blob: 7d6eb0fa9821ce9ffa6f8820052c3f6f1f67f7a4 [file] [log] [blame]
Narayan Kamathc981c482012-11-02 10:59:05 +00001namespace Eigen {
2/** \page SparseQuickRefPage Quick reference guide for sparse matrices
3
4\b Table \b of \b contents
5 - \ref Constructors
6 - \ref SparseMatrixInsertion
7 - \ref SparseBasicInfos
8 - \ref SparseBasicOps
9 - \ref SparseInterops
10 - \ref sparsepermutation
11 - \ref sparsesubmatrices
12 - \ref sparseselfadjointview
13\n
14
15<hr>
16
17In this page, we give a quick summary of the main operations available for sparse matrices in the class SparseMatrix. First, it is recommended to read first the introductory tutorial at \ref TutorialSparse. The important point to have in mind when working on sparse matrices is how they are stored :
18i.e either row major or column major. The default is column major. Most arithmetic operations on sparse matrices will assert that they have the same storage order. Moreover, when interacting with external libraries that are not yet supported by Eigen, it is important to know how to send the required matrix pointers.
19
20\section Constructors Constructors and assignments
21SparseMatrix is the core class to build and manipulate sparse matrices in Eigen. It takes as template parameters the Scalar type and the storage order, either RowMajor or ColumnMajor. The default is ColumnMajor.
22
23\code
24 SparseMatrix<double> sm1(1000,1000); // 1000x1000 compressed sparse matrix of double.
25 SparseMatrix<std::complex<double>,RowMajor> sm2; // Compressed row major matrix of complex double.
26\endcode
27The copy constructor and assignment can be used to convert matrices from a storage order to another
28\code
29 SparseMatrix<double,Colmajor> sm1;
30 // Eventually fill the matrix sm1 ...
31 SparseMatrix<double,Rowmajor> sm2(sm1), sm3; // Initialize sm2 with sm1.
32 sm3 = sm1; // Assignment and evaluations modify the storage order.
33 \endcode
34
35\section SparseMatrixInsertion Allocating and inserting values
36resize() and reserve() are used to set the size and allocate space for nonzero elements
37 \code
38 sm1.resize(m,n); //Change sm to a mxn matrix.
39 sm1.reserve(nnz); // Allocate room for nnz nonzeros elements.
40 \endcode
41Note that when calling reserve(), it is not required that nnz is the exact number of nonzero elements in the final matrix. However, an exact estimation will avoid multiple reallocations during the insertion phase.
42
43Insertions of values in the sparse matrix can be done directly by looping over nonzero elements and use the insert() function
44\code
45// Direct insertion of the value v_ij;
46 sm1.insert(i, j) = v_ij; // It is assumed that v_ij does not already exist in the matrix.
47\endcode
48
49After insertion, a value at (i,j) can be modified using coeffRef()
50\code
51 // Update the value v_ij
52 sm1.coeffRef(i,j) = v_ij;
53 sm1.coeffRef(i,j) += v_ij;
54 sm1.coeffRef(i,j) -= v_ij;
55 ...
56\endcode
57
58The recommended way to insert values is to build a list of triplets (row, col, val) and then call setFromTriplets().
59\code
60 sm1.setFromTriplets(TripletList.begin(), TripletList.end());
61\endcode
62A complete example is available at \ref TutorialSparseFilling.
63
64The following functions can be used to set constant or random values in the matrix.
65\code
66 sm1.setZero(); // Reset the matrix with zero elements
67 ...
68\endcode
69
70\section SparseBasicInfos Matrix properties
71Beyond the functions rows() and cols() that are used to get the number of rows and columns, there are some useful functions that are available to easily get some informations from the matrix.
72<table class="manual">
73<tr>
74 <td> \code
75 sm1.rows(); // Number of rows
76 sm1.cols(); // Number of columns
77 sm1.nonZeros(); // Number of non zero values
78 sm1.outerSize(); // Number of columns (resp. rows) for a column major (resp. row major )
79 sm1.innerSize(); // Number of rows (resp. columns) for a row major (resp. column major)
80 sm1.norm(); // (Euclidian ??) norm of the matrix
81 sm1.squaredNorm(); //
82 sm1.isVector(); // Check if sm1 is a sparse vector or a sparse matrix
83 ...
84 \endcode </td>
85</tr>
86</table>
87
88\section SparseBasicOps Arithmetic operations
89It is easy to perform arithmetic operations on sparse matrices provided that the dimensions are adequate and that the matrices have the same storage order. Note that the evaluation can always be done in a matrix with a different storage order.
90<table class="manual">
91<tr><th> Operations </th> <th> Code </th> <th> Notes </th></tr>
92
93<tr>
94 <td> add subtract </td>
95 <td> \code
96 sm3 = sm1 + sm2;
97 sm3 = sm1 - sm2;
98 sm2 += sm1;
99 sm2 -= sm1; \endcode
100 </td>
101 <td>
102 sm1 and sm2 should have the same storage order
103 </td>
104</tr>
105
106<tr class="alt"><td>
107 scalar product</td><td>\code
108 sm3 = sm1 * s1; sm3 *= s1;
109 sm3 = s1 * sm1 + s2 * sm2; sm3 /= s1;\endcode
110 </td>
111 <td>
112 Many combinations are possible if the dimensions and the storage order agree.
113</tr>
114
115<tr>
116 <td> Product </td>
117 <td> \code
118 sm3 = sm1 * sm2;
119 dm2 = sm1 * dm1;
120 dv2 = sm1 * dv1;
121 \endcode </td>
122 <td>
123 </td>
124</tr>
125
126<tr class='alt'>
127 <td> transposition, adjoint</td>
128 <td> \code
129 sm2 = sm1.transpose();
130 sm2 = sm1.adjoint();
131 \endcode </td>
132 <td>
133 Note that the transposition change the storage order. There is no support for transposeInPlace().
134 </td>
135</tr>
136
137<tr>
138 <td>
139 Component-wise ops
140 </td>
141 <td>\code
142 sm1.cwiseProduct(sm2);
143 sm1.cwiseQuotient(sm2);
144 sm1.cwiseMin(sm2);
145 sm1.cwiseMax(sm2);
146 sm1.cwiseAbs();
147 sm1.cwiseSqrt();
148 \endcode</td>
149 <td>
150 sm1 and sm2 should have the same storage order
151 </td>
152</tr>
153</table>
154
155
156\section SparseInterops Low-level storage
157There are a set of low-levels functions to get the standard compressed storage pointers. The matrix should be in compressed mode which can be checked by calling isCompressed(); makeCompressed() should do the job otherwise.
158\code
159 // Scalar pointer to the values of the matrix, size nnz
160 sm1.valuePtr();
161 // Index pointer to get the row indices (resp. column indices) for column major (resp. row major) matrix, size nnz
162 sm1.innerIndexPtr();
163 // Index pointer to the beginning of each row (resp. column) in valuePtr() and innerIndexPtr() for column major (row major). The size is outersize()+1;
164 sm1.outerIndexPtr();
165\endcode
166These pointers can therefore be easily used to send the matrix to some external libraries/solvers that are not yet supported by Eigen.
167
168\section sparsepermutation Permutations, submatrices and Selfadjoint Views
169In many cases, it is necessary to reorder the rows and/or the columns of the sparse matrix for several purposes : fill-in reducing during matrix decomposition, better data locality for sparse matrix-vector products... The class PermutationMatrix is available to this end.
170 \code
171 PermutationMatrix<Dynamic, Dynamic, int> perm;
172 // Reserve and fill the values of perm;
173 perm.inverse(n); // Compute eventually the inverse permutation
174 sm1.twistedBy(perm) //Apply the permutation on rows and columns
175 sm2 = sm1 * perm; // ??? Apply the permutation on columns ???;
176 sm2 = perm * sm1; // ??? Apply the permutation on rows ???;
177 \endcode
178
179\section sparsesubmatrices Sub-matrices
180The following functions are useful to extract a block of rows (resp. columns) from a row-major (resp. column major) sparse matrix. Note that because of the particular storage, it is not ?? efficient ?? to extract a submatrix comprising a certain number of subrows and subcolumns.
181 \code
182 sm1.innerVector(outer); // Returns the outer -th column (resp. row) of the matrix if sm is col-major (resp. row-major)
183 sm1.innerVectors(outer); // Returns the outer -th column (resp. row) of the matrix if mat is col-major (resp. row-major)
184 sm1.middleRows(start, numRows); // For row major matrices, get a range of numRows rows
185 sm1.middleCols(start, numCols); // For column major matrices, get a range of numCols cols
186 \endcode
187 Examples :
188
189\section sparseselfadjointview Sparse triangular and selfadjoint Views
190 \code
191 sm2 = sm1.triangularview<Lower>(); // Get the lower triangular part of the matrix.
192 dv2 = sm1.triangularView<Upper>().solve(dv1); // Solve the linear system with the uppper triangular part.
193 sm2 = sm1.selfadjointview<Lower>(); // Build a selfadjoint matrix from the lower part of sm1.
194 \endcode
195
196
197*/
198}