob: cadda5b440c78fcb5d71a85499090d3961b3db56 [file] [log] [blame]
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001//===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ overloading.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
Douglas Gregor94b1dd22008-10-24 04:54:22 +000015#include "SemaInherit.h"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000016#include "clang/Basic/Diagnostic.h"
Douglas Gregoreb8f3062008-11-12 17:17:38 +000017#include "clang/Lex/Preprocessor.h"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000018#include "clang/AST/ASTContext.h"
19#include "clang/AST/Expr.h"
Douglas Gregorf9eb9052008-11-19 21:05:33 +000020#include "clang/AST/ExprCXX.h"
Douglas Gregoreb8f3062008-11-12 17:17:38 +000021#include "clang/AST/TypeOrdering.h"
Douglas Gregorbf3af052008-11-13 20:12:29 +000022#include "llvm/ADT/SmallPtrSet.h"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000023#include "llvm/Support/Compiler.h"
24#include <algorithm>
25
26namespace clang {
27
28/// GetConversionCategory - Retrieve the implicit conversion
29/// category corresponding to the given implicit conversion kind.
30ImplicitConversionCategory
31GetConversionCategory(ImplicitConversionKind Kind) {
32 static const ImplicitConversionCategory
33 Category[(int)ICK_Num_Conversion_Kinds] = {
34 ICC_Identity,
35 ICC_Lvalue_Transformation,
36 ICC_Lvalue_Transformation,
37 ICC_Lvalue_Transformation,
38 ICC_Qualification_Adjustment,
39 ICC_Promotion,
40 ICC_Promotion,
41 ICC_Conversion,
42 ICC_Conversion,
43 ICC_Conversion,
44 ICC_Conversion,
45 ICC_Conversion,
Douglas Gregor15da57e2008-10-29 02:00:59 +000046 ICC_Conversion,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000047 ICC_Conversion
48 };
49 return Category[(int)Kind];
50}
51
52/// GetConversionRank - Retrieve the implicit conversion rank
53/// corresponding to the given implicit conversion kind.
54ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) {
55 static const ImplicitConversionRank
56 Rank[(int)ICK_Num_Conversion_Kinds] = {
57 ICR_Exact_Match,
58 ICR_Exact_Match,
59 ICR_Exact_Match,
60 ICR_Exact_Match,
61 ICR_Exact_Match,
62 ICR_Promotion,
63 ICR_Promotion,
64 ICR_Conversion,
65 ICR_Conversion,
66 ICR_Conversion,
67 ICR_Conversion,
68 ICR_Conversion,
Douglas Gregor15da57e2008-10-29 02:00:59 +000069 ICR_Conversion,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000070 ICR_Conversion
71 };
72 return Rank[(int)Kind];
73}
74
75/// GetImplicitConversionName - Return the name of this kind of
76/// implicit conversion.
77const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
78 static const char* Name[(int)ICK_Num_Conversion_Kinds] = {
79 "No conversion",
80 "Lvalue-to-rvalue",
81 "Array-to-pointer",
82 "Function-to-pointer",
83 "Qualification",
84 "Integral promotion",
85 "Floating point promotion",
86 "Integral conversion",
87 "Floating conversion",
88 "Floating-integral conversion",
89 "Pointer conversion",
90 "Pointer-to-member conversion",
Douglas Gregor15da57e2008-10-29 02:00:59 +000091 "Boolean conversion",
92 "Derived-to-base conversion"
Douglas Gregor8e9bebd2008-10-21 16:13:35 +000093 };
94 return Name[Kind];
95}
96
Douglas Gregor60d62c22008-10-31 16:23:19 +000097/// StandardConversionSequence - Set the standard conversion
98/// sequence to the identity conversion.
99void StandardConversionSequence::setAsIdentityConversion() {
100 First = ICK_Identity;
101 Second = ICK_Identity;
102 Third = ICK_Identity;
103 Deprecated = false;
104 ReferenceBinding = false;
105 DirectBinding = false;
Douglas Gregor225c41e2008-11-03 19:09:14 +0000106 CopyConstructor = 0;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000107}
108
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000109/// getRank - Retrieve the rank of this standard conversion sequence
110/// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
111/// implicit conversions.
112ImplicitConversionRank StandardConversionSequence::getRank() const {
113 ImplicitConversionRank Rank = ICR_Exact_Match;
114 if (GetConversionRank(First) > Rank)
115 Rank = GetConversionRank(First);
116 if (GetConversionRank(Second) > Rank)
117 Rank = GetConversionRank(Second);
118 if (GetConversionRank(Third) > Rank)
119 Rank = GetConversionRank(Third);
120 return Rank;
121}
122
123/// isPointerConversionToBool - Determines whether this conversion is
124/// a conversion of a pointer or pointer-to-member to bool. This is
125/// used as part of the ranking of standard conversion sequences
126/// (C++ 13.3.3.2p4).
127bool StandardConversionSequence::isPointerConversionToBool() const
128{
129 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
130 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
131
132 // Note that FromType has not necessarily been transformed by the
133 // array-to-pointer or function-to-pointer implicit conversions, so
134 // check for their presence as well as checking whether FromType is
135 // a pointer.
136 if (ToType->isBooleanType() &&
137 (FromType->isPointerType() ||
138 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
139 return true;
140
141 return false;
142}
143
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000144/// isPointerConversionToVoidPointer - Determines whether this
145/// conversion is a conversion of a pointer to a void pointer. This is
146/// used as part of the ranking of standard conversion sequences (C++
147/// 13.3.3.2p4).
148bool
149StandardConversionSequence::
150isPointerConversionToVoidPointer(ASTContext& Context) const
151{
152 QualType FromType = QualType::getFromOpaquePtr(FromTypePtr);
153 QualType ToType = QualType::getFromOpaquePtr(ToTypePtr);
154
155 // Note that FromType has not necessarily been transformed by the
156 // array-to-pointer implicit conversion, so check for its presence
157 // and redo the conversion to get a pointer.
158 if (First == ICK_Array_To_Pointer)
159 FromType = Context.getArrayDecayedType(FromType);
160
161 if (Second == ICK_Pointer_Conversion)
162 if (const PointerType* ToPtrType = ToType->getAsPointerType())
163 return ToPtrType->getPointeeType()->isVoidType();
164
165 return false;
166}
167
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000168/// DebugPrint - Print this standard conversion sequence to standard
169/// error. Useful for debugging overloading issues.
170void StandardConversionSequence::DebugPrint() const {
171 bool PrintedSomething = false;
172 if (First != ICK_Identity) {
173 fprintf(stderr, "%s", GetImplicitConversionName(First));
174 PrintedSomething = true;
175 }
176
177 if (Second != ICK_Identity) {
178 if (PrintedSomething) {
179 fprintf(stderr, " -> ");
180 }
181 fprintf(stderr, "%s", GetImplicitConversionName(Second));
Douglas Gregor225c41e2008-11-03 19:09:14 +0000182
183 if (CopyConstructor) {
184 fprintf(stderr, " (by copy constructor)");
185 } else if (DirectBinding) {
186 fprintf(stderr, " (direct reference binding)");
187 } else if (ReferenceBinding) {
188 fprintf(stderr, " (reference binding)");
189 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000190 PrintedSomething = true;
191 }
192
193 if (Third != ICK_Identity) {
194 if (PrintedSomething) {
195 fprintf(stderr, " -> ");
196 }
197 fprintf(stderr, "%s", GetImplicitConversionName(Third));
198 PrintedSomething = true;
199 }
200
201 if (!PrintedSomething) {
202 fprintf(stderr, "No conversions required");
203 }
204}
205
206/// DebugPrint - Print this user-defined conversion sequence to standard
207/// error. Useful for debugging overloading issues.
208void UserDefinedConversionSequence::DebugPrint() const {
209 if (Before.First || Before.Second || Before.Third) {
210 Before.DebugPrint();
211 fprintf(stderr, " -> ");
212 }
Douglas Gregor2e1cd422008-11-17 14:58:09 +0000213 fprintf(stderr, "'%s'", ConversionFunction->getName().c_str());
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000214 if (After.First || After.Second || After.Third) {
215 fprintf(stderr, " -> ");
216 After.DebugPrint();
217 }
218}
219
220/// DebugPrint - Print this implicit conversion sequence to standard
221/// error. Useful for debugging overloading issues.
222void ImplicitConversionSequence::DebugPrint() const {
223 switch (ConversionKind) {
224 case StandardConversion:
225 fprintf(stderr, "Standard conversion: ");
226 Standard.DebugPrint();
227 break;
228 case UserDefinedConversion:
229 fprintf(stderr, "User-defined conversion: ");
230 UserDefined.DebugPrint();
231 break;
232 case EllipsisConversion:
233 fprintf(stderr, "Ellipsis conversion");
234 break;
235 case BadConversion:
236 fprintf(stderr, "Bad conversion");
237 break;
238 }
239
240 fprintf(stderr, "\n");
241}
242
243// IsOverload - Determine whether the given New declaration is an
244// overload of the Old declaration. This routine returns false if New
245// and Old cannot be overloaded, e.g., if they are functions with the
246// same signature (C++ 1.3.10) or if the Old declaration isn't a
247// function (or overload set). When it does return false and Old is an
248// OverloadedFunctionDecl, MatchedDecl will be set to point to the
249// FunctionDecl that New cannot be overloaded with.
250//
251// Example: Given the following input:
252//
253// void f(int, float); // #1
254// void f(int, int); // #2
255// int f(int, int); // #3
256//
257// When we process #1, there is no previous declaration of "f",
258// so IsOverload will not be used.
259//
260// When we process #2, Old is a FunctionDecl for #1. By comparing the
261// parameter types, we see that #1 and #2 are overloaded (since they
262// have different signatures), so this routine returns false;
263// MatchedDecl is unchanged.
264//
265// When we process #3, Old is an OverloadedFunctionDecl containing #1
266// and #2. We compare the signatures of #3 to #1 (they're overloaded,
267// so we do nothing) and then #3 to #2. Since the signatures of #3 and
268// #2 are identical (return types of functions are not part of the
269// signature), IsOverload returns false and MatchedDecl will be set to
270// point to the FunctionDecl for #2.
271bool
272Sema::IsOverload(FunctionDecl *New, Decl* OldD,
273 OverloadedFunctionDecl::function_iterator& MatchedDecl)
274{
275 if (OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(OldD)) {
276 // Is this new function an overload of every function in the
277 // overload set?
278 OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
279 FuncEnd = Ovl->function_end();
280 for (; Func != FuncEnd; ++Func) {
281 if (!IsOverload(New, *Func, MatchedDecl)) {
282 MatchedDecl = Func;
283 return false;
284 }
285 }
286
287 // This function overloads every function in the overload set.
288 return true;
289 } else if (FunctionDecl* Old = dyn_cast<FunctionDecl>(OldD)) {
290 // Is the function New an overload of the function Old?
291 QualType OldQType = Context.getCanonicalType(Old->getType());
292 QualType NewQType = Context.getCanonicalType(New->getType());
293
294 // Compare the signatures (C++ 1.3.10) of the two functions to
295 // determine whether they are overloads. If we find any mismatch
296 // in the signature, they are overloads.
297
298 // If either of these functions is a K&R-style function (no
299 // prototype), then we consider them to have matching signatures.
300 if (isa<FunctionTypeNoProto>(OldQType.getTypePtr()) ||
301 isa<FunctionTypeNoProto>(NewQType.getTypePtr()))
302 return false;
303
304 FunctionTypeProto* OldType = cast<FunctionTypeProto>(OldQType.getTypePtr());
305 FunctionTypeProto* NewType = cast<FunctionTypeProto>(NewQType.getTypePtr());
306
307 // The signature of a function includes the types of its
308 // parameters (C++ 1.3.10), which includes the presence or absence
309 // of the ellipsis; see C++ DR 357).
310 if (OldQType != NewQType &&
311 (OldType->getNumArgs() != NewType->getNumArgs() ||
312 OldType->isVariadic() != NewType->isVariadic() ||
313 !std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
314 NewType->arg_type_begin())))
315 return true;
316
317 // If the function is a class member, its signature includes the
318 // cv-qualifiers (if any) on the function itself.
319 //
320 // As part of this, also check whether one of the member functions
321 // is static, in which case they are not overloads (C++
322 // 13.1p2). While not part of the definition of the signature,
323 // this check is important to determine whether these functions
324 // can be overloaded.
325 CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
326 CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
327 if (OldMethod && NewMethod &&
328 !OldMethod->isStatic() && !NewMethod->isStatic() &&
329 OldQType.getCVRQualifiers() != NewQType.getCVRQualifiers())
330 return true;
331
332 // The signatures match; this is not an overload.
333 return false;
334 } else {
335 // (C++ 13p1):
336 // Only function declarations can be overloaded; object and type
337 // declarations cannot be overloaded.
338 return false;
339 }
340}
341
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000342/// TryImplicitConversion - Attempt to perform an implicit conversion
343/// from the given expression (Expr) to the given type (ToType). This
344/// function returns an implicit conversion sequence that can be used
345/// to perform the initialization. Given
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000346///
347/// void f(float f);
348/// void g(int i) { f(i); }
349///
350/// this routine would produce an implicit conversion sequence to
351/// describe the initialization of f from i, which will be a standard
352/// conversion sequence containing an lvalue-to-rvalue conversion (C++
353/// 4.1) followed by a floating-integral conversion (C++ 4.9).
354//
355/// Note that this routine only determines how the conversion can be
356/// performed; it does not actually perform the conversion. As such,
357/// it will not produce any diagnostics if no conversion is available,
358/// but will instead return an implicit conversion sequence of kind
359/// "BadConversion".
Douglas Gregor225c41e2008-11-03 19:09:14 +0000360///
361/// If @p SuppressUserConversions, then user-defined conversions are
362/// not permitted.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000363ImplicitConversionSequence
Douglas Gregor225c41e2008-11-03 19:09:14 +0000364Sema::TryImplicitConversion(Expr* From, QualType ToType,
365 bool SuppressUserConversions)
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000366{
367 ImplicitConversionSequence ICS;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000368 if (IsStandardConversion(From, ToType, ICS.Standard))
369 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
Douglas Gregor225c41e2008-11-03 19:09:14 +0000370 else if (!SuppressUserConversions &&
371 IsUserDefinedConversion(From, ToType, ICS.UserDefined)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000372 ICS.ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000373 // C++ [over.ics.user]p4:
374 // A conversion of an expression of class type to the same class
375 // type is given Exact Match rank, and a conversion of an
376 // expression of class type to a base class of that type is
377 // given Conversion rank, in spite of the fact that a copy
378 // constructor (i.e., a user-defined conversion function) is
379 // called for those cases.
380 if (CXXConstructorDecl *Constructor
381 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
382 if (Constructor->isCopyConstructor(Context)) {
Douglas Gregor225c41e2008-11-03 19:09:14 +0000383 // Turn this into a "standard" conversion sequence, so that it
384 // gets ranked with standard conversion sequences.
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000385 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
386 ICS.Standard.setAsIdentityConversion();
387 ICS.Standard.FromTypePtr = From->getType().getAsOpaquePtr();
388 ICS.Standard.ToTypePtr = ToType.getAsOpaquePtr();
Douglas Gregor225c41e2008-11-03 19:09:14 +0000389 ICS.Standard.CopyConstructor = Constructor;
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000390 if (IsDerivedFrom(From->getType().getUnqualifiedType(),
391 ToType.getUnqualifiedType()))
392 ICS.Standard.Second = ICK_Derived_To_Base;
393 }
Douglas Gregor60d62c22008-10-31 16:23:19 +0000394 }
Douglas Gregor396b7cd2008-11-03 17:51:48 +0000395 } else
Douglas Gregor60d62c22008-10-31 16:23:19 +0000396 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000397
398 return ICS;
399}
400
401/// IsStandardConversion - Determines whether there is a standard
402/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
403/// expression From to the type ToType. Standard conversion sequences
404/// only consider non-class types; for conversions that involve class
405/// types, use TryImplicitConversion. If a conversion exists, SCS will
406/// contain the standard conversion sequence required to perform this
407/// conversion and this routine will return true. Otherwise, this
408/// routine will return false and the value of SCS is unspecified.
409bool
410Sema::IsStandardConversion(Expr* From, QualType ToType,
411 StandardConversionSequence &SCS)
412{
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000413 QualType FromType = From->getType();
414
Douglas Gregor60d62c22008-10-31 16:23:19 +0000415 // There are no standard conversions for class types, so abort early.
416 if (FromType->isRecordType() || ToType->isRecordType())
417 return false;
418
419 // Standard conversions (C++ [conv])
Douglas Gregoreb8f3062008-11-12 17:17:38 +0000420 SCS.setAsIdentityConversion();
Douglas Gregor60d62c22008-10-31 16:23:19 +0000421 SCS.Deprecated = false;
422 SCS.FromTypePtr = FromType.getAsOpaquePtr();
Douglas Gregor225c41e2008-11-03 19:09:14 +0000423 SCS.CopyConstructor = 0;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000424
425 // The first conversion can be an lvalue-to-rvalue conversion,
426 // array-to-pointer conversion, or function-to-pointer conversion
427 // (C++ 4p1).
428
429 // Lvalue-to-rvalue conversion (C++ 4.1):
430 // An lvalue (3.10) of a non-function, non-array type T can be
431 // converted to an rvalue.
432 Expr::isLvalueResult argIsLvalue = From->isLvalue(Context);
433 if (argIsLvalue == Expr::LV_Valid &&
Douglas Gregor904eed32008-11-10 20:40:00 +0000434 !FromType->isFunctionType() && !FromType->isArrayType() &&
435 !FromType->isOverloadType()) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000436 SCS.First = ICK_Lvalue_To_Rvalue;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000437
438 // If T is a non-class type, the type of the rvalue is the
439 // cv-unqualified version of T. Otherwise, the type of the rvalue
440 // is T (C++ 4.1p1).
Douglas Gregor60d62c22008-10-31 16:23:19 +0000441 FromType = FromType.getUnqualifiedType();
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000442 }
443 // Array-to-pointer conversion (C++ 4.2)
444 else if (FromType->isArrayType()) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000445 SCS.First = ICK_Array_To_Pointer;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000446
447 // An lvalue or rvalue of type "array of N T" or "array of unknown
448 // bound of T" can be converted to an rvalue of type "pointer to
449 // T" (C++ 4.2p1).
450 FromType = Context.getArrayDecayedType(FromType);
451
452 if (IsStringLiteralToNonConstPointerConversion(From, ToType)) {
453 // This conversion is deprecated. (C++ D.4).
Douglas Gregor60d62c22008-10-31 16:23:19 +0000454 SCS.Deprecated = true;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000455
456 // For the purpose of ranking in overload resolution
457 // (13.3.3.1.1), this conversion is considered an
458 // array-to-pointer conversion followed by a qualification
459 // conversion (4.4). (C++ 4.2p2)
Douglas Gregor60d62c22008-10-31 16:23:19 +0000460 SCS.Second = ICK_Identity;
461 SCS.Third = ICK_Qualification;
462 SCS.ToTypePtr = ToType.getAsOpaquePtr();
463 return true;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000464 }
465 }
466 // Function-to-pointer conversion (C++ 4.3).
467 else if (FromType->isFunctionType() && argIsLvalue == Expr::LV_Valid) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000468 SCS.First = ICK_Function_To_Pointer;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000469
470 // An lvalue of function type T can be converted to an rvalue of
471 // type "pointer to T." The result is a pointer to the
472 // function. (C++ 4.3p1).
473 FromType = Context.getPointerType(FromType);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000474 }
Douglas Gregor904eed32008-11-10 20:40:00 +0000475 // Address of overloaded function (C++ [over.over]).
476 else if (FunctionDecl *Fn
477 = ResolveAddressOfOverloadedFunction(From, ToType, false)) {
478 SCS.First = ICK_Function_To_Pointer;
479
480 // We were able to resolve the address of the overloaded function,
481 // so we can convert to the type of that function.
482 FromType = Fn->getType();
483 if (ToType->isReferenceType())
484 FromType = Context.getReferenceType(FromType);
485 else
486 FromType = Context.getPointerType(FromType);
487 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000488 // We don't require any conversions for the first step.
489 else {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000490 SCS.First = ICK_Identity;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000491 }
492
493 // The second conversion can be an integral promotion, floating
494 // point promotion, integral conversion, floating point conversion,
495 // floating-integral conversion, pointer conversion,
496 // pointer-to-member conversion, or boolean conversion (C++ 4p1).
497 if (Context.getCanonicalType(FromType).getUnqualifiedType() ==
498 Context.getCanonicalType(ToType).getUnqualifiedType()) {
499 // The unqualified versions of the types are the same: there's no
500 // conversion to do.
Douglas Gregor60d62c22008-10-31 16:23:19 +0000501 SCS.Second = ICK_Identity;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000502 }
503 // Integral promotion (C++ 4.5).
504 else if (IsIntegralPromotion(From, FromType, ToType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000505 SCS.Second = ICK_Integral_Promotion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000506 FromType = ToType.getUnqualifiedType();
507 }
508 // Floating point promotion (C++ 4.6).
509 else if (IsFloatingPointPromotion(FromType, ToType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000510 SCS.Second = ICK_Floating_Promotion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000511 FromType = ToType.getUnqualifiedType();
512 }
513 // Integral conversions (C++ 4.7).
Sebastian Redl07779722008-10-31 14:43:28 +0000514 // FIXME: isIntegralType shouldn't be true for enums in C++.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000515 else if ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
Sebastian Redl07779722008-10-31 14:43:28 +0000516 (ToType->isIntegralType() && !ToType->isEnumeralType())) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000517 SCS.Second = ICK_Integral_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000518 FromType = ToType.getUnqualifiedType();
519 }
520 // Floating point conversions (C++ 4.8).
521 else if (FromType->isFloatingType() && ToType->isFloatingType()) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000522 SCS.Second = ICK_Floating_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000523 FromType = ToType.getUnqualifiedType();
524 }
525 // Floating-integral conversions (C++ 4.9).
Sebastian Redl07779722008-10-31 14:43:28 +0000526 // FIXME: isIntegralType shouldn't be true for enums in C++.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000527 else if ((FromType->isFloatingType() &&
Sebastian Redl07779722008-10-31 14:43:28 +0000528 ToType->isIntegralType() && !ToType->isBooleanType() &&
529 !ToType->isEnumeralType()) ||
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000530 ((FromType->isIntegralType() || FromType->isEnumeralType()) &&
531 ToType->isFloatingType())) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000532 SCS.Second = ICK_Floating_Integral;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000533 FromType = ToType.getUnqualifiedType();
534 }
535 // Pointer conversions (C++ 4.10).
Sebastian Redl07779722008-10-31 14:43:28 +0000536 else if (IsPointerConversion(From, FromType, ToType, FromType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000537 SCS.Second = ICK_Pointer_Conversion;
Sebastian Redl07779722008-10-31 14:43:28 +0000538 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000539 // FIXME: Pointer to member conversions (4.11).
540 // Boolean conversions (C++ 4.12).
541 // FIXME: pointer-to-member type
542 else if (ToType->isBooleanType() &&
543 (FromType->isArithmeticType() ||
544 FromType->isEnumeralType() ||
545 FromType->isPointerType())) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000546 SCS.Second = ICK_Boolean_Conversion;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000547 FromType = Context.BoolTy;
548 } else {
549 // No second conversion required.
Douglas Gregor60d62c22008-10-31 16:23:19 +0000550 SCS.Second = ICK_Identity;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000551 }
552
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000553 QualType CanonFrom;
554 QualType CanonTo;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000555 // The third conversion can be a qualification conversion (C++ 4p1).
Douglas Gregor98cd5992008-10-21 23:43:52 +0000556 if (IsQualificationConversion(FromType, ToType)) {
Douglas Gregor60d62c22008-10-31 16:23:19 +0000557 SCS.Third = ICK_Qualification;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000558 FromType = ToType;
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000559 CanonFrom = Context.getCanonicalType(FromType);
560 CanonTo = Context.getCanonicalType(ToType);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000561 } else {
562 // No conversion required
Douglas Gregor60d62c22008-10-31 16:23:19 +0000563 SCS.Third = ICK_Identity;
564
565 // C++ [over.best.ics]p6:
566 // [...] Any difference in top-level cv-qualification is
567 // subsumed by the initialization itself and does not constitute
568 // a conversion. [...]
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000569 CanonFrom = Context.getCanonicalType(FromType);
570 CanonTo = Context.getCanonicalType(ToType);
Douglas Gregor60d62c22008-10-31 16:23:19 +0000571 if (CanonFrom.getUnqualifiedType() == CanonTo.getUnqualifiedType() &&
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000572 CanonFrom.getCVRQualifiers() != CanonTo.getCVRQualifiers()) {
573 FromType = ToType;
574 CanonFrom = CanonTo;
575 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000576 }
577
578 // If we have not converted the argument type to the parameter type,
579 // this is a bad conversion sequence.
Douglas Gregor27c8dc02008-10-29 00:13:59 +0000580 if (CanonFrom != CanonTo)
Douglas Gregor60d62c22008-10-31 16:23:19 +0000581 return false;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000582
Douglas Gregor60d62c22008-10-31 16:23:19 +0000583 SCS.ToTypePtr = FromType.getAsOpaquePtr();
584 return true;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000585}
586
587/// IsIntegralPromotion - Determines whether the conversion from the
588/// expression From (whose potentially-adjusted type is FromType) to
589/// ToType is an integral promotion (C++ 4.5). If so, returns true and
590/// sets PromotedType to the promoted type.
591bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType)
592{
593 const BuiltinType *To = ToType->getAsBuiltinType();
Sebastian Redlf7be9442008-11-04 15:59:10 +0000594 // All integers are built-in.
Sebastian Redl07779722008-10-31 14:43:28 +0000595 if (!To) {
596 return false;
597 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000598
599 // An rvalue of type char, signed char, unsigned char, short int, or
600 // unsigned short int can be converted to an rvalue of type int if
601 // int can represent all the values of the source type; otherwise,
602 // the source rvalue can be converted to an rvalue of type unsigned
603 // int (C++ 4.5p1).
Sebastian Redl07779722008-10-31 14:43:28 +0000604 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType()) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000605 if (// We can promote any signed, promotable integer type to an int
606 (FromType->isSignedIntegerType() ||
607 // We can promote any unsigned integer type whose size is
608 // less than int to an int.
609 (!FromType->isSignedIntegerType() &&
Sebastian Redl07779722008-10-31 14:43:28 +0000610 Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000611 return To->getKind() == BuiltinType::Int;
Sebastian Redl07779722008-10-31 14:43:28 +0000612 }
613
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000614 return To->getKind() == BuiltinType::UInt;
615 }
616
617 // An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2)
618 // can be converted to an rvalue of the first of the following types
619 // that can represent all the values of its underlying type: int,
620 // unsigned int, long, or unsigned long (C++ 4.5p2).
621 if ((FromType->isEnumeralType() || FromType->isWideCharType())
622 && ToType->isIntegerType()) {
623 // Determine whether the type we're converting from is signed or
624 // unsigned.
625 bool FromIsSigned;
626 uint64_t FromSize = Context.getTypeSize(FromType);
627 if (const EnumType *FromEnumType = FromType->getAsEnumType()) {
628 QualType UnderlyingType = FromEnumType->getDecl()->getIntegerType();
629 FromIsSigned = UnderlyingType->isSignedIntegerType();
630 } else {
631 // FIXME: Is wchar_t signed or unsigned? We assume it's signed for now.
632 FromIsSigned = true;
633 }
634
635 // The types we'll try to promote to, in the appropriate
636 // order. Try each of these types.
637 QualType PromoteTypes[4] = {
638 Context.IntTy, Context.UnsignedIntTy,
639 Context.LongTy, Context.UnsignedLongTy
640 };
Douglas Gregor447b69e2008-11-19 03:25:36 +0000641 for (int Idx = 0; Idx < 4; ++Idx) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000642 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
643 if (FromSize < ToSize ||
644 (FromSize == ToSize &&
645 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
646 // We found the type that we can promote to. If this is the
647 // type we wanted, we have a promotion. Otherwise, no
648 // promotion.
Sebastian Redl07779722008-10-31 14:43:28 +0000649 return Context.getCanonicalType(ToType).getUnqualifiedType()
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000650 == Context.getCanonicalType(PromoteTypes[Idx]).getUnqualifiedType();
651 }
652 }
653 }
654
655 // An rvalue for an integral bit-field (9.6) can be converted to an
656 // rvalue of type int if int can represent all the values of the
657 // bit-field; otherwise, it can be converted to unsigned int if
658 // unsigned int can represent all the values of the bit-field. If
659 // the bit-field is larger yet, no integral promotion applies to
660 // it. If the bit-field has an enumerated type, it is treated as any
661 // other value of that type for promotion purposes (C++ 4.5p3).
662 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(From)) {
663 using llvm::APSInt;
664 FieldDecl *MemberDecl = MemRef->getMemberDecl();
665 APSInt BitWidth;
666 if (MemberDecl->isBitField() &&
667 FromType->isIntegralType() && !FromType->isEnumeralType() &&
668 From->isIntegerConstantExpr(BitWidth, Context)) {
669 APSInt ToSize(Context.getTypeSize(ToType));
670
671 // Are we promoting to an int from a bitfield that fits in an int?
672 if (BitWidth < ToSize ||
Sebastian Redl07779722008-10-31 14:43:28 +0000673 (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000674 return To->getKind() == BuiltinType::Int;
Sebastian Redl07779722008-10-31 14:43:28 +0000675 }
676
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000677 // Are we promoting to an unsigned int from an unsigned bitfield
678 // that fits into an unsigned int?
Sebastian Redl07779722008-10-31 14:43:28 +0000679 if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000680 return To->getKind() == BuiltinType::UInt;
Sebastian Redl07779722008-10-31 14:43:28 +0000681 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000682
683 return false;
684 }
685 }
686
687 // An rvalue of type bool can be converted to an rvalue of type int,
688 // with false becoming zero and true becoming one (C++ 4.5p4).
Sebastian Redl07779722008-10-31 14:43:28 +0000689 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000690 return true;
Sebastian Redl07779722008-10-31 14:43:28 +0000691 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000692
693 return false;
694}
695
696/// IsFloatingPointPromotion - Determines whether the conversion from
697/// FromType to ToType is a floating point promotion (C++ 4.6). If so,
698/// returns true and sets PromotedType to the promoted type.
699bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType)
700{
701 /// An rvalue of type float can be converted to an rvalue of type
702 /// double. (C++ 4.6p1).
703 if (const BuiltinType *FromBuiltin = FromType->getAsBuiltinType())
704 if (const BuiltinType *ToBuiltin = ToType->getAsBuiltinType())
705 if (FromBuiltin->getKind() == BuiltinType::Float &&
706 ToBuiltin->getKind() == BuiltinType::Double)
707 return true;
708
709 return false;
710}
711
712/// IsPointerConversion - Determines whether the conversion of the
713/// expression From, which has the (possibly adjusted) type FromType,
714/// can be converted to the type ToType via a pointer conversion (C++
715/// 4.10). If so, returns true and places the converted type (that
716/// might differ from ToType in its cv-qualifiers at some level) into
717/// ConvertedType.
718bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
719 QualType& ConvertedType)
720{
721 const PointerType* ToTypePtr = ToType->getAsPointerType();
722 if (!ToTypePtr)
723 return false;
724
725 // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
726 if (From->isNullPointerConstant(Context)) {
727 ConvertedType = ToType;
728 return true;
729 }
Sebastian Redl07779722008-10-31 14:43:28 +0000730
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000731 // An rvalue of type "pointer to cv T," where T is an object type,
732 // can be converted to an rvalue of type "pointer to cv void" (C++
733 // 4.10p2).
734 if (FromType->isPointerType() &&
735 FromType->getAsPointerType()->getPointeeType()->isObjectType() &&
736 ToTypePtr->getPointeeType()->isVoidType()) {
737 // We need to produce a pointer to cv void, where cv is the same
738 // set of cv-qualifiers as we had on the incoming pointee type.
739 QualType toPointee = ToTypePtr->getPointeeType();
740 unsigned Quals = Context.getCanonicalType(FromType)->getAsPointerType()
741 ->getPointeeType().getCVRQualifiers();
742
743 if (Context.getCanonicalType(ToTypePtr->getPointeeType()).getCVRQualifiers()
744 == Quals) {
745 // ToType is exactly the type we want. Use it.
746 ConvertedType = ToType;
747 } else {
748 // Build a new type with the right qualifiers.
749 ConvertedType
750 = Context.getPointerType(Context.VoidTy.getQualifiedType(Quals));
751 }
752 return true;
753 }
754
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000755 // C++ [conv.ptr]p3:
756 //
757 // An rvalue of type "pointer to cv D," where D is a class type,
758 // can be converted to an rvalue of type "pointer to cv B," where
759 // B is a base class (clause 10) of D. If B is an inaccessible
760 // (clause 11) or ambiguous (10.2) base class of D, a program that
761 // necessitates this conversion is ill-formed. The result of the
762 // conversion is a pointer to the base class sub-object of the
763 // derived class object. The null pointer value is converted to
764 // the null pointer value of the destination type.
765 //
Douglas Gregor94b1dd22008-10-24 04:54:22 +0000766 // Note that we do not check for ambiguity or inaccessibility
767 // here. That is handled by CheckPointerConversion.
Douglas Gregorbc0805a2008-10-23 00:40:37 +0000768 if (const PointerType *FromPtrType = FromType->getAsPointerType())
769 if (const PointerType *ToPtrType = ToType->getAsPointerType()) {
770 if (FromPtrType->getPointeeType()->isRecordType() &&
771 ToPtrType->getPointeeType()->isRecordType() &&
772 IsDerivedFrom(FromPtrType->getPointeeType(),
773 ToPtrType->getPointeeType())) {
774 // The conversion is okay. Now, we need to produce the type
775 // that results from this conversion, which will have the same
776 // qualifiers as the incoming type.
777 QualType CanonFromPointee
778 = Context.getCanonicalType(FromPtrType->getPointeeType());
779 QualType ToPointee = ToPtrType->getPointeeType();
780 QualType CanonToPointee = Context.getCanonicalType(ToPointee);
781 unsigned Quals = CanonFromPointee.getCVRQualifiers();
782
783 if (CanonToPointee.getCVRQualifiers() == Quals) {
784 // ToType is exactly the type we want. Use it.
785 ConvertedType = ToType;
786 } else {
787 // Build a new type with the right qualifiers.
788 ConvertedType
789 = Context.getPointerType(CanonToPointee.getQualifiedType(Quals));
790 }
791 return true;
792 }
793 }
794
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000795 return false;
796}
797
Douglas Gregor94b1dd22008-10-24 04:54:22 +0000798/// CheckPointerConversion - Check the pointer conversion from the
799/// expression From to the type ToType. This routine checks for
800/// ambiguous (FIXME: or inaccessible) derived-to-base pointer
801/// conversions for which IsPointerConversion has already returned
802/// true. It returns true and produces a diagnostic if there was an
803/// error, or returns false otherwise.
804bool Sema::CheckPointerConversion(Expr *From, QualType ToType) {
805 QualType FromType = From->getType();
806
807 if (const PointerType *FromPtrType = FromType->getAsPointerType())
808 if (const PointerType *ToPtrType = ToType->getAsPointerType()) {
Sebastian Redl07779722008-10-31 14:43:28 +0000809 BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
810 /*DetectVirtual=*/false);
Douglas Gregor94b1dd22008-10-24 04:54:22 +0000811 QualType FromPointeeType = FromPtrType->getPointeeType(),
812 ToPointeeType = ToPtrType->getPointeeType();
813 if (FromPointeeType->isRecordType() &&
814 ToPointeeType->isRecordType()) {
815 // We must have a derived-to-base conversion. Check an
816 // ambiguous or inaccessible conversion.
Douglas Gregor0575d4a2008-10-24 16:17:19 +0000817 return CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType,
818 From->getExprLoc(),
819 From->getSourceRange());
Douglas Gregor94b1dd22008-10-24 04:54:22 +0000820 }
821 }
822
823 return false;
824}
825
Douglas Gregor98cd5992008-10-21 23:43:52 +0000826/// IsQualificationConversion - Determines whether the conversion from
827/// an rvalue of type FromType to ToType is a qualification conversion
828/// (C++ 4.4).
829bool
830Sema::IsQualificationConversion(QualType FromType, QualType ToType)
831{
832 FromType = Context.getCanonicalType(FromType);
833 ToType = Context.getCanonicalType(ToType);
834
835 // If FromType and ToType are the same type, this is not a
836 // qualification conversion.
837 if (FromType == ToType)
838 return false;
839
840 // (C++ 4.4p4):
841 // A conversion can add cv-qualifiers at levels other than the first
842 // in multi-level pointers, subject to the following rules: [...]
843 bool PreviousToQualsIncludeConst = true;
Douglas Gregor98cd5992008-10-21 23:43:52 +0000844 bool UnwrappedAnyPointer = false;
Douglas Gregor57373262008-10-22 14:17:15 +0000845 while (UnwrapSimilarPointerTypes(FromType, ToType)) {
Douglas Gregor98cd5992008-10-21 23:43:52 +0000846 // Within each iteration of the loop, we check the qualifiers to
847 // determine if this still looks like a qualification
848 // conversion. Then, if all is well, we unwrap one more level of
Douglas Gregorf8268ae2008-10-22 17:49:05 +0000849 // pointers or pointers-to-members and do it all again
Douglas Gregor98cd5992008-10-21 23:43:52 +0000850 // until there are no more pointers or pointers-to-members left to
851 // unwrap.
Douglas Gregor57373262008-10-22 14:17:15 +0000852 UnwrappedAnyPointer = true;
Douglas Gregor98cd5992008-10-21 23:43:52 +0000853
854 // -- for every j > 0, if const is in cv 1,j then const is in cv
855 // 2,j, and similarly for volatile.
Douglas Gregor9b6e2d22008-10-22 00:38:21 +0000856 if (!ToType.isAtLeastAsQualifiedAs(FromType))
Douglas Gregor98cd5992008-10-21 23:43:52 +0000857 return false;
Douglas Gregor57373262008-10-22 14:17:15 +0000858
Douglas Gregor98cd5992008-10-21 23:43:52 +0000859 // -- if the cv 1,j and cv 2,j are different, then const is in
860 // every cv for 0 < k < j.
861 if (FromType.getCVRQualifiers() != ToType.getCVRQualifiers()
Douglas Gregor57373262008-10-22 14:17:15 +0000862 && !PreviousToQualsIncludeConst)
Douglas Gregor98cd5992008-10-21 23:43:52 +0000863 return false;
Douglas Gregor57373262008-10-22 14:17:15 +0000864
Douglas Gregor98cd5992008-10-21 23:43:52 +0000865 // Keep track of whether all prior cv-qualifiers in the "to" type
866 // include const.
867 PreviousToQualsIncludeConst
868 = PreviousToQualsIncludeConst && ToType.isConstQualified();
Douglas Gregor57373262008-10-22 14:17:15 +0000869 }
Douglas Gregor98cd5992008-10-21 23:43:52 +0000870
871 // We are left with FromType and ToType being the pointee types
872 // after unwrapping the original FromType and ToType the same number
873 // of types. If we unwrapped any pointers, and if FromType and
874 // ToType have the same unqualified type (since we checked
875 // qualifiers above), then this is a qualification conversion.
876 return UnwrappedAnyPointer &&
877 FromType.getUnqualifiedType() == ToType.getUnqualifiedType();
878}
879
Douglas Gregor60d62c22008-10-31 16:23:19 +0000880/// IsUserDefinedConversion - Determines whether there is a
881/// user-defined conversion sequence (C++ [over.ics.user]) that
882/// converts expression From to the type ToType. If such a conversion
883/// exists, User will contain the user-defined conversion sequence
884/// that performs such a conversion and this routine will return
885/// true. Otherwise, this routine returns false and User is
886/// unspecified.
887bool Sema::IsUserDefinedConversion(Expr *From, QualType ToType,
888 UserDefinedConversionSequence& User)
889{
890 OverloadCandidateSet CandidateSet;
891 if (const CXXRecordType *ToRecordType
892 = dyn_cast_or_null<CXXRecordType>(ToType->getAsRecordType())) {
893 // C++ [over.match.ctor]p1:
894 // When objects of class type are direct-initialized (8.5), or
895 // copy-initialized from an expression of the same or a
896 // derived class type (8.5), overload resolution selects the
897 // constructor. [...] For copy-initialization, the candidate
898 // functions are all the converting constructors (12.3.1) of
899 // that class. The argument list is the expression-list within
900 // the parentheses of the initializer.
901 CXXRecordDecl *ToRecordDecl = ToRecordType->getDecl();
902 const OverloadedFunctionDecl *Constructors = ToRecordDecl->getConstructors();
903 for (OverloadedFunctionDecl::function_const_iterator func
904 = Constructors->function_begin();
905 func != Constructors->function_end(); ++func) {
906 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*func);
907 if (Constructor->isConvertingConstructor())
Douglas Gregor225c41e2008-11-03 19:09:14 +0000908 AddOverloadCandidate(Constructor, &From, 1, CandidateSet,
909 /*SuppressUserConversions=*/true);
Douglas Gregor60d62c22008-10-31 16:23:19 +0000910 }
911 }
912
Douglas Gregorf1991ea2008-11-07 22:36:19 +0000913 if (const CXXRecordType *FromRecordType
914 = dyn_cast_or_null<CXXRecordType>(From->getType()->getAsRecordType())) {
915 // Add all of the conversion functions as candidates.
916 // FIXME: Look for conversions in base classes!
917 CXXRecordDecl *FromRecordDecl = FromRecordType->getDecl();
918 OverloadedFunctionDecl *Conversions
919 = FromRecordDecl->getConversionFunctions();
920 for (OverloadedFunctionDecl::function_iterator Func
921 = Conversions->function_begin();
922 Func != Conversions->function_end(); ++Func) {
923 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
924 AddConversionCandidate(Conv, From, ToType, CandidateSet);
925 }
926 }
Douglas Gregor60d62c22008-10-31 16:23:19 +0000927
928 OverloadCandidateSet::iterator Best;
929 switch (BestViableFunction(CandidateSet, Best)) {
930 case OR_Success:
931 // Record the standard conversion we used and the conversion function.
Douglas Gregor60d62c22008-10-31 16:23:19 +0000932 if (CXXConstructorDecl *Constructor
933 = dyn_cast<CXXConstructorDecl>(Best->Function)) {
934 // C++ [over.ics.user]p1:
935 // If the user-defined conversion is specified by a
936 // constructor (12.3.1), the initial standard conversion
937 // sequence converts the source type to the type required by
938 // the argument of the constructor.
939 //
940 // FIXME: What about ellipsis conversions?
941 QualType ThisType = Constructor->getThisType(Context);
942 User.Before = Best->Conversions[0].Standard;
943 User.ConversionFunction = Constructor;
944 User.After.setAsIdentityConversion();
945 User.After.FromTypePtr
946 = ThisType->getAsPointerType()->getPointeeType().getAsOpaquePtr();
947 User.After.ToTypePtr = ToType.getAsOpaquePtr();
948 return true;
Douglas Gregorf1991ea2008-11-07 22:36:19 +0000949 } else if (CXXConversionDecl *Conversion
950 = dyn_cast<CXXConversionDecl>(Best->Function)) {
951 // C++ [over.ics.user]p1:
952 //
953 // [...] If the user-defined conversion is specified by a
954 // conversion function (12.3.2), the initial standard
955 // conversion sequence converts the source type to the
956 // implicit object parameter of the conversion function.
957 User.Before = Best->Conversions[0].Standard;
958 User.ConversionFunction = Conversion;
959
960 // C++ [over.ics.user]p2:
961 // The second standard conversion sequence converts the
962 // result of the user-defined conversion to the target type
963 // for the sequence. Since an implicit conversion sequence
964 // is an initialization, the special rules for
965 // initialization by user-defined conversion apply when
966 // selecting the best user-defined conversion for a
967 // user-defined conversion sequence (see 13.3.3 and
968 // 13.3.3.1).
969 User.After = Best->FinalConversion;
970 return true;
Douglas Gregor60d62c22008-10-31 16:23:19 +0000971 } else {
Douglas Gregorf1991ea2008-11-07 22:36:19 +0000972 assert(false && "Not a constructor or conversion function?");
Douglas Gregor60d62c22008-10-31 16:23:19 +0000973 return false;
974 }
975
976 case OR_No_Viable_Function:
977 // No conversion here! We're done.
978 return false;
979
980 case OR_Ambiguous:
981 // FIXME: See C++ [over.best.ics]p10 for the handling of
982 // ambiguous conversion sequences.
983 return false;
984 }
985
986 return false;
987}
988
Douglas Gregor8e9bebd2008-10-21 16:13:35 +0000989/// CompareImplicitConversionSequences - Compare two implicit
990/// conversion sequences to determine whether one is better than the
991/// other or if they are indistinguishable (C++ 13.3.3.2).
992ImplicitConversionSequence::CompareKind
993Sema::CompareImplicitConversionSequences(const ImplicitConversionSequence& ICS1,
994 const ImplicitConversionSequence& ICS2)
995{
996 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
997 // conversion sequences (as defined in 13.3.3.1)
998 // -- a standard conversion sequence (13.3.3.1.1) is a better
999 // conversion sequence than a user-defined conversion sequence or
1000 // an ellipsis conversion sequence, and
1001 // -- a user-defined conversion sequence (13.3.3.1.2) is a better
1002 // conversion sequence than an ellipsis conversion sequence
1003 // (13.3.3.1.3).
1004 //
1005 if (ICS1.ConversionKind < ICS2.ConversionKind)
1006 return ImplicitConversionSequence::Better;
1007 else if (ICS2.ConversionKind < ICS1.ConversionKind)
1008 return ImplicitConversionSequence::Worse;
1009
1010 // Two implicit conversion sequences of the same form are
1011 // indistinguishable conversion sequences unless one of the
1012 // following rules apply: (C++ 13.3.3.2p3):
1013 if (ICS1.ConversionKind == ImplicitConversionSequence::StandardConversion)
1014 return CompareStandardConversionSequences(ICS1.Standard, ICS2.Standard);
1015 else if (ICS1.ConversionKind ==
1016 ImplicitConversionSequence::UserDefinedConversion) {
1017 // User-defined conversion sequence U1 is a better conversion
1018 // sequence than another user-defined conversion sequence U2 if
1019 // they contain the same user-defined conversion function or
1020 // constructor and if the second standard conversion sequence of
1021 // U1 is better than the second standard conversion sequence of
1022 // U2 (C++ 13.3.3.2p3).
1023 if (ICS1.UserDefined.ConversionFunction ==
1024 ICS2.UserDefined.ConversionFunction)
1025 return CompareStandardConversionSequences(ICS1.UserDefined.After,
1026 ICS2.UserDefined.After);
1027 }
1028
1029 return ImplicitConversionSequence::Indistinguishable;
1030}
1031
1032/// CompareStandardConversionSequences - Compare two standard
1033/// conversion sequences to determine whether one is better than the
1034/// other or if they are indistinguishable (C++ 13.3.3.2p3).
1035ImplicitConversionSequence::CompareKind
1036Sema::CompareStandardConversionSequences(const StandardConversionSequence& SCS1,
1037 const StandardConversionSequence& SCS2)
1038{
1039 // Standard conversion sequence S1 is a better conversion sequence
1040 // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
1041
1042 // -- S1 is a proper subsequence of S2 (comparing the conversion
1043 // sequences in the canonical form defined by 13.3.3.1.1,
1044 // excluding any Lvalue Transformation; the identity conversion
1045 // sequence is considered to be a subsequence of any
1046 // non-identity conversion sequence) or, if not that,
1047 if (SCS1.Second == SCS2.Second && SCS1.Third == SCS2.Third)
1048 // Neither is a proper subsequence of the other. Do nothing.
1049 ;
1050 else if ((SCS1.Second == ICK_Identity && SCS1.Third == SCS2.Third) ||
1051 (SCS1.Third == ICK_Identity && SCS1.Second == SCS2.Second) ||
1052 (SCS1.Second == ICK_Identity &&
1053 SCS1.Third == ICK_Identity))
1054 // SCS1 is a proper subsequence of SCS2.
1055 return ImplicitConversionSequence::Better;
1056 else if ((SCS2.Second == ICK_Identity && SCS2.Third == SCS1.Third) ||
1057 (SCS2.Third == ICK_Identity && SCS2.Second == SCS1.Second) ||
1058 (SCS2.Second == ICK_Identity &&
1059 SCS2.Third == ICK_Identity))
1060 // SCS2 is a proper subsequence of SCS1.
1061 return ImplicitConversionSequence::Worse;
1062
1063 // -- the rank of S1 is better than the rank of S2 (by the rules
1064 // defined below), or, if not that,
1065 ImplicitConversionRank Rank1 = SCS1.getRank();
1066 ImplicitConversionRank Rank2 = SCS2.getRank();
1067 if (Rank1 < Rank2)
1068 return ImplicitConversionSequence::Better;
1069 else if (Rank2 < Rank1)
1070 return ImplicitConversionSequence::Worse;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001071
Douglas Gregor57373262008-10-22 14:17:15 +00001072 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
1073 // are indistinguishable unless one of the following rules
1074 // applies:
1075
1076 // A conversion that is not a conversion of a pointer, or
1077 // pointer to member, to bool is better than another conversion
1078 // that is such a conversion.
1079 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
1080 return SCS2.isPointerConversionToBool()
1081 ? ImplicitConversionSequence::Better
1082 : ImplicitConversionSequence::Worse;
1083
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001084 // C++ [over.ics.rank]p4b2:
1085 //
1086 // If class B is derived directly or indirectly from class A,
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001087 // conversion of B* to A* is better than conversion of B* to
1088 // void*, and conversion of A* to void* is better than conversion
1089 // of B* to void*.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001090 bool SCS1ConvertsToVoid
1091 = SCS1.isPointerConversionToVoidPointer(Context);
1092 bool SCS2ConvertsToVoid
1093 = SCS2.isPointerConversionToVoidPointer(Context);
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001094 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
1095 // Exactly one of the conversion sequences is a conversion to
1096 // a void pointer; it's the worse conversion.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001097 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
1098 : ImplicitConversionSequence::Worse;
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001099 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
1100 // Neither conversion sequence converts to a void pointer; compare
1101 // their derived-to-base conversions.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001102 if (ImplicitConversionSequence::CompareKind DerivedCK
1103 = CompareDerivedToBaseConversions(SCS1, SCS2))
1104 return DerivedCK;
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001105 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid) {
1106 // Both conversion sequences are conversions to void
1107 // pointers. Compare the source types to determine if there's an
1108 // inheritance relationship in their sources.
1109 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1110 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1111
1112 // Adjust the types we're converting from via the array-to-pointer
1113 // conversion, if we need to.
1114 if (SCS1.First == ICK_Array_To_Pointer)
1115 FromType1 = Context.getArrayDecayedType(FromType1);
1116 if (SCS2.First == ICK_Array_To_Pointer)
1117 FromType2 = Context.getArrayDecayedType(FromType2);
1118
1119 QualType FromPointee1
1120 = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1121 QualType FromPointee2
1122 = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1123
1124 if (IsDerivedFrom(FromPointee2, FromPointee1))
1125 return ImplicitConversionSequence::Better;
1126 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1127 return ImplicitConversionSequence::Worse;
1128 }
Douglas Gregor57373262008-10-22 14:17:15 +00001129
1130 // Compare based on qualification conversions (C++ 13.3.3.2p3,
1131 // bullet 3).
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001132 if (ImplicitConversionSequence::CompareKind QualCK
Douglas Gregor57373262008-10-22 14:17:15 +00001133 = CompareQualificationConversions(SCS1, SCS2))
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001134 return QualCK;
Douglas Gregor57373262008-10-22 14:17:15 +00001135
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001136 // C++ [over.ics.rank]p3b4:
1137 // -- S1 and S2 are reference bindings (8.5.3), and the types to
1138 // which the references refer are the same type except for
1139 // top-level cv-qualifiers, and the type to which the reference
1140 // initialized by S2 refers is more cv-qualified than the type
1141 // to which the reference initialized by S1 refers.
1142 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
1143 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1144 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1145 T1 = Context.getCanonicalType(T1);
1146 T2 = Context.getCanonicalType(T2);
1147 if (T1.getUnqualifiedType() == T2.getUnqualifiedType()) {
1148 if (T2.isMoreQualifiedThan(T1))
1149 return ImplicitConversionSequence::Better;
1150 else if (T1.isMoreQualifiedThan(T2))
1151 return ImplicitConversionSequence::Worse;
1152 }
1153 }
Douglas Gregor57373262008-10-22 14:17:15 +00001154
1155 return ImplicitConversionSequence::Indistinguishable;
1156}
1157
1158/// CompareQualificationConversions - Compares two standard conversion
1159/// sequences to determine whether they can be ranked based on their
1160/// qualification conversions (C++ 13.3.3.2p3 bullet 3).
1161ImplicitConversionSequence::CompareKind
1162Sema::CompareQualificationConversions(const StandardConversionSequence& SCS1,
1163 const StandardConversionSequence& SCS2)
1164{
Douglas Gregorba7e2102008-10-22 15:04:37 +00001165 // C++ 13.3.3.2p3:
Douglas Gregor57373262008-10-22 14:17:15 +00001166 // -- S1 and S2 differ only in their qualification conversion and
1167 // yield similar types T1 and T2 (C++ 4.4), respectively, and the
1168 // cv-qualification signature of type T1 is a proper subset of
1169 // the cv-qualification signature of type T2, and S1 is not the
1170 // deprecated string literal array-to-pointer conversion (4.2).
1171 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
1172 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
1173 return ImplicitConversionSequence::Indistinguishable;
1174
1175 // FIXME: the example in the standard doesn't use a qualification
1176 // conversion (!)
1177 QualType T1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1178 QualType T2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1179 T1 = Context.getCanonicalType(T1);
1180 T2 = Context.getCanonicalType(T2);
1181
1182 // If the types are the same, we won't learn anything by unwrapped
1183 // them.
1184 if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1185 return ImplicitConversionSequence::Indistinguishable;
1186
1187 ImplicitConversionSequence::CompareKind Result
1188 = ImplicitConversionSequence::Indistinguishable;
1189 while (UnwrapSimilarPointerTypes(T1, T2)) {
1190 // Within each iteration of the loop, we check the qualifiers to
1191 // determine if this still looks like a qualification
1192 // conversion. Then, if all is well, we unwrap one more level of
Douglas Gregorf8268ae2008-10-22 17:49:05 +00001193 // pointers or pointers-to-members and do it all again
Douglas Gregor57373262008-10-22 14:17:15 +00001194 // until there are no more pointers or pointers-to-members left
1195 // to unwrap. This essentially mimics what
1196 // IsQualificationConversion does, but here we're checking for a
1197 // strict subset of qualifiers.
1198 if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1199 // The qualifiers are the same, so this doesn't tell us anything
1200 // about how the sequences rank.
1201 ;
1202 else if (T2.isMoreQualifiedThan(T1)) {
1203 // T1 has fewer qualifiers, so it could be the better sequence.
1204 if (Result == ImplicitConversionSequence::Worse)
1205 // Neither has qualifiers that are a subset of the other's
1206 // qualifiers.
1207 return ImplicitConversionSequence::Indistinguishable;
1208
1209 Result = ImplicitConversionSequence::Better;
1210 } else if (T1.isMoreQualifiedThan(T2)) {
1211 // T2 has fewer qualifiers, so it could be the better sequence.
1212 if (Result == ImplicitConversionSequence::Better)
1213 // Neither has qualifiers that are a subset of the other's
1214 // qualifiers.
1215 return ImplicitConversionSequence::Indistinguishable;
1216
1217 Result = ImplicitConversionSequence::Worse;
1218 } else {
1219 // Qualifiers are disjoint.
1220 return ImplicitConversionSequence::Indistinguishable;
1221 }
1222
1223 // If the types after this point are equivalent, we're done.
1224 if (T1.getUnqualifiedType() == T2.getUnqualifiedType())
1225 break;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001226 }
1227
Douglas Gregor57373262008-10-22 14:17:15 +00001228 // Check that the winning standard conversion sequence isn't using
1229 // the deprecated string literal array to pointer conversion.
1230 switch (Result) {
1231 case ImplicitConversionSequence::Better:
1232 if (SCS1.Deprecated)
1233 Result = ImplicitConversionSequence::Indistinguishable;
1234 break;
1235
1236 case ImplicitConversionSequence::Indistinguishable:
1237 break;
1238
1239 case ImplicitConversionSequence::Worse:
1240 if (SCS2.Deprecated)
1241 Result = ImplicitConversionSequence::Indistinguishable;
1242 break;
1243 }
1244
1245 return Result;
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001246}
1247
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001248/// CompareDerivedToBaseConversions - Compares two standard conversion
1249/// sequences to determine whether they can be ranked based on their
1250/// various kinds of derived-to-base conversions (C++ [over.ics.rank]p4b3).
1251ImplicitConversionSequence::CompareKind
1252Sema::CompareDerivedToBaseConversions(const StandardConversionSequence& SCS1,
1253 const StandardConversionSequence& SCS2) {
1254 QualType FromType1 = QualType::getFromOpaquePtr(SCS1.FromTypePtr);
1255 QualType ToType1 = QualType::getFromOpaquePtr(SCS1.ToTypePtr);
1256 QualType FromType2 = QualType::getFromOpaquePtr(SCS2.FromTypePtr);
1257 QualType ToType2 = QualType::getFromOpaquePtr(SCS2.ToTypePtr);
1258
1259 // Adjust the types we're converting from via the array-to-pointer
1260 // conversion, if we need to.
1261 if (SCS1.First == ICK_Array_To_Pointer)
1262 FromType1 = Context.getArrayDecayedType(FromType1);
1263 if (SCS2.First == ICK_Array_To_Pointer)
1264 FromType2 = Context.getArrayDecayedType(FromType2);
1265
1266 // Canonicalize all of the types.
1267 FromType1 = Context.getCanonicalType(FromType1);
1268 ToType1 = Context.getCanonicalType(ToType1);
1269 FromType2 = Context.getCanonicalType(FromType2);
1270 ToType2 = Context.getCanonicalType(ToType2);
1271
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001272 // C++ [over.ics.rank]p4b3:
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001273 //
1274 // If class B is derived directly or indirectly from class A and
1275 // class C is derived directly or indirectly from B,
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001276
1277 // Compare based on pointer conversions.
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001278 if (SCS1.Second == ICK_Pointer_Conversion &&
1279 SCS2.Second == ICK_Pointer_Conversion) {
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001280 QualType FromPointee1
1281 = FromType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1282 QualType ToPointee1
1283 = ToType1->getAsPointerType()->getPointeeType().getUnqualifiedType();
1284 QualType FromPointee2
1285 = FromType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
1286 QualType ToPointee2
1287 = ToType2->getAsPointerType()->getPointeeType().getUnqualifiedType();
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001288 // -- conversion of C* to B* is better than conversion of C* to A*,
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001289 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
1290 if (IsDerivedFrom(ToPointee1, ToPointee2))
1291 return ImplicitConversionSequence::Better;
1292 else if (IsDerivedFrom(ToPointee2, ToPointee1))
1293 return ImplicitConversionSequence::Worse;
1294 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001295
1296 // -- conversion of B* to A* is better than conversion of C* to A*,
1297 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
1298 if (IsDerivedFrom(FromPointee2, FromPointee1))
1299 return ImplicitConversionSequence::Better;
1300 else if (IsDerivedFrom(FromPointee1, FromPointee2))
1301 return ImplicitConversionSequence::Worse;
1302 }
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001303 }
1304
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001305 // Compare based on reference bindings.
1306 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding &&
1307 SCS1.Second == ICK_Derived_To_Base) {
1308 // -- binding of an expression of type C to a reference of type
1309 // B& is better than binding an expression of type C to a
1310 // reference of type A&,
1311 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1312 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1313 if (IsDerivedFrom(ToType1, ToType2))
1314 return ImplicitConversionSequence::Better;
1315 else if (IsDerivedFrom(ToType2, ToType1))
1316 return ImplicitConversionSequence::Worse;
1317 }
1318
Douglas Gregor225c41e2008-11-03 19:09:14 +00001319 // -- binding of an expression of type B to a reference of type
1320 // A& is better than binding an expression of type C to a
1321 // reference of type A&,
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001322 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1323 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1324 if (IsDerivedFrom(FromType2, FromType1))
1325 return ImplicitConversionSequence::Better;
1326 else if (IsDerivedFrom(FromType1, FromType2))
1327 return ImplicitConversionSequence::Worse;
1328 }
1329 }
1330
1331
1332 // FIXME: conversion of A::* to B::* is better than conversion of
1333 // A::* to C::*,
1334
1335 // FIXME: conversion of B::* to C::* is better than conversion of
1336 // A::* to C::*, and
1337
Douglas Gregor225c41e2008-11-03 19:09:14 +00001338 if (SCS1.CopyConstructor && SCS2.CopyConstructor &&
1339 SCS1.Second == ICK_Derived_To_Base) {
1340 // -- conversion of C to B is better than conversion of C to A,
1341 if (FromType1.getUnqualifiedType() == FromType2.getUnqualifiedType() &&
1342 ToType1.getUnqualifiedType() != ToType2.getUnqualifiedType()) {
1343 if (IsDerivedFrom(ToType1, ToType2))
1344 return ImplicitConversionSequence::Better;
1345 else if (IsDerivedFrom(ToType2, ToType1))
1346 return ImplicitConversionSequence::Worse;
1347 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001348
Douglas Gregor225c41e2008-11-03 19:09:14 +00001349 // -- conversion of B to A is better than conversion of C to A.
1350 if (FromType1.getUnqualifiedType() != FromType2.getUnqualifiedType() &&
1351 ToType1.getUnqualifiedType() == ToType2.getUnqualifiedType()) {
1352 if (IsDerivedFrom(FromType2, FromType1))
1353 return ImplicitConversionSequence::Better;
1354 else if (IsDerivedFrom(FromType1, FromType2))
1355 return ImplicitConversionSequence::Worse;
1356 }
1357 }
Douglas Gregorf70bdb92008-10-29 14:50:44 +00001358
Douglas Gregorbc0805a2008-10-23 00:40:37 +00001359 return ImplicitConversionSequence::Indistinguishable;
1360}
1361
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001362/// TryCopyInitialization - Try to copy-initialize a value of type
1363/// ToType from the expression From. Return the implicit conversion
1364/// sequence required to pass this argument, which may be a bad
1365/// conversion sequence (meaning that the argument cannot be passed to
Douglas Gregor225c41e2008-11-03 19:09:14 +00001366/// a parameter of this type). If @p SuppressUserConversions, then we
1367/// do not permit any user-defined conversion sequences.
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001368ImplicitConversionSequence
Douglas Gregor225c41e2008-11-03 19:09:14 +00001369Sema::TryCopyInitialization(Expr *From, QualType ToType,
1370 bool SuppressUserConversions) {
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001371 if (!getLangOptions().CPlusPlus) {
Douglas Gregor60d62c22008-10-31 16:23:19 +00001372 // In C, copy initialization is the same as performing an assignment.
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001373 AssignConvertType ConvTy =
1374 CheckSingleAssignmentConstraints(ToType, From);
1375 ImplicitConversionSequence ICS;
1376 if (getLangOptions().NoExtensions? ConvTy != Compatible
1377 : ConvTy == Incompatible)
1378 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1379 else
1380 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1381 return ICS;
1382 } else if (ToType->isReferenceType()) {
1383 ImplicitConversionSequence ICS;
Douglas Gregor225c41e2008-11-03 19:09:14 +00001384 CheckReferenceInit(From, ToType, &ICS, SuppressUserConversions);
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001385 return ICS;
1386 } else {
Douglas Gregor225c41e2008-11-03 19:09:14 +00001387 return TryImplicitConversion(From, ToType, SuppressUserConversions);
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001388 }
1389}
1390
1391/// PerformArgumentPassing - Pass the argument Arg into a parameter of
1392/// type ToType. Returns true (and emits a diagnostic) if there was
1393/// an error, returns false if the initialization succeeded.
1394bool Sema::PerformCopyInitialization(Expr *&From, QualType ToType,
1395 const char* Flavor) {
1396 if (!getLangOptions().CPlusPlus) {
1397 // In C, argument passing is the same as performing an assignment.
1398 QualType FromType = From->getType();
1399 AssignConvertType ConvTy =
1400 CheckSingleAssignmentConstraints(ToType, From);
1401
1402 return DiagnoseAssignmentResult(ConvTy, From->getLocStart(), ToType,
1403 FromType, From, Flavor);
1404 } else if (ToType->isReferenceType()) {
1405 return CheckReferenceInit(From, ToType);
1406 } else {
1407 if (PerformImplicitConversion(From, ToType))
1408 return Diag(From->getSourceRange().getBegin(),
Chris Lattnerc9c7c4e2008-11-18 22:52:51 +00001409 diag::err_typecheck_convert_incompatible)
1410 << ToType.getAsString() << From->getType().getAsString()
1411 << Flavor << From->getSourceRange();
Douglas Gregor27c8dc02008-10-29 00:13:59 +00001412 else
1413 return false;
1414 }
1415}
1416
Douglas Gregor96176b32008-11-18 23:14:02 +00001417/// TryObjectArgumentInitialization - Try to initialize the object
1418/// parameter of the given member function (@c Method) from the
1419/// expression @p From.
1420ImplicitConversionSequence
1421Sema::TryObjectArgumentInitialization(Expr *From, CXXMethodDecl *Method) {
1422 QualType ClassType = Context.getTypeDeclType(Method->getParent());
1423 unsigned MethodQuals = Method->getTypeQualifiers();
1424 QualType ImplicitParamType = ClassType.getQualifiedType(MethodQuals);
1425
1426 // Set up the conversion sequence as a "bad" conversion, to allow us
1427 // to exit early.
1428 ImplicitConversionSequence ICS;
1429 ICS.Standard.setAsIdentityConversion();
1430 ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1431
1432 // We need to have an object of class type.
1433 QualType FromType = From->getType();
1434 if (!FromType->isRecordType())
1435 return ICS;
1436
1437 // The implicit object parmeter is has the type "reference to cv X",
1438 // where X is the class of which the function is a member
1439 // (C++ [over.match.funcs]p4). However, when finding an implicit
1440 // conversion sequence for the argument, we are not allowed to
1441 // create temporaries or perform user-defined conversions
1442 // (C++ [over.match.funcs]p5). We perform a simplified version of
1443 // reference binding here, that allows class rvalues to bind to
1444 // non-constant references.
1445
1446 // First check the qualifiers. We don't care about lvalue-vs-rvalue
1447 // with the implicit object parameter (C++ [over.match.funcs]p5).
1448 QualType FromTypeCanon = Context.getCanonicalType(FromType);
1449 if (ImplicitParamType.getCVRQualifiers() != FromType.getCVRQualifiers() &&
1450 !ImplicitParamType.isAtLeastAsQualifiedAs(FromType))
1451 return ICS;
1452
1453 // Check that we have either the same type or a derived type. It
1454 // affects the conversion rank.
1455 QualType ClassTypeCanon = Context.getCanonicalType(ClassType);
1456 if (ClassTypeCanon == FromTypeCanon.getUnqualifiedType())
1457 ICS.Standard.Second = ICK_Identity;
1458 else if (IsDerivedFrom(FromType, ClassType))
1459 ICS.Standard.Second = ICK_Derived_To_Base;
1460 else
1461 return ICS;
1462
1463 // Success. Mark this as a reference binding.
1464 ICS.ConversionKind = ImplicitConversionSequence::StandardConversion;
1465 ICS.Standard.FromTypePtr = FromType.getAsOpaquePtr();
1466 ICS.Standard.ToTypePtr = ImplicitParamType.getAsOpaquePtr();
1467 ICS.Standard.ReferenceBinding = true;
1468 ICS.Standard.DirectBinding = true;
1469 return ICS;
1470}
1471
1472/// PerformObjectArgumentInitialization - Perform initialization of
1473/// the implicit object parameter for the given Method with the given
1474/// expression.
1475bool
1476Sema::PerformObjectArgumentInitialization(Expr *&From, CXXMethodDecl *Method) {
1477 QualType ImplicitParamType
1478 = Method->getThisType(Context)->getAsPointerType()->getPointeeType();
1479 ImplicitConversionSequence ICS
1480 = TryObjectArgumentInitialization(From, Method);
1481 if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion)
1482 return Diag(From->getSourceRange().getBegin(),
Chris Lattnerfa25bbb2008-11-19 05:08:23 +00001483 diag::err_implicit_object_parameter_init)
1484 << ImplicitParamType.getAsString() << From->getType().getAsString()
1485 << From->getSourceRange();
Douglas Gregor96176b32008-11-18 23:14:02 +00001486
1487 if (ICS.Standard.Second == ICK_Derived_To_Base &&
1488 CheckDerivedToBaseConversion(From->getType(), ImplicitParamType,
1489 From->getSourceRange().getBegin(),
1490 From->getSourceRange()))
1491 return true;
1492
1493 ImpCastExprToType(From, ImplicitParamType, /*isLvalue=*/true);
1494 return false;
1495}
1496
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001497/// AddOverloadCandidate - Adds the given function to the set of
Douglas Gregor225c41e2008-11-03 19:09:14 +00001498/// candidate functions, using the given function call arguments. If
1499/// @p SuppressUserConversions, then don't allow user-defined
1500/// conversions via constructors or conversion operators.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001501void
1502Sema::AddOverloadCandidate(FunctionDecl *Function,
1503 Expr **Args, unsigned NumArgs,
Douglas Gregor225c41e2008-11-03 19:09:14 +00001504 OverloadCandidateSet& CandidateSet,
1505 bool SuppressUserConversions)
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001506{
1507 const FunctionTypeProto* Proto
1508 = dyn_cast<FunctionTypeProto>(Function->getType()->getAsFunctionType());
1509 assert(Proto && "Functions without a prototype cannot be overloaded");
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001510 assert(!isa<CXXConversionDecl>(Function) &&
1511 "Use AddConversionCandidate for conversion functions");
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001512
1513 // Add this candidate
1514 CandidateSet.push_back(OverloadCandidate());
1515 OverloadCandidate& Candidate = CandidateSet.back();
1516 Candidate.Function = Function;
1517
1518 unsigned NumArgsInProto = Proto->getNumArgs();
1519
1520 // (C++ 13.3.2p2): A candidate function having fewer than m
1521 // parameters is viable only if it has an ellipsis in its parameter
1522 // list (8.3.5).
1523 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
1524 Candidate.Viable = false;
1525 return;
1526 }
1527
1528 // (C++ 13.3.2p2): A candidate function having more than m parameters
1529 // is viable only if the (m+1)st parameter has a default argument
1530 // (8.3.6). For the purposes of overload resolution, the
1531 // parameter list is truncated on the right, so that there are
1532 // exactly m parameters.
1533 unsigned MinRequiredArgs = Function->getMinRequiredArguments();
1534 if (NumArgs < MinRequiredArgs) {
1535 // Not enough arguments.
1536 Candidate.Viable = false;
1537 return;
1538 }
1539
1540 // Determine the implicit conversion sequences for each of the
1541 // arguments.
1542 Candidate.Viable = true;
1543 Candidate.Conversions.resize(NumArgs);
1544 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1545 if (ArgIdx < NumArgsInProto) {
1546 // (C++ 13.3.2p3): for F to be a viable function, there shall
1547 // exist for each argument an implicit conversion sequence
1548 // (13.3.3.1) that converts that argument to the corresponding
1549 // parameter of F.
1550 QualType ParamType = Proto->getArgType(ArgIdx);
1551 Candidate.Conversions[ArgIdx]
Douglas Gregor225c41e2008-11-03 19:09:14 +00001552 = TryCopyInitialization(Args[ArgIdx], ParamType,
1553 SuppressUserConversions);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001554 if (Candidate.Conversions[ArgIdx].ConversionKind
Douglas Gregor96176b32008-11-18 23:14:02 +00001555 == ImplicitConversionSequence::BadConversion) {
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001556 Candidate.Viable = false;
Douglas Gregor96176b32008-11-18 23:14:02 +00001557 break;
1558 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00001559 } else {
1560 // (C++ 13.3.2p2): For the purposes of overload resolution, any
1561 // argument for which there is no corresponding parameter is
1562 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
1563 Candidate.Conversions[ArgIdx].ConversionKind
1564 = ImplicitConversionSequence::EllipsisConversion;
1565 }
1566 }
1567}
1568
Douglas Gregor96176b32008-11-18 23:14:02 +00001569/// AddMethodCandidate - Adds the given C++ member function to the set
1570/// of candidate functions, using the given function call arguments
1571/// and the object argument (@c Object). For example, in a call
1572/// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
1573/// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
1574/// allow user-defined conversions via constructors or conversion
1575/// operators.
1576void
1577Sema::AddMethodCandidate(CXXMethodDecl *Method, Expr *Object,
1578 Expr **Args, unsigned NumArgs,
1579 OverloadCandidateSet& CandidateSet,
1580 bool SuppressUserConversions)
1581{
1582 const FunctionTypeProto* Proto
1583 = dyn_cast<FunctionTypeProto>(Method->getType()->getAsFunctionType());
1584 assert(Proto && "Methods without a prototype cannot be overloaded");
1585 assert(!isa<CXXConversionDecl>(Method) &&
1586 "Use AddConversionCandidate for conversion functions");
1587
1588 // Add this candidate
1589 CandidateSet.push_back(OverloadCandidate());
1590 OverloadCandidate& Candidate = CandidateSet.back();
1591 Candidate.Function = Method;
1592
1593 unsigned NumArgsInProto = Proto->getNumArgs();
1594
1595 // (C++ 13.3.2p2): A candidate function having fewer than m
1596 // parameters is viable only if it has an ellipsis in its parameter
1597 // list (8.3.5).
1598 if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
1599 Candidate.Viable = false;
1600 return;
1601 }
1602
1603 // (C++ 13.3.2p2): A candidate function having more than m parameters
1604 // is viable only if the (m+1)st parameter has a default argument
1605 // (8.3.6). For the purposes of overload resolution, the
1606 // parameter list is truncated on the right, so that there are
1607 // exactly m parameters.
1608 unsigned MinRequiredArgs = Method->getMinRequiredArguments();
1609 if (NumArgs < MinRequiredArgs) {
1610 // Not enough arguments.
1611 Candidate.Viable = false;
1612 return;
1613 }
1614
1615 Candidate.Viable = true;
1616 Candidate.Conversions.resize(NumArgs + 1);
1617
1618 // Determine the implicit conversion sequence for the object
1619 // parameter.
1620 Candidate.Conversions[0] = TryObjectArgumentInitialization(Object, Method);
1621 if (Candidate.Conversions[0].ConversionKind
1622 == ImplicitConversionSequence::BadConversion) {
1623 Candidate.Viable = false;
1624 return;
1625 }
1626
1627 // Determine the implicit conversion sequences for each of the
1628 // arguments.
1629 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1630 if (ArgIdx < NumArgsInProto) {
1631 // (C++ 13.3.2p3): for F to be a viable function, there shall
1632 // exist for each argument an implicit conversion sequence
1633 // (13.3.3.1) that converts that argument to the corresponding
1634 // parameter of F.
1635 QualType ParamType = Proto->getArgType(ArgIdx);
1636 Candidate.Conversions[ArgIdx + 1]
1637 = TryCopyInitialization(Args[ArgIdx], ParamType,
1638 SuppressUserConversions);
1639 if (Candidate.Conversions[ArgIdx + 1].ConversionKind
1640 == ImplicitConversionSequence::BadConversion) {
1641 Candidate.Viable = false;
1642 break;
1643 }
1644 } else {
1645 // (C++ 13.3.2p2): For the purposes of overload resolution, any
1646 // argument for which there is no corresponding parameter is
1647 // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
1648 Candidate.Conversions[ArgIdx + 1].ConversionKind
1649 = ImplicitConversionSequence::EllipsisConversion;
1650 }
1651 }
1652}
1653
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001654/// AddConversionCandidate - Add a C++ conversion function as a
1655/// candidate in the candidate set (C++ [over.match.conv],
1656/// C++ [over.match.copy]). From is the expression we're converting from,
1657/// and ToType is the type that we're eventually trying to convert to
1658/// (which may or may not be the same type as the type that the
1659/// conversion function produces).
1660void
1661Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
1662 Expr *From, QualType ToType,
1663 OverloadCandidateSet& CandidateSet) {
1664 // Add this candidate
1665 CandidateSet.push_back(OverloadCandidate());
1666 OverloadCandidate& Candidate = CandidateSet.back();
1667 Candidate.Function = Conversion;
1668 Candidate.FinalConversion.setAsIdentityConversion();
1669 Candidate.FinalConversion.FromTypePtr
1670 = Conversion->getConversionType().getAsOpaquePtr();
1671 Candidate.FinalConversion.ToTypePtr = ToType.getAsOpaquePtr();
1672
Douglas Gregor96176b32008-11-18 23:14:02 +00001673 // Determine the implicit conversion sequence for the implicit
1674 // object parameter.
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001675 Candidate.Viable = true;
1676 Candidate.Conversions.resize(1);
Douglas Gregor96176b32008-11-18 23:14:02 +00001677 Candidate.Conversions[0] = TryObjectArgumentInitialization(From, Conversion);
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001678
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001679 if (Candidate.Conversions[0].ConversionKind
1680 == ImplicitConversionSequence::BadConversion) {
1681 Candidate.Viable = false;
1682 return;
1683 }
1684
1685 // To determine what the conversion from the result of calling the
1686 // conversion function to the type we're eventually trying to
1687 // convert to (ToType), we need to synthesize a call to the
1688 // conversion function and attempt copy initialization from it. This
1689 // makes sure that we get the right semantics with respect to
1690 // lvalues/rvalues and the type. Fortunately, we can allocate this
1691 // call on the stack and we don't need its arguments to be
1692 // well-formed.
1693 DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
1694 SourceLocation());
1695 ImplicitCastExpr ConversionFn(Context.getPointerType(Conversion->getType()),
Douglas Gregoreb8f3062008-11-12 17:17:38 +00001696 &ConversionRef, false);
Douglas Gregorf1991ea2008-11-07 22:36:19 +00001697 CallExpr Call(&ConversionFn, 0, 0,
1698 Conversion->getConversionType().getNonReferenceType(),
1699 SourceLocation());
1700 ImplicitConversionSequence ICS = TryCopyInitialization(&Call, ToType, true);
1701 switch (ICS.ConversionKind) {
1702 case ImplicitConversionSequence::StandardConversion:
1703 Candidate.FinalConversion = ICS.Standard;
1704 break;
1705
1706 case ImplicitConversionSequence::BadConversion:
1707 Candidate.Viable = false;
1708 break;
1709
1710 default:
1711 assert(false &&
1712 "Can only end up with a standard conversion sequence or failure");
1713 }
1714}
1715
Douglas Gregor447b69e2008-11-19 03:25:36 +00001716/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
1717/// an acceptable non-member overloaded operator for a call whose
1718/// arguments have types T1 (and, if non-empty, T2). This routine
1719/// implements the check in C++ [over.match.oper]p3b2 concerning
1720/// enumeration types.
1721static bool
1722IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
1723 QualType T1, QualType T2,
1724 ASTContext &Context) {
1725 if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
1726 return true;
1727
1728 const FunctionTypeProto *Proto = Fn->getType()->getAsFunctionTypeProto();
1729 if (Proto->getNumArgs() < 1)
1730 return false;
1731
1732 if (T1->isEnumeralType()) {
1733 QualType ArgType = Proto->getArgType(0).getNonReferenceType();
1734 if (Context.getCanonicalType(T1).getUnqualifiedType()
1735 == Context.getCanonicalType(ArgType).getUnqualifiedType())
1736 return true;
1737 }
1738
1739 if (Proto->getNumArgs() < 2)
1740 return false;
1741
1742 if (!T2.isNull() && T2->isEnumeralType()) {
1743 QualType ArgType = Proto->getArgType(1).getNonReferenceType();
1744 if (Context.getCanonicalType(T2).getUnqualifiedType()
1745 == Context.getCanonicalType(ArgType).getUnqualifiedType())
1746 return true;
1747 }
1748
1749 return false;
1750}
1751
Douglas Gregor96176b32008-11-18 23:14:02 +00001752/// AddOperatorCandidates - Add the overloaded operator candidates for
1753/// the operator Op that was used in an operator expression such as "x
1754/// Op y". S is the scope in which the expression occurred (used for
1755/// name lookup of the operator), Args/NumArgs provides the operator
1756/// arguments, and CandidateSet will store the added overload
1757/// candidates. (C++ [over.match.oper]).
1758void Sema::AddOperatorCandidates(OverloadedOperatorKind Op, Scope *S,
1759 Expr **Args, unsigned NumArgs,
1760 OverloadCandidateSet& CandidateSet) {
1761 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
1762
1763 // C++ [over.match.oper]p3:
1764 // For a unary operator @ with an operand of a type whose
1765 // cv-unqualified version is T1, and for a binary operator @ with
1766 // a left operand of a type whose cv-unqualified version is T1 and
1767 // a right operand of a type whose cv-unqualified version is T2,
1768 // three sets of candidate functions, designated member
1769 // candidates, non-member candidates and built-in candidates, are
1770 // constructed as follows:
1771 QualType T1 = Args[0]->getType();
1772 QualType T2;
1773 if (NumArgs > 1)
1774 T2 = Args[1]->getType();
1775
1776 // -- If T1 is a class type, the set of member candidates is the
1777 // result of the qualified lookup of T1::operator@
1778 // (13.3.1.1.1); otherwise, the set of member candidates is
1779 // empty.
1780 if (const RecordType *T1Rec = T1->getAsRecordType()) {
1781 IdentifierResolver::iterator I
1782 = IdResolver.begin(OpName, cast<CXXRecordType>(T1Rec)->getDecl(),
1783 /*LookInParentCtx=*/false);
1784 NamedDecl *MemberOps = (I == IdResolver.end())? 0 : *I;
1785 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(MemberOps))
1786 AddMethodCandidate(Method, Args[0], Args+1, NumArgs - 1, CandidateSet,
1787 /*SuppressUserConversions=*/false);
1788 else if (OverloadedFunctionDecl *Ovl
1789 = dyn_cast_or_null<OverloadedFunctionDecl>(MemberOps)) {
1790 for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
1791 FEnd = Ovl->function_end();
1792 F != FEnd; ++F) {
1793 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*F))
1794 AddMethodCandidate(Method, Args[0], Args+1, NumArgs - 1, CandidateSet,
1795 /*SuppressUserConversions=*/false);
1796 }
1797 }
1798 }
1799
1800 // -- The set of non-member candidates is the result of the
1801 // unqualified lookup of operator@ in the context of the
1802 // expression according to the usual rules for name lookup in
1803 // unqualified function calls (3.4.2) except that all member
1804 // functions are ignored. However, if no operand has a class
1805 // type, only those non-member functions in the lookup set
1806 // that have a first parameter of type T1 or “reference to
1807 // (possibly cv-qualified) T1”, when T1 is an enumeration
1808 // type, or (if there is a right operand) a second parameter
1809 // of type T2 or “reference to (possibly cv-qualified) T2”,
1810 // when T2 is an enumeration type, are candidate functions.
1811 {
1812 NamedDecl *NonMemberOps = 0;
1813 for (IdentifierResolver::iterator I
1814 = IdResolver.begin(OpName, CurContext, true/*LookInParentCtx*/);
1815 I != IdResolver.end(); ++I) {
1816 // We don't need to check the identifier namespace, because
1817 // operator names can only be ordinary identifiers.
1818
1819 // Ignore member functions.
1820 if (ScopedDecl *SD = dyn_cast<ScopedDecl>(*I)) {
1821 if (SD->getDeclContext()->isCXXRecord())
1822 continue;
1823 }
1824
1825 // We found something with this name. We're done.
1826 NonMemberOps = *I;
1827 break;
1828 }
1829
Douglas Gregor447b69e2008-11-19 03:25:36 +00001830 if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NonMemberOps)) {
1831 if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
1832 AddOverloadCandidate(FD, Args, NumArgs, CandidateSet,
1833 /*SuppressUserConversions=*/false);
1834 } else if (OverloadedFunctionDecl *Ovl
1835 = dyn_cast_or_null<OverloadedFunctionDecl>(NonMemberOps)) {
Douglas Gregor96176b32008-11-18 23:14:02 +00001836 for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
1837 FEnd = Ovl->function_end();
Douglas Gregor447b69e2008-11-19 03:25:36 +00001838 F != FEnd; ++F) {
1839 if (IsAcceptableNonMemberOperatorCandidate(*F, T1, T2, Context))
1840 AddOverloadCandidate(*F, Args, NumArgs, CandidateSet,
1841 /*SuppressUserConversions=*/false);
1842 }
Douglas Gregor96176b32008-11-18 23:14:02 +00001843 }
1844 }
1845
1846 // Add builtin overload candidates (C++ [over.built]).
Douglas Gregor74253732008-11-19 15:42:04 +00001847 AddBuiltinOperatorCandidates(Op, Args, NumArgs, CandidateSet);
Douglas Gregor96176b32008-11-18 23:14:02 +00001848}
1849
Douglas Gregoreb8f3062008-11-12 17:17:38 +00001850/// AddBuiltinCandidate - Add a candidate for a built-in
1851/// operator. ResultTy and ParamTys are the result and parameter types
1852/// of the built-in candidate, respectively. Args and NumArgs are the
1853/// arguments being passed to the candidate.
1854void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
1855 Expr **Args, unsigned NumArgs,
1856 OverloadCandidateSet& CandidateSet) {
1857 // Add this candidate
1858 CandidateSet.push_back(OverloadCandidate());
1859 OverloadCandidate& Candidate = CandidateSet.back();
1860 Candidate.Function = 0;
1861 Candidate.BuiltinTypes.ResultTy = ResultTy;
1862 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
1863 Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx];
1864
1865 // Determine the implicit conversion sequences for each of the
1866 // arguments.
1867 Candidate.Viable = true;
1868 Candidate.Conversions.resize(NumArgs);
1869 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
1870 Candidate.Conversions[ArgIdx]
1871 = TryCopyInitialization(Args[ArgIdx], ParamTys[ArgIdx], false);
1872 if (Candidate.Conversions[ArgIdx].ConversionKind
Douglas Gregor96176b32008-11-18 23:14:02 +00001873 == ImplicitConversionSequence::BadConversion) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00001874 Candidate.Viable = false;
Douglas Gregor96176b32008-11-18 23:14:02 +00001875 break;
1876 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00001877 }
1878}
1879
1880/// BuiltinCandidateTypeSet - A set of types that will be used for the
1881/// candidate operator functions for built-in operators (C++
1882/// [over.built]). The types are separated into pointer types and
1883/// enumeration types.
1884class BuiltinCandidateTypeSet {
1885 /// TypeSet - A set of types.
Douglas Gregorbf3af052008-11-13 20:12:29 +00001886 typedef llvm::SmallPtrSet<void*, 8> TypeSet;
Douglas Gregoreb8f3062008-11-12 17:17:38 +00001887
1888 /// PointerTypes - The set of pointer types that will be used in the
1889 /// built-in candidates.
1890 TypeSet PointerTypes;
1891
1892 /// EnumerationTypes - The set of enumeration types that will be
1893 /// used in the built-in candidates.
1894 TypeSet EnumerationTypes;
1895
1896 /// Context - The AST context in which we will build the type sets.
1897 ASTContext &Context;
1898
1899 bool AddWithMoreQualifiedTypeVariants(QualType Ty);
1900
1901public:
1902 /// iterator - Iterates through the types that are part of the set.
Douglas Gregorbf3af052008-11-13 20:12:29 +00001903 class iterator {
1904 TypeSet::iterator Base;
1905
1906 public:
1907 typedef QualType value_type;
1908 typedef QualType reference;
1909 typedef QualType pointer;
1910 typedef std::ptrdiff_t difference_type;
1911 typedef std::input_iterator_tag iterator_category;
1912
1913 iterator(TypeSet::iterator B) : Base(B) { }
1914
1915 iterator& operator++() {
1916 ++Base;
1917 return *this;
1918 }
1919
1920 iterator operator++(int) {
1921 iterator tmp(*this);
1922 ++(*this);
1923 return tmp;
1924 }
1925
1926 reference operator*() const {
1927 return QualType::getFromOpaquePtr(*Base);
1928 }
1929
1930 pointer operator->() const {
1931 return **this;
1932 }
1933
1934 friend bool operator==(iterator LHS, iterator RHS) {
1935 return LHS.Base == RHS.Base;
1936 }
1937
1938 friend bool operator!=(iterator LHS, iterator RHS) {
1939 return LHS.Base != RHS.Base;
1940 }
1941 };
Douglas Gregoreb8f3062008-11-12 17:17:38 +00001942
1943 BuiltinCandidateTypeSet(ASTContext &Context) : Context(Context) { }
1944
1945 void AddTypesConvertedFrom(QualType Ty, bool AllowUserConversions = true);
1946
1947 /// pointer_begin - First pointer type found;
1948 iterator pointer_begin() { return PointerTypes.begin(); }
1949
1950 /// pointer_end - Last pointer type found;
1951 iterator pointer_end() { return PointerTypes.end(); }
1952
1953 /// enumeration_begin - First enumeration type found;
1954 iterator enumeration_begin() { return EnumerationTypes.begin(); }
1955
1956 /// enumeration_end - Last enumeration type found;
1957 iterator enumeration_end() { return EnumerationTypes.end(); }
1958};
1959
1960/// AddWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
1961/// the set of pointer types along with any more-qualified variants of
1962/// that type. For example, if @p Ty is "int const *", this routine
1963/// will add "int const *", "int const volatile *", "int const
1964/// restrict *", and "int const volatile restrict *" to the set of
1965/// pointer types. Returns true if the add of @p Ty itself succeeded,
1966/// false otherwise.
1967bool BuiltinCandidateTypeSet::AddWithMoreQualifiedTypeVariants(QualType Ty) {
1968 // Insert this type.
Douglas Gregorbf3af052008-11-13 20:12:29 +00001969 if (!PointerTypes.insert(Ty.getAsOpaquePtr()))
Douglas Gregoreb8f3062008-11-12 17:17:38 +00001970 return false;
1971
1972 if (const PointerType *PointerTy = Ty->getAsPointerType()) {
1973 QualType PointeeTy = PointerTy->getPointeeType();
1974 // FIXME: Optimize this so that we don't keep trying to add the same types.
1975
1976 // FIXME: Do we have to add CVR qualifiers at *all* levels to deal
1977 // with all pointer conversions that don't cast away constness?
1978 if (!PointeeTy.isConstQualified())
1979 AddWithMoreQualifiedTypeVariants
1980 (Context.getPointerType(PointeeTy.withConst()));
1981 if (!PointeeTy.isVolatileQualified())
1982 AddWithMoreQualifiedTypeVariants
1983 (Context.getPointerType(PointeeTy.withVolatile()));
1984 if (!PointeeTy.isRestrictQualified())
1985 AddWithMoreQualifiedTypeVariants
1986 (Context.getPointerType(PointeeTy.withRestrict()));
1987 }
1988
1989 return true;
1990}
1991
1992/// AddTypesConvertedFrom - Add each of the types to which the type @p
1993/// Ty can be implicit converted to the given set of @p Types. We're
1994/// primarily interested in pointer types, enumeration types,
1995void BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
1996 bool AllowUserConversions) {
1997 // Only deal with canonical types.
1998 Ty = Context.getCanonicalType(Ty);
1999
2000 // Look through reference types; they aren't part of the type of an
2001 // expression for the purposes of conversions.
2002 if (const ReferenceType *RefTy = Ty->getAsReferenceType())
2003 Ty = RefTy->getPointeeType();
2004
2005 // We don't care about qualifiers on the type.
2006 Ty = Ty.getUnqualifiedType();
2007
2008 if (const PointerType *PointerTy = Ty->getAsPointerType()) {
2009 QualType PointeeTy = PointerTy->getPointeeType();
2010
2011 // Insert our type, and its more-qualified variants, into the set
2012 // of types.
2013 if (!AddWithMoreQualifiedTypeVariants(Ty))
2014 return;
2015
2016 // Add 'cv void*' to our set of types.
2017 if (!Ty->isVoidType()) {
2018 QualType QualVoid
2019 = Context.VoidTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2020 AddWithMoreQualifiedTypeVariants(Context.getPointerType(QualVoid));
2021 }
2022
2023 // If this is a pointer to a class type, add pointers to its bases
2024 // (with the same level of cv-qualification as the original
2025 // derived class, of course).
2026 if (const RecordType *PointeeRec = PointeeTy->getAsRecordType()) {
2027 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(PointeeRec->getDecl());
2028 for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2029 Base != ClassDecl->bases_end(); ++Base) {
2030 QualType BaseTy = Context.getCanonicalType(Base->getType());
2031 BaseTy = BaseTy.getQualifiedType(PointeeTy.getCVRQualifiers());
2032
2033 // Add the pointer type, recursively, so that we get all of
2034 // the indirect base classes, too.
2035 AddTypesConvertedFrom(Context.getPointerType(BaseTy), false);
2036 }
2037 }
2038 } else if (Ty->isEnumeralType()) {
Douglas Gregorbf3af052008-11-13 20:12:29 +00002039 EnumerationTypes.insert(Ty.getAsOpaquePtr());
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002040 } else if (AllowUserConversions) {
2041 if (const RecordType *TyRec = Ty->getAsRecordType()) {
2042 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
2043 // FIXME: Visit conversion functions in the base classes, too.
2044 OverloadedFunctionDecl *Conversions
2045 = ClassDecl->getConversionFunctions();
2046 for (OverloadedFunctionDecl::function_iterator Func
2047 = Conversions->function_begin();
2048 Func != Conversions->function_end(); ++Func) {
2049 CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2050 AddTypesConvertedFrom(Conv->getConversionType(), false);
2051 }
2052 }
2053 }
2054}
2055
Douglas Gregor74253732008-11-19 15:42:04 +00002056/// AddBuiltinOperatorCandidates - Add the appropriate built-in
2057/// operator overloads to the candidate set (C++ [over.built]), based
2058/// on the operator @p Op and the arguments given. For example, if the
2059/// operator is a binary '+', this routine might add "int
2060/// operator+(int, int)" to cover integer addition.
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002061void
Douglas Gregor74253732008-11-19 15:42:04 +00002062Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
2063 Expr **Args, unsigned NumArgs,
2064 OverloadCandidateSet& CandidateSet) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002065 // The set of "promoted arithmetic types", which are the arithmetic
2066 // types are that preserved by promotion (C++ [over.built]p2). Note
2067 // that the first few of these types are the promoted integral
2068 // types; these types need to be first.
2069 // FIXME: What about complex?
2070 const unsigned FirstIntegralType = 0;
2071 const unsigned LastIntegralType = 13;
2072 const unsigned FirstPromotedIntegralType = 7,
2073 LastPromotedIntegralType = 13;
2074 const unsigned FirstPromotedArithmeticType = 7,
2075 LastPromotedArithmeticType = 16;
2076 const unsigned NumArithmeticTypes = 16;
2077 QualType ArithmeticTypes[NumArithmeticTypes] = {
2078 Context.BoolTy, Context.CharTy, Context.WCharTy,
2079 Context.SignedCharTy, Context.ShortTy,
2080 Context.UnsignedCharTy, Context.UnsignedShortTy,
2081 Context.IntTy, Context.LongTy, Context.LongLongTy,
2082 Context.UnsignedIntTy, Context.UnsignedLongTy, Context.UnsignedLongLongTy,
2083 Context.FloatTy, Context.DoubleTy, Context.LongDoubleTy
2084 };
2085
2086 // Find all of the types that the arguments can convert to, but only
2087 // if the operator we're looking at has built-in operator candidates
2088 // that make use of these types.
2089 BuiltinCandidateTypeSet CandidateTypes(Context);
2090 if (Op == OO_Less || Op == OO_Greater || Op == OO_LessEqual ||
2091 Op == OO_GreaterEqual || Op == OO_EqualEqual || Op == OO_ExclaimEqual ||
Douglas Gregor74253732008-11-19 15:42:04 +00002092 Op == OO_Plus || (Op == OO_Minus && NumArgs == 2) || Op == OO_Equal ||
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002093 Op == OO_PlusEqual || Op == OO_MinusEqual || Op == OO_Subscript ||
Douglas Gregor74253732008-11-19 15:42:04 +00002094 Op == OO_ArrowStar || Op == OO_PlusPlus || Op == OO_MinusMinus ||
2095 (Op == OO_Star && NumArgs == 1)) {
2096 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002097 CandidateTypes.AddTypesConvertedFrom(Args[ArgIdx]->getType());
2098 }
2099
2100 bool isComparison = false;
2101 switch (Op) {
2102 case OO_None:
2103 case NUM_OVERLOADED_OPERATORS:
2104 assert(false && "Expected an overloaded operator");
2105 break;
2106
Douglas Gregor74253732008-11-19 15:42:04 +00002107 case OO_Star: // '*' is either unary or binary
2108 if (NumArgs == 1)
2109 goto UnaryStar;
2110 else
2111 goto BinaryStar;
2112 break;
2113
2114 case OO_Plus: // '+' is either unary or binary
2115 if (NumArgs == 1)
2116 goto UnaryPlus;
2117 else
2118 goto BinaryPlus;
2119 break;
2120
2121 case OO_Minus: // '-' is either unary or binary
2122 if (NumArgs == 1)
2123 goto UnaryMinus;
2124 else
2125 goto BinaryMinus;
2126 break;
2127
2128 case OO_Amp: // '&' is either unary or binary
2129 if (NumArgs == 1)
2130 goto UnaryAmp;
2131 else
2132 goto BinaryAmp;
2133
2134 case OO_PlusPlus:
2135 case OO_MinusMinus:
2136 // C++ [over.built]p3:
2137 //
2138 // For every pair (T, VQ), where T is an arithmetic type, and VQ
2139 // is either volatile or empty, there exist candidate operator
2140 // functions of the form
2141 //
2142 // VQ T& operator++(VQ T&);
2143 // T operator++(VQ T&, int);
2144 //
2145 // C++ [over.built]p4:
2146 //
2147 // For every pair (T, VQ), where T is an arithmetic type other
2148 // than bool, and VQ is either volatile or empty, there exist
2149 // candidate operator functions of the form
2150 //
2151 // VQ T& operator--(VQ T&);
2152 // T operator--(VQ T&, int);
2153 for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1);
2154 Arith < NumArithmeticTypes; ++Arith) {
2155 QualType ArithTy = ArithmeticTypes[Arith];
2156 QualType ParamTypes[2]
2157 = { Context.getReferenceType(ArithTy), Context.IntTy };
2158
2159 // Non-volatile version.
2160 if (NumArgs == 1)
2161 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2162 else
2163 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2164
2165 // Volatile version
2166 ParamTypes[0] = Context.getReferenceType(ArithTy.withVolatile());
2167 if (NumArgs == 1)
2168 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2169 else
2170 AddBuiltinCandidate(ArithTy, ParamTypes, Args, 2, CandidateSet);
2171 }
2172
2173 // C++ [over.built]p5:
2174 //
2175 // For every pair (T, VQ), where T is a cv-qualified or
2176 // cv-unqualified object type, and VQ is either volatile or
2177 // empty, there exist candidate operator functions of the form
2178 //
2179 // T*VQ& operator++(T*VQ&);
2180 // T*VQ& operator--(T*VQ&);
2181 // T* operator++(T*VQ&, int);
2182 // T* operator--(T*VQ&, int);
2183 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2184 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2185 // Skip pointer types that aren't pointers to object types.
2186 if (!(*Ptr)->getAsPointerType()->getPointeeType()->isObjectType())
2187 continue;
2188
2189 QualType ParamTypes[2] = {
2190 Context.getReferenceType(*Ptr), Context.IntTy
2191 };
2192
2193 // Without volatile
2194 if (NumArgs == 1)
2195 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2196 else
2197 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2198
2199 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2200 // With volatile
2201 ParamTypes[0] = Context.getReferenceType((*Ptr).withVolatile());
2202 if (NumArgs == 1)
2203 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet);
2204 else
2205 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2206 }
2207 }
2208 break;
2209
2210 UnaryStar:
2211 // C++ [over.built]p6:
2212 // For every cv-qualified or cv-unqualified object type T, there
2213 // exist candidate operator functions of the form
2214 //
2215 // T& operator*(T*);
2216 //
2217 // C++ [over.built]p7:
2218 // For every function type T, there exist candidate operator
2219 // functions of the form
2220 // T& operator*(T*);
2221 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2222 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2223 QualType ParamTy = *Ptr;
2224 QualType PointeeTy = ParamTy->getAsPointerType()->getPointeeType();
2225 AddBuiltinCandidate(Context.getReferenceType(PointeeTy),
2226 &ParamTy, Args, 1, CandidateSet);
2227 }
2228 break;
2229
2230 UnaryPlus:
2231 // C++ [over.built]p8:
2232 // For every type T, there exist candidate operator functions of
2233 // the form
2234 //
2235 // T* operator+(T*);
2236 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2237 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2238 QualType ParamTy = *Ptr;
2239 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2240 }
2241
2242 // Fall through
2243
2244 UnaryMinus:
2245 // C++ [over.built]p9:
2246 // For every promoted arithmetic type T, there exist candidate
2247 // operator functions of the form
2248 //
2249 // T operator+(T);
2250 // T operator-(T);
2251 for (unsigned Arith = FirstPromotedArithmeticType;
2252 Arith < LastPromotedArithmeticType; ++Arith) {
2253 QualType ArithTy = ArithmeticTypes[Arith];
2254 AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet);
2255 }
2256 break;
2257
2258 case OO_Tilde:
2259 // C++ [over.built]p10:
2260 // For every promoted integral type T, there exist candidate
2261 // operator functions of the form
2262 //
2263 // T operator~(T);
2264 for (unsigned Int = FirstPromotedIntegralType;
2265 Int < LastPromotedIntegralType; ++Int) {
2266 QualType IntTy = ArithmeticTypes[Int];
2267 AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet);
2268 }
2269 break;
2270
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002271 case OO_New:
2272 case OO_Delete:
2273 case OO_Array_New:
2274 case OO_Array_Delete:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002275 case OO_Call:
Douglas Gregor74253732008-11-19 15:42:04 +00002276 assert(false && "Special operators don't use AddBuiltinOperatorCandidates");
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002277 break;
2278
2279 case OO_Comma:
Douglas Gregor74253732008-11-19 15:42:04 +00002280 UnaryAmp:
2281 case OO_Arrow:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002282 // C++ [over.match.oper]p3:
2283 // -- For the operator ',', the unary operator '&', or the
2284 // operator '->', the built-in candidates set is empty.
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002285 break;
2286
2287 case OO_Less:
2288 case OO_Greater:
2289 case OO_LessEqual:
2290 case OO_GreaterEqual:
2291 case OO_EqualEqual:
2292 case OO_ExclaimEqual:
2293 // C++ [over.built]p15:
2294 //
2295 // For every pointer or enumeration type T, there exist
2296 // candidate operator functions of the form
2297 //
2298 // bool operator<(T, T);
2299 // bool operator>(T, T);
2300 // bool operator<=(T, T);
2301 // bool operator>=(T, T);
2302 // bool operator==(T, T);
2303 // bool operator!=(T, T);
2304 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2305 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2306 QualType ParamTypes[2] = { *Ptr, *Ptr };
2307 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2308 }
2309 for (BuiltinCandidateTypeSet::iterator Enum
2310 = CandidateTypes.enumeration_begin();
2311 Enum != CandidateTypes.enumeration_end(); ++Enum) {
2312 QualType ParamTypes[2] = { *Enum, *Enum };
2313 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2314 }
2315
2316 // Fall through.
2317 isComparison = true;
2318
Douglas Gregor74253732008-11-19 15:42:04 +00002319 BinaryPlus:
2320 BinaryMinus:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002321 if (!isComparison) {
2322 // We didn't fall through, so we must have OO_Plus or OO_Minus.
2323
2324 // C++ [over.built]p13:
2325 //
2326 // For every cv-qualified or cv-unqualified object type T
2327 // there exist candidate operator functions of the form
2328 //
2329 // T* operator+(T*, ptrdiff_t);
2330 // T& operator[](T*, ptrdiff_t); [BELOW]
2331 // T* operator-(T*, ptrdiff_t);
2332 // T* operator+(ptrdiff_t, T*);
2333 // T& operator[](ptrdiff_t, T*); [BELOW]
2334 //
2335 // C++ [over.built]p14:
2336 //
2337 // For every T, where T is a pointer to object type, there
2338 // exist candidate operator functions of the form
2339 //
2340 // ptrdiff_t operator-(T, T);
2341 for (BuiltinCandidateTypeSet::iterator Ptr
2342 = CandidateTypes.pointer_begin();
2343 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2344 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
2345
2346 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
2347 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2348
2349 if (Op == OO_Plus) {
2350 // T* operator+(ptrdiff_t, T*);
2351 ParamTypes[0] = ParamTypes[1];
2352 ParamTypes[1] = *Ptr;
2353 AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet);
2354 } else {
2355 // ptrdiff_t operator-(T, T);
2356 ParamTypes[1] = *Ptr;
2357 AddBuiltinCandidate(Context.getPointerDiffType(), ParamTypes,
2358 Args, 2, CandidateSet);
2359 }
2360 }
2361 }
2362 // Fall through
2363
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002364 case OO_Slash:
Douglas Gregor74253732008-11-19 15:42:04 +00002365 BinaryStar:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002366 // C++ [over.built]p12:
2367 //
2368 // For every pair of promoted arithmetic types L and R, there
2369 // exist candidate operator functions of the form
2370 //
2371 // LR operator*(L, R);
2372 // LR operator/(L, R);
2373 // LR operator+(L, R);
2374 // LR operator-(L, R);
2375 // bool operator<(L, R);
2376 // bool operator>(L, R);
2377 // bool operator<=(L, R);
2378 // bool operator>=(L, R);
2379 // bool operator==(L, R);
2380 // bool operator!=(L, R);
2381 //
2382 // where LR is the result of the usual arithmetic conversions
2383 // between types L and R.
2384 for (unsigned Left = FirstPromotedArithmeticType;
2385 Left < LastPromotedArithmeticType; ++Left) {
2386 for (unsigned Right = FirstPromotedArithmeticType;
2387 Right < LastPromotedArithmeticType; ++Right) {
2388 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
2389 QualType Result
2390 = isComparison? Context.BoolTy
2391 : UsualArithmeticConversionsType(LandR[0], LandR[1]);
2392 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
2393 }
2394 }
2395 break;
2396
2397 case OO_Percent:
Douglas Gregor74253732008-11-19 15:42:04 +00002398 BinaryAmp:
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002399 case OO_Caret:
2400 case OO_Pipe:
2401 case OO_LessLess:
2402 case OO_GreaterGreater:
2403 // C++ [over.built]p17:
2404 //
2405 // For every pair of promoted integral types L and R, there
2406 // exist candidate operator functions of the form
2407 //
2408 // LR operator%(L, R);
2409 // LR operator&(L, R);
2410 // LR operator^(L, R);
2411 // LR operator|(L, R);
2412 // L operator<<(L, R);
2413 // L operator>>(L, R);
2414 //
2415 // where LR is the result of the usual arithmetic conversions
2416 // between types L and R.
2417 for (unsigned Left = FirstPromotedIntegralType;
2418 Left < LastPromotedIntegralType; ++Left) {
2419 for (unsigned Right = FirstPromotedIntegralType;
2420 Right < LastPromotedIntegralType; ++Right) {
2421 QualType LandR[2] = { ArithmeticTypes[Left], ArithmeticTypes[Right] };
2422 QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater)
2423 ? LandR[0]
2424 : UsualArithmeticConversionsType(LandR[0], LandR[1]);
2425 AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet);
2426 }
2427 }
2428 break;
2429
2430 case OO_Equal:
2431 // C++ [over.built]p20:
2432 //
2433 // For every pair (T, VQ), where T is an enumeration or
2434 // (FIXME:) pointer to member type and VQ is either volatile or
2435 // empty, there exist candidate operator functions of the form
2436 //
2437 // VQ T& operator=(VQ T&, T);
2438 for (BuiltinCandidateTypeSet::iterator Enum
2439 = CandidateTypes.enumeration_begin();
2440 Enum != CandidateTypes.enumeration_end(); ++Enum) {
2441 QualType ParamTypes[2];
2442
2443 // T& operator=(T&, T)
2444 ParamTypes[0] = Context.getReferenceType(*Enum);
2445 ParamTypes[1] = *Enum;
2446 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2447
Douglas Gregor74253732008-11-19 15:42:04 +00002448 if (!Context.getCanonicalType(*Enum).isVolatileQualified()) {
2449 // volatile T& operator=(volatile T&, T)
2450 ParamTypes[0] = Context.getReferenceType((*Enum).withVolatile());
2451 ParamTypes[1] = *Enum;
2452 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2453 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002454 }
2455 // Fall through.
2456
2457 case OO_PlusEqual:
2458 case OO_MinusEqual:
2459 // C++ [over.built]p19:
2460 //
2461 // For every pair (T, VQ), where T is any type and VQ is either
2462 // volatile or empty, there exist candidate operator functions
2463 // of the form
2464 //
2465 // T*VQ& operator=(T*VQ&, T*);
2466 //
2467 // C++ [over.built]p21:
2468 //
2469 // For every pair (T, VQ), where T is a cv-qualified or
2470 // cv-unqualified object type and VQ is either volatile or
2471 // empty, there exist candidate operator functions of the form
2472 //
2473 // T*VQ& operator+=(T*VQ&, ptrdiff_t);
2474 // T*VQ& operator-=(T*VQ&, ptrdiff_t);
2475 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2476 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2477 QualType ParamTypes[2];
2478 ParamTypes[1] = (Op == OO_Equal)? *Ptr : Context.getPointerDiffType();
2479
2480 // non-volatile version
2481 ParamTypes[0] = Context.getReferenceType(*Ptr);
2482 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2483
Douglas Gregor74253732008-11-19 15:42:04 +00002484 if (!Context.getCanonicalType(*Ptr).isVolatileQualified()) {
2485 // volatile version
2486 ParamTypes[0] = Context.getReferenceType((*Ptr).withVolatile());
2487 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2488 }
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002489 }
2490 // Fall through.
2491
2492 case OO_StarEqual:
2493 case OO_SlashEqual:
2494 // C++ [over.built]p18:
2495 //
2496 // For every triple (L, VQ, R), where L is an arithmetic type,
2497 // VQ is either volatile or empty, and R is a promoted
2498 // arithmetic type, there exist candidate operator functions of
2499 // the form
2500 //
2501 // VQ L& operator=(VQ L&, R);
2502 // VQ L& operator*=(VQ L&, R);
2503 // VQ L& operator/=(VQ L&, R);
2504 // VQ L& operator+=(VQ L&, R);
2505 // VQ L& operator-=(VQ L&, R);
2506 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
2507 for (unsigned Right = FirstPromotedArithmeticType;
2508 Right < LastPromotedArithmeticType; ++Right) {
2509 QualType ParamTypes[2];
2510 ParamTypes[1] = ArithmeticTypes[Right];
2511
2512 // Add this built-in operator as a candidate (VQ is empty).
2513 ParamTypes[0] = Context.getReferenceType(ArithmeticTypes[Left]);
2514 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2515
2516 // Add this built-in operator as a candidate (VQ is 'volatile').
2517 ParamTypes[0] = ArithmeticTypes[Left].withVolatile();
2518 ParamTypes[0] = Context.getReferenceType(ParamTypes[0]);
2519 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2520 }
2521 }
2522 break;
2523
2524 case OO_PercentEqual:
2525 case OO_LessLessEqual:
2526 case OO_GreaterGreaterEqual:
2527 case OO_AmpEqual:
2528 case OO_CaretEqual:
2529 case OO_PipeEqual:
2530 // C++ [over.built]p22:
2531 //
2532 // For every triple (L, VQ, R), where L is an integral type, VQ
2533 // is either volatile or empty, and R is a promoted integral
2534 // type, there exist candidate operator functions of the form
2535 //
2536 // VQ L& operator%=(VQ L&, R);
2537 // VQ L& operator<<=(VQ L&, R);
2538 // VQ L& operator>>=(VQ L&, R);
2539 // VQ L& operator&=(VQ L&, R);
2540 // VQ L& operator^=(VQ L&, R);
2541 // VQ L& operator|=(VQ L&, R);
2542 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
2543 for (unsigned Right = FirstPromotedIntegralType;
2544 Right < LastPromotedIntegralType; ++Right) {
2545 QualType ParamTypes[2];
2546 ParamTypes[1] = ArithmeticTypes[Right];
2547
2548 // Add this built-in operator as a candidate (VQ is empty).
2549 // FIXME: We should be caching these declarations somewhere,
2550 // rather than re-building them every time.
2551 ParamTypes[0] = Context.getReferenceType(ArithmeticTypes[Left]);
2552 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2553
2554 // Add this built-in operator as a candidate (VQ is 'volatile').
2555 ParamTypes[0] = ArithmeticTypes[Left];
2556 ParamTypes[0].addVolatile();
2557 ParamTypes[0] = Context.getReferenceType(ParamTypes[0]);
2558 AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet);
2559 }
2560 }
2561 break;
2562
Douglas Gregor74253732008-11-19 15:42:04 +00002563 case OO_Exclaim: {
2564 // C++ [over.operator]p23:
2565 //
2566 // There also exist candidate operator functions of the form
2567 //
2568 // bool operator!(bool);
2569 // bool operator&&(bool, bool); [BELOW]
2570 // bool operator||(bool, bool); [BELOW]
2571 QualType ParamTy = Context.BoolTy;
2572 AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet);
2573 break;
2574 }
2575
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002576 case OO_AmpAmp:
2577 case OO_PipePipe: {
2578 // C++ [over.operator]p23:
2579 //
2580 // There also exist candidate operator functions of the form
2581 //
Douglas Gregor74253732008-11-19 15:42:04 +00002582 // bool operator!(bool); [ABOVE]
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002583 // bool operator&&(bool, bool);
2584 // bool operator||(bool, bool);
2585 QualType ParamTypes[2] = { Context.BoolTy, Context.BoolTy };
2586 AddBuiltinCandidate(Context.BoolTy, ParamTypes, Args, 2, CandidateSet);
2587 break;
2588 }
2589
2590 case OO_Subscript:
2591 // C++ [over.built]p13:
2592 //
2593 // For every cv-qualified or cv-unqualified object type T there
2594 // exist candidate operator functions of the form
2595 //
2596 // T* operator+(T*, ptrdiff_t); [ABOVE]
2597 // T& operator[](T*, ptrdiff_t);
2598 // T* operator-(T*, ptrdiff_t); [ABOVE]
2599 // T* operator+(ptrdiff_t, T*); [ABOVE]
2600 // T& operator[](ptrdiff_t, T*);
2601 for (BuiltinCandidateTypeSet::iterator Ptr = CandidateTypes.pointer_begin();
2602 Ptr != CandidateTypes.pointer_end(); ++Ptr) {
2603 QualType ParamTypes[2] = { *Ptr, Context.getPointerDiffType() };
2604 QualType PointeeType = (*Ptr)->getAsPointerType()->getPointeeType();
2605 QualType ResultTy = Context.getReferenceType(PointeeType);
2606
2607 // T& operator[](T*, ptrdiff_t)
2608 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
2609
2610 // T& operator[](ptrdiff_t, T*);
2611 ParamTypes[0] = ParamTypes[1];
2612 ParamTypes[1] = *Ptr;
2613 AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet);
2614 }
2615 break;
2616
2617 case OO_ArrowStar:
2618 // FIXME: No support for pointer-to-members yet.
2619 break;
2620 }
2621}
2622
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002623/// AddOverloadCandidates - Add all of the function overloads in Ovl
2624/// to the candidate set.
2625void
Douglas Gregor18fe5682008-11-03 20:45:27 +00002626Sema::AddOverloadCandidates(const OverloadedFunctionDecl *Ovl,
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002627 Expr **Args, unsigned NumArgs,
Douglas Gregor225c41e2008-11-03 19:09:14 +00002628 OverloadCandidateSet& CandidateSet,
2629 bool SuppressUserConversions)
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002630{
Douglas Gregor18fe5682008-11-03 20:45:27 +00002631 for (OverloadedFunctionDecl::function_const_iterator Func
2632 = Ovl->function_begin();
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002633 Func != Ovl->function_end(); ++Func)
Douglas Gregor225c41e2008-11-03 19:09:14 +00002634 AddOverloadCandidate(*Func, Args, NumArgs, CandidateSet,
2635 SuppressUserConversions);
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002636}
2637
2638/// isBetterOverloadCandidate - Determines whether the first overload
2639/// candidate is a better candidate than the second (C++ 13.3.3p1).
2640bool
2641Sema::isBetterOverloadCandidate(const OverloadCandidate& Cand1,
2642 const OverloadCandidate& Cand2)
2643{
2644 // Define viable functions to be better candidates than non-viable
2645 // functions.
2646 if (!Cand2.Viable)
2647 return Cand1.Viable;
2648 else if (!Cand1.Viable)
2649 return false;
2650
2651 // FIXME: Deal with the implicit object parameter for static member
2652 // functions. (C++ 13.3.3p1).
2653
2654 // (C++ 13.3.3p1): a viable function F1 is defined to be a better
2655 // function than another viable function F2 if for all arguments i,
2656 // ICSi(F1) is not a worse conversion sequence than ICSi(F2), and
2657 // then...
2658 unsigned NumArgs = Cand1.Conversions.size();
2659 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
2660 bool HasBetterConversion = false;
2661 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
2662 switch (CompareImplicitConversionSequences(Cand1.Conversions[ArgIdx],
2663 Cand2.Conversions[ArgIdx])) {
2664 case ImplicitConversionSequence::Better:
2665 // Cand1 has a better conversion sequence.
2666 HasBetterConversion = true;
2667 break;
2668
2669 case ImplicitConversionSequence::Worse:
2670 // Cand1 can't be better than Cand2.
2671 return false;
2672
2673 case ImplicitConversionSequence::Indistinguishable:
2674 // Do nothing.
2675 break;
2676 }
2677 }
2678
2679 if (HasBetterConversion)
2680 return true;
2681
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002682 // FIXME: Several other bullets in (C++ 13.3.3p1) need to be
2683 // implemented, but they require template support.
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002684
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002685 // C++ [over.match.best]p1b4:
2686 //
2687 // -- the context is an initialization by user-defined conversion
2688 // (see 8.5, 13.3.1.5) and the standard conversion sequence
2689 // from the return type of F1 to the destination type (i.e.,
2690 // the type of the entity being initialized) is a better
2691 // conversion sequence than the standard conversion sequence
2692 // from the return type of F2 to the destination type.
Douglas Gregor447b69e2008-11-19 03:25:36 +00002693 if (Cand1.Function && Cand2.Function &&
2694 isa<CXXConversionDecl>(Cand1.Function) &&
Douglas Gregorf1991ea2008-11-07 22:36:19 +00002695 isa<CXXConversionDecl>(Cand2.Function)) {
2696 switch (CompareStandardConversionSequences(Cand1.FinalConversion,
2697 Cand2.FinalConversion)) {
2698 case ImplicitConversionSequence::Better:
2699 // Cand1 has a better conversion sequence.
2700 return true;
2701
2702 case ImplicitConversionSequence::Worse:
2703 // Cand1 can't be better than Cand2.
2704 return false;
2705
2706 case ImplicitConversionSequence::Indistinguishable:
2707 // Do nothing
2708 break;
2709 }
2710 }
2711
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002712 return false;
2713}
2714
2715/// BestViableFunction - Computes the best viable function (C++ 13.3.3)
2716/// within an overload candidate set. If overloading is successful,
2717/// the result will be OR_Success and Best will be set to point to the
2718/// best viable function within the candidate set. Otherwise, one of
2719/// several kinds of errors will be returned; see
2720/// Sema::OverloadingResult.
2721Sema::OverloadingResult
2722Sema::BestViableFunction(OverloadCandidateSet& CandidateSet,
2723 OverloadCandidateSet::iterator& Best)
2724{
2725 // Find the best viable function.
2726 Best = CandidateSet.end();
2727 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
2728 Cand != CandidateSet.end(); ++Cand) {
2729 if (Cand->Viable) {
2730 if (Best == CandidateSet.end() || isBetterOverloadCandidate(*Cand, *Best))
2731 Best = Cand;
2732 }
2733 }
2734
2735 // If we didn't find any viable functions, abort.
2736 if (Best == CandidateSet.end())
2737 return OR_No_Viable_Function;
2738
2739 // Make sure that this function is better than every other viable
2740 // function. If not, we have an ambiguity.
2741 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
2742 Cand != CandidateSet.end(); ++Cand) {
2743 if (Cand->Viable &&
2744 Cand != Best &&
2745 !isBetterOverloadCandidate(*Best, *Cand))
2746 return OR_Ambiguous;
2747 }
2748
2749 // Best is the best viable function.
2750 return OR_Success;
2751}
2752
2753/// PrintOverloadCandidates - When overload resolution fails, prints
2754/// diagnostic messages containing the candidates in the candidate
2755/// set. If OnlyViable is true, only viable candidates will be printed.
2756void
2757Sema::PrintOverloadCandidates(OverloadCandidateSet& CandidateSet,
2758 bool OnlyViable)
2759{
2760 OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
2761 LastCand = CandidateSet.end();
2762 for (; Cand != LastCand; ++Cand) {
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002763 if (Cand->Viable || !OnlyViable) {
2764 if (Cand->Function) {
2765 // Normal function
2766 Diag(Cand->Function->getLocation(), diag::err_ovl_candidate);
2767 } else {
2768 // FIXME: We need to get the identifier in here
2769 // FIXME: Do we want the error message to point at the
2770 // operator? (built-ins won't have a location)
2771 QualType FnType
2772 = Context.getFunctionType(Cand->BuiltinTypes.ResultTy,
2773 Cand->BuiltinTypes.ParamTypes,
2774 Cand->Conversions.size(),
2775 false, 0);
2776
Chris Lattnerfa25bbb2008-11-19 05:08:23 +00002777 Diag(SourceLocation(), diag::err_ovl_builtin_candidate)
2778 << FnType.getAsString();
Douglas Gregoreb8f3062008-11-12 17:17:38 +00002779 }
2780 }
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00002781 }
2782}
2783
Douglas Gregor904eed32008-11-10 20:40:00 +00002784/// ResolveAddressOfOverloadedFunction - Try to resolve the address of
2785/// an overloaded function (C++ [over.over]), where @p From is an
2786/// expression with overloaded function type and @p ToType is the type
2787/// we're trying to resolve to. For example:
2788///
2789/// @code
2790/// int f(double);
2791/// int f(int);
2792///
2793/// int (*pfd)(double) = f; // selects f(double)
2794/// @endcode
2795///
2796/// This routine returns the resulting FunctionDecl if it could be
2797/// resolved, and NULL otherwise. When @p Complain is true, this
2798/// routine will emit diagnostics if there is an error.
2799FunctionDecl *
2800Sema::ResolveAddressOfOverloadedFunction(Expr *From, QualType ToType,
2801 bool Complain) {
2802 QualType FunctionType = ToType;
2803 if (const PointerLikeType *ToTypePtr = ToType->getAsPointerLikeType())
2804 FunctionType = ToTypePtr->getPointeeType();
2805
2806 // We only look at pointers or references to functions.
2807 if (!FunctionType->isFunctionType())
2808 return 0;
2809
2810 // Find the actual overloaded function declaration.
2811 OverloadedFunctionDecl *Ovl = 0;
2812
2813 // C++ [over.over]p1:
2814 // [...] [Note: any redundant set of parentheses surrounding the
2815 // overloaded function name is ignored (5.1). ]
2816 Expr *OvlExpr = From->IgnoreParens();
2817
2818 // C++ [over.over]p1:
2819 // [...] The overloaded function name can be preceded by the &
2820 // operator.
2821 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(OvlExpr)) {
2822 if (UnOp->getOpcode() == UnaryOperator::AddrOf)
2823 OvlExpr = UnOp->getSubExpr()->IgnoreParens();
2824 }
2825
2826 // Try to dig out the overloaded function.
2827 if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(OvlExpr))
2828 Ovl = dyn_cast<OverloadedFunctionDecl>(DR->getDecl());
2829
2830 // If there's no overloaded function declaration, we're done.
2831 if (!Ovl)
2832 return 0;
2833
2834 // Look through all of the overloaded functions, searching for one
2835 // whose type matches exactly.
2836 // FIXME: When templates or using declarations come along, we'll actually
2837 // have to deal with duplicates, partial ordering, etc. For now, we
2838 // can just do a simple search.
2839 FunctionType = Context.getCanonicalType(FunctionType.getUnqualifiedType());
2840 for (OverloadedFunctionDecl::function_iterator Fun = Ovl->function_begin();
2841 Fun != Ovl->function_end(); ++Fun) {
2842 // C++ [over.over]p3:
2843 // Non-member functions and static member functions match
2844 // targets of type “pointer-to-function”or
2845 // “reference-to-function.”
2846 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*Fun))
2847 if (!Method->isStatic())
2848 continue;
2849
2850 if (FunctionType == Context.getCanonicalType((*Fun)->getType()))
2851 return *Fun;
2852 }
2853
2854 return 0;
2855}
2856
Douglas Gregorf9eb9052008-11-19 21:05:33 +00002857/// BuildCallToObjectOfClassType - Build a call to an object of class
2858/// type (C++ [over.call.object]), which can end up invoking an
2859/// overloaded function call operator (@c operator()) or performing a
2860/// user-defined conversion on the object argument.
2861Action::ExprResult
2862Sema::BuildCallToObjectOfClassType(Expr *Object, SourceLocation LParenLoc,
2863 Expr **Args, unsigned NumArgs,
2864 SourceLocation *CommaLocs,
2865 SourceLocation RParenLoc) {
2866 assert(Object->getType()->isRecordType() && "Requires object type argument");
2867 const RecordType *Record = Object->getType()->getAsRecordType();
2868
2869 // C++ [over.call.object]p1:
2870 // If the primary-expression E in the function call syntax
2871 // evaluates to a class object of type “cv T”, then the set of
2872 // candidate functions includes at least the function call
2873 // operators of T. The function call operators of T are obtained by
2874 // ordinary lookup of the name operator() in the context of
2875 // (E).operator().
2876 OverloadCandidateSet CandidateSet;
2877 IdentifierResolver::iterator I
2878 = IdResolver.begin(Context.DeclarationNames.getCXXOperatorName(OO_Call),
2879 cast<CXXRecordType>(Record)->getDecl(),
2880 /*LookInParentCtx=*/false);
2881 NamedDecl *MemberOps = (I == IdResolver.end())? 0 : *I;
2882 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(MemberOps))
2883 AddMethodCandidate(Method, Object, Args, NumArgs, CandidateSet,
2884 /*SuppressUserConversions=*/false);
2885 else if (OverloadedFunctionDecl *Ovl
2886 = dyn_cast_or_null<OverloadedFunctionDecl>(MemberOps)) {
2887 for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
2888 FEnd = Ovl->function_end();
2889 F != FEnd; ++F) {
2890 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*F))
2891 AddMethodCandidate(Method, Object, Args, NumArgs, CandidateSet,
2892 /*SuppressUserConversions=*/false);
2893 }
2894 }
2895
2896 CXXMethodDecl *Method = 0;
2897
2898 // Perform overload resolution.
2899 OverloadCandidateSet::iterator Best;
2900 switch (BestViableFunction(CandidateSet, Best)) {
2901 case OR_Success:
2902 // We found a method. We'll build a call to it below.
2903 Method = cast<CXXMethodDecl>(Best->Function);
2904 break;
2905
2906 case OR_No_Viable_Function:
2907 if (CandidateSet.empty())
2908 Diag(Object->getSourceRange().getBegin(),
2909 diag::err_ovl_no_viable_object_call)
2910 << Object->getType().getAsString() << Object->getSourceRange();
2911 else {
2912 Diag(Object->getSourceRange().getBegin(),
2913 diag::err_ovl_no_viable_object_call_with_cands)
2914 << Object->getType().getAsString() << Object->getSourceRange();
2915 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
2916 }
2917 break;
2918
2919 case OR_Ambiguous:
2920 Diag(Object->getSourceRange().getBegin(),
2921 diag::err_ovl_ambiguous_object_call)
2922 << Object->getType().getAsString() << Object->getSourceRange();
2923 PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2924 break;
2925 }
2926
2927 if (!Method) {
2928 // We had an error; delete all of the subexpressions and return
2929 // the error.
2930 delete Object;
2931 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2932 delete Args[ArgIdx];
2933 return true;
2934 }
2935
2936 // Build a CXXOperatorCallExpr that calls this method, using Object for
2937 // the implicit object parameter and passing along the remaining
2938 // arguments.
2939 const FunctionTypeProto *Proto = Method->getType()->getAsFunctionTypeProto();
2940
2941 unsigned NumArgsInProto = Proto->getNumArgs();
2942 unsigned NumArgsToCheck = NumArgs;
2943
2944 // Build the full argument list for the method call (the
2945 // implicit object parameter is placed at the beginning of the
2946 // list).
2947 Expr **MethodArgs;
2948 if (NumArgs < NumArgsInProto) {
2949 NumArgsToCheck = NumArgsInProto;
2950 MethodArgs = new Expr*[NumArgsInProto + 1];
2951 } else {
2952 MethodArgs = new Expr*[NumArgs + 1];
2953 }
2954 MethodArgs[0] = Object;
2955 for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
2956 MethodArgs[ArgIdx + 1] = Args[ArgIdx];
2957
2958 Expr *NewFn = new DeclRefExpr(Method, Method->getType(),
2959 SourceLocation());
2960 UsualUnaryConversions(NewFn);
2961
2962 // Once we've built TheCall, all of the expressions are properly
2963 // owned.
2964 QualType ResultTy = Method->getResultType().getNonReferenceType();
2965 llvm::OwningPtr<CXXOperatorCallExpr>
2966 TheCall(new CXXOperatorCallExpr(NewFn, MethodArgs, NumArgs + 1,
2967 ResultTy, RParenLoc));
2968 delete [] MethodArgs;
2969
2970 // Initialize the implicit object parameter.
2971 if (!PerformObjectArgumentInitialization(Object, Method))
2972 return true;
2973 TheCall->setArg(0, Object);
2974
2975 // Check the argument types.
2976 for (unsigned i = 0; i != NumArgsToCheck; i++) {
2977 QualType ProtoArgType = Proto->getArgType(i);
2978
2979 Expr *Arg;
2980 if (i < NumArgs)
2981 Arg = Args[i];
2982 else
2983 Arg = new CXXDefaultArgExpr(Method->getParamDecl(i));
2984 QualType ArgType = Arg->getType();
2985
2986 // Pass the argument.
2987 if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
2988 return true;
2989
2990 TheCall->setArg(i + 1, Arg);
2991 }
2992
2993 // If this is a variadic call, handle args passed through "...".
2994 if (Proto->isVariadic()) {
2995 // Promote the arguments (C99 6.5.2.2p7).
2996 for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
2997 Expr *Arg = Args[i];
2998 DefaultArgumentPromotion(Arg);
2999 TheCall->setArg(i + 1, Arg);
3000 }
3001 }
3002
3003 return CheckFunctionCall(Method, TheCall.take());
3004}
3005
Douglas Gregor904eed32008-11-10 20:40:00 +00003006/// FixOverloadedFunctionReference - E is an expression that refers to
3007/// a C++ overloaded function (possibly with some parentheses and
3008/// perhaps a '&' around it). We have resolved the overloaded function
3009/// to the function declaration Fn, so patch up the expression E to
3010/// refer (possibly indirectly) to Fn.
3011void Sema::FixOverloadedFunctionReference(Expr *E, FunctionDecl *Fn) {
3012 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
3013 FixOverloadedFunctionReference(PE->getSubExpr(), Fn);
3014 E->setType(PE->getSubExpr()->getType());
3015 } else if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
3016 assert(UnOp->getOpcode() == UnaryOperator::AddrOf &&
3017 "Can only take the address of an overloaded function");
3018 FixOverloadedFunctionReference(UnOp->getSubExpr(), Fn);
3019 E->setType(Context.getPointerType(E->getType()));
3020 } else if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
3021 assert(isa<OverloadedFunctionDecl>(DR->getDecl()) &&
3022 "Expected overloaded function");
3023 DR->setDecl(Fn);
3024 E->setType(Fn->getType());
3025 } else {
3026 assert(false && "Invalid reference to overloaded function");
3027 }
3028}
3029
Douglas Gregor8e9bebd2008-10-21 16:13:35 +00003030} // end namespace clang