Correction to previous commit which mistakenly included older versions of some files; now includes the correct LLVM license header

git-svn-id: https://llvm.org/svn/llvm-project/compiler-rt/trunk@107408 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/truncdfsf2.c b/lib/truncdfsf2.c
new file mode 100644
index 0000000..6313c87
--- /dev/null
+++ b/lib/truncdfsf2.c
@@ -0,0 +1,169 @@
+//===-- lib/truncdfsf2.c - double -> single conversion ------------*- C -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements a fairly generic conversion from a wider to a narrower
+// IEEE-754 floating-point type in the default (round to nearest, ties to even)
+// rounding mode.  The constants and types defined following the includes below
+// parameterize the conversion.
+//
+// This routine can be trivially adapted to support conversions to 
+// half-precision or from quad-precision. It does not support types that don't
+// use the usual IEEE-754 interchange formats; specifically, some work would be
+// needed to adapt it to (for example) the Intel 80-bit format or PowerPC
+// double-double format.
+//
+// Note please, however, that this implementation is only intended to support
+// *narrowing* operations; if you need to convert to a *wider* floating-point
+// type (e.g. float -> double), then this routine will not do what you want it
+// to.
+//
+// It also requires that integer types at least as large as both formats
+// are available on the target platform; this may pose a problem when trying
+// to add support for quad on some 32-bit systems, for example.
+//
+// Finally, the following assumptions are made:
+//
+// 1. floating-point types and integer types have the same endianness on the
+//    target platform
+//
+// 2. quiet NaNs, if supported, are indicated by the leading bit of the
+//    significand field being set
+//
+//===----------------------------------------------------------------------===//
+
+#include <stdint.h>
+#include <limits.h>
+#include <stdbool.h>
+
+typedef double src_t;
+typedef uint64_t src_rep_t;
+#define SRC_REP_C UINT64_C
+static const int srcSigBits = 52;
+
+typedef float dst_t;
+typedef uint32_t dst_rep_t;
+#define DST_REP_C UINT32_C
+static const int dstSigBits = 23;
+
+// End of specialization parameters.  Two helper routines for conversion to and
+// from the representation of floating-point data as integer values follow.
+
+static inline src_rep_t srcToRep(src_t x) {
+    const union { src_t f; src_rep_t i; } rep = {.f = x};
+    return rep.i;
+}
+
+static inline dst_t dstFromRep(dst_rep_t x) {
+    const union { dst_t f; dst_rep_t i; } rep = {.i = x};
+    return rep.f;
+}
+
+// End helper routines.  Conversion implementation follows.
+
+dst_t __truncdfsf2(src_t a) {
+    
+    // Various constants whose values follow from the type parameters.
+    // Any reasonable optimizer will fold and propagate all of these.
+    const int srcBits = sizeof(src_t)*CHAR_BIT;
+    const int srcExpBits = srcBits - srcSigBits - 1;
+    const int srcInfExp = (1 << srcExpBits) - 1;
+    const int srcExpBias = srcInfExp >> 1;
+    
+    const src_rep_t srcMinNormal = SRC_REP_C(1) << srcSigBits;
+    const src_rep_t srcSignificandMask = srcMinNormal - 1;
+    const src_rep_t srcInfinity = (src_rep_t)srcInfExp << srcSigBits;
+    const src_rep_t srcSignMask = SRC_REP_C(1) << (srcSigBits + srcExpBits);
+    const src_rep_t srcAbsMask = srcSignMask - 1;
+    const src_rep_t srcQNaN = SRC_REP_C(1) << (srcSigBits - 1);
+    const src_rep_t srcNaNCode = srcQNaN - 1;
+    const src_rep_t roundMask = (SRC_REP_C(1) << (srcSigBits - dstSigBits)) - 1;
+    const src_rep_t halfway = SRC_REP_C(1) << (srcSigBits - dstSigBits - 1);
+    
+    const int dstBits = sizeof(dst_t)*CHAR_BIT;
+    const int dstExpBits = dstBits - dstSigBits - 1;
+    const int dstInfExp = (1 << dstExpBits) - 1;
+    const int dstExpBias = dstInfExp >> 1;
+    
+    const int underflowExponent = srcExpBias + 1 - dstExpBias;
+    const int overflowExponent = srcExpBias + dstInfExp - dstExpBias;
+    const src_rep_t underflow = (src_rep_t)underflowExponent << srcSigBits;
+    const src_rep_t overflow = (src_rep_t)overflowExponent << srcSigBits;
+    
+    const dst_rep_t dstQNaN = DST_REP_C(1) << (dstSigBits - 1);
+    const dst_rep_t dstNaNCode = dstQNaN - 1;
+
+    // Break a into a sign and representation of the absolute value
+    const src_rep_t aRep = srcToRep(a);
+    const src_rep_t aAbs = aRep & srcAbsMask;
+    const src_rep_t sign = aRep & srcSignMask;
+    dst_rep_t absResult;
+    
+    if (aAbs - underflow < aAbs - overflow) {
+        // The exponent of a is within the range of normal numbers in the
+        // destination format.  We can convert by simply right-shifting with
+        // rounding and adjusting the exponent.
+        absResult = aAbs >> (srcSigBits - dstSigBits);
+        absResult -= (dst_rep_t)(srcExpBias - dstExpBias) << dstSigBits;
+        
+        const src_rep_t roundBits = aAbs & roundMask;
+        
+        // Round to nearest
+        if (roundBits > halfway)
+            absResult++;
+        
+        // Ties to even
+        else if (roundBits == halfway)
+            absResult += absResult & 1;
+    }
+    
+    else if (aAbs > srcInfinity) {
+        // a is NaN.
+        // Conjure the result by beginning with infinity, setting the qNaN
+        // bit and inserting the (truncated) trailing NaN field.
+        absResult = (dst_rep_t)dstInfExp << dstSigBits;
+        absResult |= dstQNaN;
+        absResult |= aAbs & dstNaNCode;
+    }
+    
+    else if (aAbs > overflow) {
+        // a overflows to infinity.
+        absResult = (dst_rep_t)dstInfExp << dstSigBits;
+    }
+    
+    else {
+        // a underflows on conversion to the destination type or is an exact
+        // zero.  The result may be a denormal or zero.  Extract the exponent
+        // to get the shift amount for the denormalization.
+        const int aExp = aAbs >> srcSigBits;
+        const int shift = srcExpBias - dstExpBias - aExp + 1;
+        
+        const src_rep_t significand = aRep & srcSignificandMask | srcMinNormal;
+        
+        // Right shift by the denormalization amount with sticky.
+        if (shift > srcSigBits) {
+            absResult = 0;
+        } else {
+            const bool sticky = significand << (srcBits - shift);
+            src_rep_t denormalizedSignificand = significand >> shift | sticky;
+            absResult = denormalizedSignificand >> (srcSigBits - dstSigBits);
+            const src_rep_t roundBits = denormalizedSignificand & roundMask;
+            // Round to nearest
+            if (roundBits > halfway)
+                absResult++;
+            // Ties to even
+            else if (roundBits == halfway)
+                absResult += absResult & 1;
+        }
+    }
+    
+    // Apply the signbit to (dst_t)abs(a).
+    const dst_rep_t result = absResult | sign >> (srcBits - dstBits);
+    return dstFromRep(result);
+    
+}