Initial import of compiler-rt.
 -


git-svn-id: https://llvm.org/svn/llvm-project/compiler-rt/trunk@74292 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/i386/moddi3.s b/lib/i386/moddi3.s
new file mode 100644
index 0000000..af1f38a
--- /dev/null
+++ b/lib/i386/moddi3.s
@@ -0,0 +1,165 @@
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+
+// di_int __moddi3(di_int a, di_int b);
+
+// result = remainder of a / b.
+// both inputs and the output are 64-bit signed integers.
+// This will do whatever the underlying hardware is set to do on division by zero.
+// No other exceptions are generated, as the divide cannot overflow.
+//
+// This is targeted at 32-bit x86 *only*, as this can be done directly in hardware
+// on x86_64.  The performance goal is ~40 cycles per divide, which is faster than
+// currently possible via simulation of integer divides on the x87 unit.
+//
+
+// Stephen Canon, December 2008
+
+#ifdef __i386__
+
+.text
+.align 4
+.globl ___moddi3
+___moddi3:
+
+/* This is currently implemented by wrapping the unsigned modulus up in an absolute
+   value.  This could certainly be improved upon. */
+
+	pushl		%esi
+	movl	 20(%esp),			%edx	// high word of b
+	movl	 16(%esp),			%eax	// low word of b
+	movl		%edx,			%ecx
+	sarl		$31,			%ecx	// (b < 0) ? -1 : 0
+	xorl		%ecx,			%eax
+	xorl		%ecx,			%edx	// EDX:EAX = (b < 0) ? not(b) : b
+	subl		%ecx,			%eax
+	sbbl		%ecx,			%edx	// EDX:EAX = abs(b)
+	movl		%edx,		 20(%esp)
+	movl		%eax,		 16(%esp)	// store abs(b) back to stack
+	
+	movl	 12(%esp),			%edx	// high word of b
+	movl	  8(%esp),			%eax	// low word of b
+	movl		%edx,			%ecx
+	sarl		$31,			%ecx	// (a < 0) ? -1 : 0
+	xorl		%ecx,			%eax
+	xorl		%ecx,			%edx	// EDX:EAX = (a < 0) ? not(a) : a
+	subl		%ecx,			%eax
+	sbbl		%ecx,			%edx	// EDX:EAX = abs(a)
+	movl		%edx,		 12(%esp)
+	movl		%eax,		  8(%esp)	// store abs(a) back to stack
+	movl		%ecx,			%esi	// set aside sign of a
+
+	pushl		%ebx
+	movl	 24(%esp),			%ebx	// Find the index i of the leading bit in b.
+	bsrl		%ebx,			%ecx	// If the high word of b is zero, jump to
+	jz			9f						// the code to handle that special case [9].
+	
+	/* High word of b is known to be non-zero on this branch */
+	
+	movl	 20(%esp),			%eax	// Construct bhi, containing bits [1+i:32+i] of b
+	
+	shrl		%cl,			%eax	// Practically, this means that bhi is given by:
+	shrl		%eax					//
+	notl		%ecx					//		bhi = (high word of b) << (31 - i) |
+	shll		%cl,			%ebx	//			  (low word of b) >> (1 + i)
+	orl			%eax,			%ebx	//
+	movl	 16(%esp),			%edx	// Load the high and low words of a, and jump
+	movl	 12(%esp),			%eax	// to [2] if the high word is larger than bhi
+	cmpl		%ebx,			%edx	// to avoid overflowing the upcoming divide.
+	jae			2f						
+		
+	/* High word of a is greater than or equal to (b >> (1 + i)) on this branch */
+	
+	divl		%ebx					// eax <-- qs, edx <-- r such that ahi:alo = bs*qs + r
+
+	pushl		%edi
+	notl		%ecx
+	shrl		%eax
+	shrl		%cl,			%eax	// q = qs >> (1 + i)
+	movl		%eax,			%edi
+	mull	 24(%esp)					// q*blo
+	movl	 16(%esp),			%ebx
+	movl	 20(%esp),			%ecx	// ECX:EBX = a
+	subl		%eax,			%ebx
+	sbbl		%edx,			%ecx	// ECX:EBX = a - q*blo
+	movl	 28(%esp),			%eax
+	imull		%edi,			%eax	// q*bhi
+	subl		%eax,			%ecx	// ECX:EBX = a - q*b
+	
+	jnc			1f						// if positive, this is the result.
+	addl	 24(%esp),			%ebx	// otherwise
+	adcl	 28(%esp),			%ecx	// ECX:EBX = a - (q-1)*b = result
+1:	movl		%ebx,			%eax
+	movl		%ecx,			%edx
+	
+	addl		%esi,			%eax	// Restore correct sign to result
+	adcl		%esi,			%edx
+	xorl		%esi,			%eax
+	xorl		%esi,			%edx
+	popl		%edi					// Restore callee-save registers
+	popl		%ebx
+	popl		%esi
+	retl								// Return
+
+2:	/* High word of a is greater than or equal to (b >> (1 + i)) on this branch */
+	 
+	subl		%ebx,			%edx	// subtract bhi from ahi so that divide will not
+	divl		%ebx					// overflow, and find q and r such that
+										//
+										//		ahi:alo = (1:q)*bhi + r
+										//
+										// Note that q is a number in (31-i).(1+i)
+										// fix point.
+
+	pushl		%edi
+	notl		%ecx
+	shrl		%eax
+	orl			$0x80000000,	%eax
+	shrl		%cl,			%eax	// q = (1:qs) >> (1 + i)
+	movl		%eax,			%edi
+	mull	 24(%esp)					// q*blo
+	movl	 16(%esp),			%ebx
+	movl	 20(%esp),			%ecx	// ECX:EBX = a
+	subl		%eax,			%ebx
+	sbbl		%edx,			%ecx	// ECX:EBX = a - q*blo
+	movl	 28(%esp),			%eax
+	imull		%edi,			%eax	// q*bhi
+	subl		%eax,			%ecx	// ECX:EBX = a - q*b
+
+	jnc			3f						// if positive, this is the result.
+	addl	 24(%esp),			%ebx	// otherwise
+	adcl	 28(%esp),			%ecx	// ECX:EBX = a - (q-1)*b = result
+3:	movl		%ebx,			%eax
+	movl		%ecx,			%edx
+	
+	addl		%esi,			%eax	// Restore correct sign to result
+	adcl		%esi,			%edx
+	xorl		%esi,			%eax
+	xorl		%esi,			%edx
+	popl		%edi					// Restore callee-save registers
+	popl		%ebx
+	popl		%esi
+	retl								// Return
+	
+9:	/* High word of b is zero on this branch */
+
+	movl	 16(%esp),			%eax	// Find qhi and rhi such that
+	movl	 20(%esp),			%ecx	//
+	xorl		%edx,			%edx	//		ahi = qhi*b + rhi	with	0 ≤ rhi < b
+	divl		%ecx					//
+	movl		%eax,			%ebx	//
+	movl	 12(%esp),			%eax	// Find rlo such that
+	divl		%ecx					//
+	movl		%edx,			%eax	//		rhi:alo = qlo*b + rlo  with 0 ≤ rlo < b
+	popl		%ebx					//
+	xorl		%edx,			%edx	// and return 0:rlo
+
+	addl		%esi,			%eax	// Restore correct sign to result
+	adcl		%esi,			%edx
+	xorl		%esi,			%eax
+	xorl		%esi,			%edx
+	popl		%esi
+	retl								// Return
+
+	
+#endif // __i386__