blob: 1804797ea569e5c6c2c0341fe11b2bc18581ffc1 [file] [log] [blame]
Narayan Kamathc981c482012-11-02 10:59:05 +00001 SUBROUTINE CTPSV(UPLO,TRANS,DIAG,N,AP,X,INCX)
2* .. Scalar Arguments ..
3 INTEGER INCX,N
4 CHARACTER DIAG,TRANS,UPLO
5* ..
6* .. Array Arguments ..
7 COMPLEX AP(*),X(*)
8* ..
9*
10* Purpose
11* =======
12*
13* CTPSV solves one of the systems of equations
14*
15* A*x = b, or A'*x = b, or conjg( A' )*x = b,
16*
17* where b and x are n element vectors and A is an n by n unit, or
18* non-unit, upper or lower triangular matrix, supplied in packed form.
19*
20* No test for singularity or near-singularity is included in this
21* routine. Such tests must be performed before calling this routine.
22*
23* Arguments
24* ==========
25*
26* UPLO - CHARACTER*1.
27* On entry, UPLO specifies whether the matrix is an upper or
28* lower triangular matrix as follows:
29*
30* UPLO = 'U' or 'u' A is an upper triangular matrix.
31*
32* UPLO = 'L' or 'l' A is a lower triangular matrix.
33*
34* Unchanged on exit.
35*
36* TRANS - CHARACTER*1.
37* On entry, TRANS specifies the equations to be solved as
38* follows:
39*
40* TRANS = 'N' or 'n' A*x = b.
41*
42* TRANS = 'T' or 't' A'*x = b.
43*
44* TRANS = 'C' or 'c' conjg( A' )*x = b.
45*
46* Unchanged on exit.
47*
48* DIAG - CHARACTER*1.
49* On entry, DIAG specifies whether or not A is unit
50* triangular as follows:
51*
52* DIAG = 'U' or 'u' A is assumed to be unit triangular.
53*
54* DIAG = 'N' or 'n' A is not assumed to be unit
55* triangular.
56*
57* Unchanged on exit.
58*
59* N - INTEGER.
60* On entry, N specifies the order of the matrix A.
61* N must be at least zero.
62* Unchanged on exit.
63*
64* AP - COMPLEX array of DIMENSION at least
65* ( ( n*( n + 1 ) )/2 ).
66* Before entry with UPLO = 'U' or 'u', the array AP must
67* contain the upper triangular matrix packed sequentially,
68* column by column, so that AP( 1 ) contains a( 1, 1 ),
69* AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
70* respectively, and so on.
71* Before entry with UPLO = 'L' or 'l', the array AP must
72* contain the lower triangular matrix packed sequentially,
73* column by column, so that AP( 1 ) contains a( 1, 1 ),
74* AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
75* respectively, and so on.
76* Note that when DIAG = 'U' or 'u', the diagonal elements of
77* A are not referenced, but are assumed to be unity.
78* Unchanged on exit.
79*
80* X - COMPLEX array of dimension at least
81* ( 1 + ( n - 1 )*abs( INCX ) ).
82* Before entry, the incremented array X must contain the n
83* element right-hand side vector b. On exit, X is overwritten
84* with the solution vector x.
85*
86* INCX - INTEGER.
87* On entry, INCX specifies the increment for the elements of
88* X. INCX must not be zero.
89* Unchanged on exit.
90*
91* Further Details
92* ===============
93*
94* Level 2 Blas routine.
95*
96* -- Written on 22-October-1986.
97* Jack Dongarra, Argonne National Lab.
98* Jeremy Du Croz, Nag Central Office.
99* Sven Hammarling, Nag Central Office.
100* Richard Hanson, Sandia National Labs.
101*
102* =====================================================================
103*
104* .. Parameters ..
105 COMPLEX ZERO
106 PARAMETER (ZERO= (0.0E+0,0.0E+0))
107* ..
108* .. Local Scalars ..
109 COMPLEX TEMP
110 INTEGER I,INFO,IX,J,JX,K,KK,KX
111 LOGICAL NOCONJ,NOUNIT
112* ..
113* .. External Functions ..
114 LOGICAL LSAME
115 EXTERNAL LSAME
116* ..
117* .. External Subroutines ..
118 EXTERNAL XERBLA
119* ..
120* .. Intrinsic Functions ..
121 INTRINSIC CONJG
122* ..
123*
124* Test the input parameters.
125*
126 INFO = 0
127 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
128 INFO = 1
129 ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
130 + .NOT.LSAME(TRANS,'C')) THEN
131 INFO = 2
132 ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
133 INFO = 3
134 ELSE IF (N.LT.0) THEN
135 INFO = 4
136 ELSE IF (INCX.EQ.0) THEN
137 INFO = 7
138 END IF
139 IF (INFO.NE.0) THEN
140 CALL XERBLA('CTPSV ',INFO)
141 RETURN
142 END IF
143*
144* Quick return if possible.
145*
146 IF (N.EQ.0) RETURN
147*
148 NOCONJ = LSAME(TRANS,'T')
149 NOUNIT = LSAME(DIAG,'N')
150*
151* Set up the start point in X if the increment is not unity. This
152* will be ( N - 1 )*INCX too small for descending loops.
153*
154 IF (INCX.LE.0) THEN
155 KX = 1 - (N-1)*INCX
156 ELSE IF (INCX.NE.1) THEN
157 KX = 1
158 END IF
159*
160* Start the operations. In this version the elements of AP are
161* accessed sequentially with one pass through AP.
162*
163 IF (LSAME(TRANS,'N')) THEN
164*
165* Form x := inv( A )*x.
166*
167 IF (LSAME(UPLO,'U')) THEN
168 KK = (N* (N+1))/2
169 IF (INCX.EQ.1) THEN
170 DO 20 J = N,1,-1
171 IF (X(J).NE.ZERO) THEN
172 IF (NOUNIT) X(J) = X(J)/AP(KK)
173 TEMP = X(J)
174 K = KK - 1
175 DO 10 I = J - 1,1,-1
176 X(I) = X(I) - TEMP*AP(K)
177 K = K - 1
178 10 CONTINUE
179 END IF
180 KK = KK - J
181 20 CONTINUE
182 ELSE
183 JX = KX + (N-1)*INCX
184 DO 40 J = N,1,-1
185 IF (X(JX).NE.ZERO) THEN
186 IF (NOUNIT) X(JX) = X(JX)/AP(KK)
187 TEMP = X(JX)
188 IX = JX
189 DO 30 K = KK - 1,KK - J + 1,-1
190 IX = IX - INCX
191 X(IX) = X(IX) - TEMP*AP(K)
192 30 CONTINUE
193 END IF
194 JX = JX - INCX
195 KK = KK - J
196 40 CONTINUE
197 END IF
198 ELSE
199 KK = 1
200 IF (INCX.EQ.1) THEN
201 DO 60 J = 1,N
202 IF (X(J).NE.ZERO) THEN
203 IF (NOUNIT) X(J) = X(J)/AP(KK)
204 TEMP = X(J)
205 K = KK + 1
206 DO 50 I = J + 1,N
207 X(I) = X(I) - TEMP*AP(K)
208 K = K + 1
209 50 CONTINUE
210 END IF
211 KK = KK + (N-J+1)
212 60 CONTINUE
213 ELSE
214 JX = KX
215 DO 80 J = 1,N
216 IF (X(JX).NE.ZERO) THEN
217 IF (NOUNIT) X(JX) = X(JX)/AP(KK)
218 TEMP = X(JX)
219 IX = JX
220 DO 70 K = KK + 1,KK + N - J
221 IX = IX + INCX
222 X(IX) = X(IX) - TEMP*AP(K)
223 70 CONTINUE
224 END IF
225 JX = JX + INCX
226 KK = KK + (N-J+1)
227 80 CONTINUE
228 END IF
229 END IF
230 ELSE
231*
232* Form x := inv( A' )*x or x := inv( conjg( A' ) )*x.
233*
234 IF (LSAME(UPLO,'U')) THEN
235 KK = 1
236 IF (INCX.EQ.1) THEN
237 DO 110 J = 1,N
238 TEMP = X(J)
239 K = KK
240 IF (NOCONJ) THEN
241 DO 90 I = 1,J - 1
242 TEMP = TEMP - AP(K)*X(I)
243 K = K + 1
244 90 CONTINUE
245 IF (NOUNIT) TEMP = TEMP/AP(KK+J-1)
246 ELSE
247 DO 100 I = 1,J - 1
248 TEMP = TEMP - CONJG(AP(K))*X(I)
249 K = K + 1
250 100 CONTINUE
251 IF (NOUNIT) TEMP = TEMP/CONJG(AP(KK+J-1))
252 END IF
253 X(J) = TEMP
254 KK = KK + J
255 110 CONTINUE
256 ELSE
257 JX = KX
258 DO 140 J = 1,N
259 TEMP = X(JX)
260 IX = KX
261 IF (NOCONJ) THEN
262 DO 120 K = KK,KK + J - 2
263 TEMP = TEMP - AP(K)*X(IX)
264 IX = IX + INCX
265 120 CONTINUE
266 IF (NOUNIT) TEMP = TEMP/AP(KK+J-1)
267 ELSE
268 DO 130 K = KK,KK + J - 2
269 TEMP = TEMP - CONJG(AP(K))*X(IX)
270 IX = IX + INCX
271 130 CONTINUE
272 IF (NOUNIT) TEMP = TEMP/CONJG(AP(KK+J-1))
273 END IF
274 X(JX) = TEMP
275 JX = JX + INCX
276 KK = KK + J
277 140 CONTINUE
278 END IF
279 ELSE
280 KK = (N* (N+1))/2
281 IF (INCX.EQ.1) THEN
282 DO 170 J = N,1,-1
283 TEMP = X(J)
284 K = KK
285 IF (NOCONJ) THEN
286 DO 150 I = N,J + 1,-1
287 TEMP = TEMP - AP(K)*X(I)
288 K = K - 1
289 150 CONTINUE
290 IF (NOUNIT) TEMP = TEMP/AP(KK-N+J)
291 ELSE
292 DO 160 I = N,J + 1,-1
293 TEMP = TEMP - CONJG(AP(K))*X(I)
294 K = K - 1
295 160 CONTINUE
296 IF (NOUNIT) TEMP = TEMP/CONJG(AP(KK-N+J))
297 END IF
298 X(J) = TEMP
299 KK = KK - (N-J+1)
300 170 CONTINUE
301 ELSE
302 KX = KX + (N-1)*INCX
303 JX = KX
304 DO 200 J = N,1,-1
305 TEMP = X(JX)
306 IX = KX
307 IF (NOCONJ) THEN
308 DO 180 K = KK,KK - (N- (J+1)),-1
309 TEMP = TEMP - AP(K)*X(IX)
310 IX = IX - INCX
311 180 CONTINUE
312 IF (NOUNIT) TEMP = TEMP/AP(KK-N+J)
313 ELSE
314 DO 190 K = KK,KK - (N- (J+1)),-1
315 TEMP = TEMP - CONJG(AP(K))*X(IX)
316 IX = IX - INCX
317 190 CONTINUE
318 IF (NOUNIT) TEMP = TEMP/CONJG(AP(KK-N+J))
319 END IF
320 X(JX) = TEMP
321 JX = JX - INCX
322 KK = KK - (N-J+1)
323 200 CONTINUE
324 END IF
325 END IF
326 END IF
327*
328 RETURN
329*
330* End of CTPSV .
331*
332 END