blob: d7afa36cea719299239b6b22ebf55b78eb033074 [file] [log] [blame]
Chris Lattner24943d22010-06-08 16:52:24 +00001//===-- DWARFExpression.cpp -------------------------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "lldb/Expression/DWARFExpression.h"
11
12#include <vector>
13
14#include "lldb/Core/dwarf.h"
15#include "lldb/Core/Log.h"
16#include "lldb/Core/StreamString.h"
17#include "lldb/Core/Scalar.h"
18#include "lldb/Core/Value.h"
19
20#include "lldb/Expression/ClangExpressionDeclMap.h"
21#include "lldb/Expression/ClangExpressionVariable.h"
22
23#include "lldb/Host/Host.h"
24
25#include "lldb/lldb-private-log.h"
26
27#include "lldb/Symbol/ClangASTContext.h"
28#include "lldb/Symbol/Type.h"
29
30#include "lldb/Target/ExecutionContext.h"
31#include "lldb/Target/Process.h"
32#include "lldb/Target/RegisterContext.h"
33#include "lldb/Target/StackFrame.h"
34
35using namespace lldb;
36using namespace lldb_private;
37
38const char *
39DW_OP_value_to_name (uint32_t val)
40{
41 static char invalid[100];
42 switch (val) {
43 case 0x03: return "DW_OP_addr";
44 case 0x06: return "DW_OP_deref";
45 case 0x08: return "DW_OP_const1u";
46 case 0x09: return "DW_OP_const1s";
47 case 0x0a: return "DW_OP_const2u";
48 case 0x0b: return "DW_OP_const2s";
49 case 0x0c: return "DW_OP_const4u";
50 case 0x0d: return "DW_OP_const4s";
51 case 0x0e: return "DW_OP_const8u";
52 case 0x0f: return "DW_OP_const8s";
53 case 0x10: return "DW_OP_constu";
54 case 0x11: return "DW_OP_consts";
55 case 0x12: return "DW_OP_dup";
56 case 0x13: return "DW_OP_drop";
57 case 0x14: return "DW_OP_over";
58 case 0x15: return "DW_OP_pick";
59 case 0x16: return "DW_OP_swap";
60 case 0x17: return "DW_OP_rot";
61 case 0x18: return "DW_OP_xderef";
62 case 0x19: return "DW_OP_abs";
63 case 0x1a: return "DW_OP_and";
64 case 0x1b: return "DW_OP_div";
65 case 0x1c: return "DW_OP_minus";
66 case 0x1d: return "DW_OP_mod";
67 case 0x1e: return "DW_OP_mul";
68 case 0x1f: return "DW_OP_neg";
69 case 0x20: return "DW_OP_not";
70 case 0x21: return "DW_OP_or";
71 case 0x22: return "DW_OP_plus";
72 case 0x23: return "DW_OP_plus_uconst";
73 case 0x24: return "DW_OP_shl";
74 case 0x25: return "DW_OP_shr";
75 case 0x26: return "DW_OP_shra";
76 case 0x27: return "DW_OP_xor";
77 case 0x2f: return "DW_OP_skip";
78 case 0x28: return "DW_OP_bra";
79 case 0x29: return "DW_OP_eq";
80 case 0x2a: return "DW_OP_ge";
81 case 0x2b: return "DW_OP_gt";
82 case 0x2c: return "DW_OP_le";
83 case 0x2d: return "DW_OP_lt";
84 case 0x2e: return "DW_OP_ne";
85 case 0x30: return "DW_OP_lit0";
86 case 0x31: return "DW_OP_lit1";
87 case 0x32: return "DW_OP_lit2";
88 case 0x33: return "DW_OP_lit3";
89 case 0x34: return "DW_OP_lit4";
90 case 0x35: return "DW_OP_lit5";
91 case 0x36: return "DW_OP_lit6";
92 case 0x37: return "DW_OP_lit7";
93 case 0x38: return "DW_OP_lit8";
94 case 0x39: return "DW_OP_lit9";
95 case 0x3a: return "DW_OP_lit10";
96 case 0x3b: return "DW_OP_lit11";
97 case 0x3c: return "DW_OP_lit12";
98 case 0x3d: return "DW_OP_lit13";
99 case 0x3e: return "DW_OP_lit14";
100 case 0x3f: return "DW_OP_lit15";
101 case 0x40: return "DW_OP_lit16";
102 case 0x41: return "DW_OP_lit17";
103 case 0x42: return "DW_OP_lit18";
104 case 0x43: return "DW_OP_lit19";
105 case 0x44: return "DW_OP_lit20";
106 case 0x45: return "DW_OP_lit21";
107 case 0x46: return "DW_OP_lit22";
108 case 0x47: return "DW_OP_lit23";
109 case 0x48: return "DW_OP_lit24";
110 case 0x49: return "DW_OP_lit25";
111 case 0x4a: return "DW_OP_lit26";
112 case 0x4b: return "DW_OP_lit27";
113 case 0x4c: return "DW_OP_lit28";
114 case 0x4d: return "DW_OP_lit29";
115 case 0x4e: return "DW_OP_lit30";
116 case 0x4f: return "DW_OP_lit31";
117 case 0x50: return "DW_OP_reg0";
118 case 0x51: return "DW_OP_reg1";
119 case 0x52: return "DW_OP_reg2";
120 case 0x53: return "DW_OP_reg3";
121 case 0x54: return "DW_OP_reg4";
122 case 0x55: return "DW_OP_reg5";
123 case 0x56: return "DW_OP_reg6";
124 case 0x57: return "DW_OP_reg7";
125 case 0x58: return "DW_OP_reg8";
126 case 0x59: return "DW_OP_reg9";
127 case 0x5a: return "DW_OP_reg10";
128 case 0x5b: return "DW_OP_reg11";
129 case 0x5c: return "DW_OP_reg12";
130 case 0x5d: return "DW_OP_reg13";
131 case 0x5e: return "DW_OP_reg14";
132 case 0x5f: return "DW_OP_reg15";
133 case 0x60: return "DW_OP_reg16";
134 case 0x61: return "DW_OP_reg17";
135 case 0x62: return "DW_OP_reg18";
136 case 0x63: return "DW_OP_reg19";
137 case 0x64: return "DW_OP_reg20";
138 case 0x65: return "DW_OP_reg21";
139 case 0x66: return "DW_OP_reg22";
140 case 0x67: return "DW_OP_reg23";
141 case 0x68: return "DW_OP_reg24";
142 case 0x69: return "DW_OP_reg25";
143 case 0x6a: return "DW_OP_reg26";
144 case 0x6b: return "DW_OP_reg27";
145 case 0x6c: return "DW_OP_reg28";
146 case 0x6d: return "DW_OP_reg29";
147 case 0x6e: return "DW_OP_reg30";
148 case 0x6f: return "DW_OP_reg31";
149 case 0x70: return "DW_OP_breg0";
150 case 0x71: return "DW_OP_breg1";
151 case 0x72: return "DW_OP_breg2";
152 case 0x73: return "DW_OP_breg3";
153 case 0x74: return "DW_OP_breg4";
154 case 0x75: return "DW_OP_breg5";
155 case 0x76: return "DW_OP_breg6";
156 case 0x77: return "DW_OP_breg7";
157 case 0x78: return "DW_OP_breg8";
158 case 0x79: return "DW_OP_breg9";
159 case 0x7a: return "DW_OP_breg10";
160 case 0x7b: return "DW_OP_breg11";
161 case 0x7c: return "DW_OP_breg12";
162 case 0x7d: return "DW_OP_breg13";
163 case 0x7e: return "DW_OP_breg14";
164 case 0x7f: return "DW_OP_breg15";
165 case 0x80: return "DW_OP_breg16";
166 case 0x81: return "DW_OP_breg17";
167 case 0x82: return "DW_OP_breg18";
168 case 0x83: return "DW_OP_breg19";
169 case 0x84: return "DW_OP_breg20";
170 case 0x85: return "DW_OP_breg21";
171 case 0x86: return "DW_OP_breg22";
172 case 0x87: return "DW_OP_breg23";
173 case 0x88: return "DW_OP_breg24";
174 case 0x89: return "DW_OP_breg25";
175 case 0x8a: return "DW_OP_breg26";
176 case 0x8b: return "DW_OP_breg27";
177 case 0x8c: return "DW_OP_breg28";
178 case 0x8d: return "DW_OP_breg29";
179 case 0x8e: return "DW_OP_breg30";
180 case 0x8f: return "DW_OP_breg31";
181 case 0x90: return "DW_OP_regx";
182 case 0x91: return "DW_OP_fbreg";
183 case 0x92: return "DW_OP_bregx";
184 case 0x93: return "DW_OP_piece";
185 case 0x94: return "DW_OP_deref_size";
186 case 0x95: return "DW_OP_xderef_size";
187 case 0x96: return "DW_OP_nop";
188 case 0x97: return "DW_OP_push_object_address";
189 case 0x98: return "DW_OP_call2";
190 case 0x99: return "DW_OP_call4";
191 case 0x9a: return "DW_OP_call_ref";
192 case DW_OP_APPLE_array_ref: return "DW_OP_APPLE_array_ref";
193 case DW_OP_APPLE_extern: return "DW_OP_APPLE_extern";
194 case DW_OP_APPLE_uninit: return "DW_OP_APPLE_uninit";
195 case DW_OP_APPLE_assign: return "DW_OP_APPLE_assign";
196 case DW_OP_APPLE_address_of: return "DW_OP_APPLE_address_of";
197 case DW_OP_APPLE_value_of: return "DW_OP_APPLE_value_of";
198 case DW_OP_APPLE_deref_type: return "DW_OP_APPLE_deref_type";
199 case DW_OP_APPLE_expr_local: return "DW_OP_APPLE_expr_local";
200 case DW_OP_APPLE_constf: return "DW_OP_APPLE_constf";
201 case DW_OP_APPLE_scalar_cast: return "DW_OP_APPLE_scalar_cast";
202 case DW_OP_APPLE_clang_cast: return "DW_OP_APPLE_clang_cast";
203 case DW_OP_APPLE_clear: return "DW_OP_APPLE_clear";
204 case DW_OP_APPLE_error: return "DW_OP_APPLE_error";
205 default:
206 snprintf (invalid, sizeof(invalid), "Unknown DW_OP constant: 0x%x", val);
207 return invalid;
208 }
209}
210
211
212//----------------------------------------------------------------------
213// DWARFExpression constructor
214//----------------------------------------------------------------------
215DWARFExpression::DWARFExpression() :
216 m_data(),
217 m_reg_kind (eRegisterKindDWARF),
218 m_loclist_base_addr(),
219 m_expr_locals (NULL),
220 m_decl_map (NULL)
221{
222}
223
224DWARFExpression::DWARFExpression(const DWARFExpression& rhs) :
225 m_data(rhs.m_data),
226 m_reg_kind (rhs.m_reg_kind),
227 m_loclist_base_addr(rhs.m_loclist_base_addr),
228 m_expr_locals (rhs.m_expr_locals),
229 m_decl_map (rhs.m_decl_map)
230{
231}
232
233
234DWARFExpression::DWARFExpression(const DataExtractor& data, uint32_t data_offset, uint32_t data_length, const Address* loclist_base_addr_ptr) :
235 m_data(data, data_offset, data_length),
236 m_reg_kind (eRegisterKindDWARF),
237 m_loclist_base_addr(),
238 m_expr_locals (NULL),
239 m_decl_map (NULL)
240{
241 if (loclist_base_addr_ptr)
242 m_loclist_base_addr = *loclist_base_addr_ptr;
243}
244
245//----------------------------------------------------------------------
246// Destructor
247//----------------------------------------------------------------------
248DWARFExpression::~DWARFExpression()
249{
250}
251
252
253bool
254DWARFExpression::IsValid() const
255{
256 return m_data.GetByteSize() > 0;
257}
258
259
260void
261DWARFExpression::SetExpressionLocalVariableList (ClangExpressionVariableList *locals)
262{
263 m_expr_locals = locals;
264}
265
266void
267DWARFExpression::SetExpressionDeclMap (ClangExpressionDeclMap *decl_map)
268{
269 m_decl_map = decl_map;
270}
271
272void
273DWARFExpression::SetOpcodeData (const DataExtractor& data, const Address* loclist_base_addr_ptr)
274{
275 m_data = data;
276 if (loclist_base_addr_ptr != NULL)
277 m_loclist_base_addr = *loclist_base_addr_ptr;
278 else
279 m_loclist_base_addr.Clear();
280}
281
282void
283DWARFExpression::SetOpcodeData (const DataExtractor& data, uint32_t data_offset, uint32_t data_length, const Address* loclist_base_addr_ptr)
284{
285 m_data.SetData(data, data_offset, data_length);
286 if (loclist_base_addr_ptr != NULL)
287 m_loclist_base_addr = *loclist_base_addr_ptr;
288 else
289 m_loclist_base_addr.Clear();
290}
291
292void
293DWARFExpression::DumpLocation (Stream *s, uint32_t offset, uint32_t length, lldb::DescriptionLevel level) const
294{
295 if (!m_data.ValidOffsetForDataOfSize(offset, length))
296 return;
297 const uint32_t start_offset = offset;
298 const uint32_t end_offset = offset + length;
299 while (m_data.ValidOffset(offset) && offset < end_offset)
300 {
301 const uint32_t op_offset = offset;
302 const uint8_t op = m_data.GetU8(&offset);
303
304 switch (level)
305 {
306 case lldb::eDescriptionLevelBrief:
307 if (offset > start_offset)
308 s->PutChar(' ');
309 break;
310
311 case lldb::eDescriptionLevelFull:
312 case lldb::eDescriptionLevelVerbose:
313 if (offset > start_offset)
314 s->EOL();
315 s->Indent();
316 if (level == lldb::eDescriptionLevelFull)
317 break;
318 // Fall through for verbose and print offset and DW_OP prefix..
319 s->Printf("0x%8.8x: %s", op_offset, op >= DW_OP_APPLE_uninit ? "DW_OP_APPLE_" : "DW_OP_");
320 break;
321 }
322
323 switch (op)
324 {
325 case DW_OP_addr: *s << "addr(" << m_data.GetAddress(&offset) << ") "; break; // 0x03 1 address
326 case DW_OP_deref: *s << "deref"; break; // 0x06
327 case DW_OP_const1u: s->Printf("const1u(0x%2.2x) ", m_data.GetU8(&offset)); break; // 0x08 1 1-byte constant
328 case DW_OP_const1s: s->Printf("const1s(0x%2.2x) ", m_data.GetU8(&offset)); break; // 0x09 1 1-byte constant
329 case DW_OP_const2u: s->Printf("const2u(0x%4.4x) ", m_data.GetU16(&offset)); break; // 0x0a 1 2-byte constant
330 case DW_OP_const2s: s->Printf("const2s(0x%4.4x) ", m_data.GetU16(&offset)); break; // 0x0b 1 2-byte constant
331 case DW_OP_const4u: s->Printf("const4u(0x%8.8x) ", m_data.GetU32(&offset)); break; // 0x0c 1 4-byte constant
332 case DW_OP_const4s: s->Printf("const4s(0x%8.8x) ", m_data.GetU32(&offset)); break; // 0x0d 1 4-byte constant
333 case DW_OP_const8u: s->Printf("const8u(0x%16.16llx) ", m_data.GetU64(&offset)); break; // 0x0e 1 8-byte constant
334 case DW_OP_const8s: s->Printf("const8s(0x%16.16llx) ", m_data.GetU64(&offset)); break; // 0x0f 1 8-byte constant
335 case DW_OP_constu: s->Printf("constu(0x%x) ", m_data.GetULEB128(&offset)); break; // 0x10 1 ULEB128 constant
336 case DW_OP_consts: s->Printf("consts(0x%x) ", m_data.GetSLEB128(&offset)); break; // 0x11 1 SLEB128 constant
337 case DW_OP_dup: s->PutCString("dup"); break; // 0x12
338 case DW_OP_drop: s->PutCString("drop"); break; // 0x13
339 case DW_OP_over: s->PutCString("over"); break; // 0x14
340 case DW_OP_pick: s->Printf("pick(0x%2.2x) ", m_data.GetU8(&offset)); break; // 0x15 1 1-byte stack index
341 case DW_OP_swap: s->PutCString("swap"); break; // 0x16
342 case DW_OP_rot: s->PutCString("rot"); break; // 0x17
343 case DW_OP_xderef: s->PutCString("xderef"); break; // 0x18
344 case DW_OP_abs: s->PutCString("abs"); break; // 0x19
345 case DW_OP_and: s->PutCString("and"); break; // 0x1a
346 case DW_OP_div: s->PutCString("div"); break; // 0x1b
347 case DW_OP_minus: s->PutCString("minus"); break; // 0x1c
348 case DW_OP_mod: s->PutCString("mod"); break; // 0x1d
349 case DW_OP_mul: s->PutCString("mul"); break; // 0x1e
350 case DW_OP_neg: s->PutCString("neg"); break; // 0x1f
351 case DW_OP_not: s->PutCString("not"); break; // 0x20
352 case DW_OP_or: s->PutCString("or"); break; // 0x21
353 case DW_OP_plus: s->PutCString("plus"); break; // 0x22
354 case DW_OP_plus_uconst: // 0x23 1 ULEB128 addend
355 s->Printf("plus_uconst(0x%x) ", m_data.GetULEB128(&offset));
356 break;
357
358 case DW_OP_shl: s->PutCString("shl"); break; // 0x24
359 case DW_OP_shr: s->PutCString("shr"); break; // 0x25
360 case DW_OP_shra: s->PutCString("shra"); break; // 0x26
361 case DW_OP_xor: s->PutCString("xor"); break; // 0x27
362 case DW_OP_skip: s->Printf("skip(0x%4.4x)", m_data.GetU16(&offset)); break; // 0x2f 1 signed 2-byte constant
363 case DW_OP_bra: s->Printf("bra(0x%4.4x)", m_data.GetU16(&offset)); break; // 0x28 1 signed 2-byte constant
364 case DW_OP_eq: s->PutCString("eq"); break; // 0x29
365 case DW_OP_ge: s->PutCString("ge"); break; // 0x2a
366 case DW_OP_gt: s->PutCString("gt"); break; // 0x2b
367 case DW_OP_le: s->PutCString("le"); break; // 0x2c
368 case DW_OP_lt: s->PutCString("lt"); break; // 0x2d
369 case DW_OP_ne: s->PutCString("ne"); break; // 0x2e
370
371 case DW_OP_lit0: // 0x30
372 case DW_OP_lit1: // 0x31
373 case DW_OP_lit2: // 0x32
374 case DW_OP_lit3: // 0x33
375 case DW_OP_lit4: // 0x34
376 case DW_OP_lit5: // 0x35
377 case DW_OP_lit6: // 0x36
378 case DW_OP_lit7: // 0x37
379 case DW_OP_lit8: // 0x38
380 case DW_OP_lit9: // 0x39
381 case DW_OP_lit10: // 0x3A
382 case DW_OP_lit11: // 0x3B
383 case DW_OP_lit12: // 0x3C
384 case DW_OP_lit13: // 0x3D
385 case DW_OP_lit14: // 0x3E
386 case DW_OP_lit15: // 0x3F
387 case DW_OP_lit16: // 0x40
388 case DW_OP_lit17: // 0x41
389 case DW_OP_lit18: // 0x42
390 case DW_OP_lit19: // 0x43
391 case DW_OP_lit20: // 0x44
392 case DW_OP_lit21: // 0x45
393 case DW_OP_lit22: // 0x46
394 case DW_OP_lit23: // 0x47
395 case DW_OP_lit24: // 0x48
396 case DW_OP_lit25: // 0x49
397 case DW_OP_lit26: // 0x4A
398 case DW_OP_lit27: // 0x4B
399 case DW_OP_lit28: // 0x4C
400 case DW_OP_lit29: // 0x4D
401 case DW_OP_lit30: // 0x4E
402 case DW_OP_lit31: s->Printf("lit%i", op - DW_OP_lit0); break; // 0x4f
403
404 case DW_OP_reg0: // 0x50
405 case DW_OP_reg1: // 0x51
406 case DW_OP_reg2: // 0x52
407 case DW_OP_reg3: // 0x53
408 case DW_OP_reg4: // 0x54
409 case DW_OP_reg5: // 0x55
410 case DW_OP_reg6: // 0x56
411 case DW_OP_reg7: // 0x57
412 case DW_OP_reg8: // 0x58
413 case DW_OP_reg9: // 0x59
414 case DW_OP_reg10: // 0x5A
415 case DW_OP_reg11: // 0x5B
416 case DW_OP_reg12: // 0x5C
417 case DW_OP_reg13: // 0x5D
418 case DW_OP_reg14: // 0x5E
419 case DW_OP_reg15: // 0x5F
420 case DW_OP_reg16: // 0x60
421 case DW_OP_reg17: // 0x61
422 case DW_OP_reg18: // 0x62
423 case DW_OP_reg19: // 0x63
424 case DW_OP_reg20: // 0x64
425 case DW_OP_reg21: // 0x65
426 case DW_OP_reg22: // 0x66
427 case DW_OP_reg23: // 0x67
428 case DW_OP_reg24: // 0x68
429 case DW_OP_reg25: // 0x69
430 case DW_OP_reg26: // 0x6A
431 case DW_OP_reg27: // 0x6B
432 case DW_OP_reg28: // 0x6C
433 case DW_OP_reg29: // 0x6D
434 case DW_OP_reg30: // 0x6E
435 case DW_OP_reg31: s->Printf("reg%i", op - DW_OP_reg0); break; // 0x6f
436
437 case DW_OP_breg0:
438 case DW_OP_breg1:
439 case DW_OP_breg2:
440 case DW_OP_breg3:
441 case DW_OP_breg4:
442 case DW_OP_breg5:
443 case DW_OP_breg6:
444 case DW_OP_breg7:
445 case DW_OP_breg8:
446 case DW_OP_breg9:
447 case DW_OP_breg10:
448 case DW_OP_breg11:
449 case DW_OP_breg12:
450 case DW_OP_breg13:
451 case DW_OP_breg14:
452 case DW_OP_breg15:
453 case DW_OP_breg16:
454 case DW_OP_breg17:
455 case DW_OP_breg18:
456 case DW_OP_breg19:
457 case DW_OP_breg20:
458 case DW_OP_breg21:
459 case DW_OP_breg22:
460 case DW_OP_breg23:
461 case DW_OP_breg24:
462 case DW_OP_breg25:
463 case DW_OP_breg26:
464 case DW_OP_breg27:
465 case DW_OP_breg28:
466 case DW_OP_breg29:
467 case DW_OP_breg30:
468 case DW_OP_breg31: s->Printf("breg%i(0x%x)", op - DW_OP_breg0, m_data.GetULEB128(&offset)); break;
469
470 case DW_OP_regx: // 0x90 1 ULEB128 register
471 s->Printf("regx(0x%x)", m_data.GetULEB128(&offset));
472 break;
473 case DW_OP_fbreg: // 0x91 1 SLEB128 offset
474 s->Printf("fbreg(0x%x)",m_data.GetSLEB128(&offset));
475 break;
476 case DW_OP_bregx: // 0x92 2 ULEB128 register followed by SLEB128 offset
477 s->Printf("bregx(0x%x, 0x%x)", m_data.GetULEB128(&offset), m_data.GetSLEB128(&offset));
478 break;
479 case DW_OP_piece: // 0x93 1 ULEB128 size of piece addressed
480 s->Printf("piece(0x%x)", m_data.GetULEB128(&offset));
481 break;
482 case DW_OP_deref_size: // 0x94 1 1-byte size of data retrieved
483 s->Printf("deref_size(0x%2.2x)", m_data.GetU8(&offset));
484 break;
485 case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved
486 s->Printf("xderef_size(0x%2.2x)", m_data.GetU8(&offset));
487 break;
488 case DW_OP_nop: s->PutCString("nop"); break; // 0x96
489 case DW_OP_push_object_address: s->PutCString("push_object_address"); break; // 0x97 DWARF3
490 case DW_OP_call2: // 0x98 DWARF3 1 2-byte offset of DIE
491 s->Printf("call2(0x%4.4x)", m_data.GetU16(&offset));
492 break;
493 case DW_OP_call4: // 0x99 DWARF3 1 4-byte offset of DIE
494 s->Printf("call4(0x%8.8x)", m_data.GetU32(&offset));
495 break;
496 case DW_OP_call_ref: // 0x9a DWARF3 1 4- or 8-byte offset of DIE
497 s->Printf("call_ref(0x%8.8llx)", m_data.GetAddress(&offset));
498 break;
499// case DW_OP_form_tls_address: s << "form_tls_address"; break; // 0x9b DWARF3
500// case DW_OP_call_frame_cfa: s << "call_frame_cfa"; break; // 0x9c DWARF3
501// case DW_OP_bit_piece: // 0x9d DWARF3 2
502// s->Printf("bit_piece(0x%x, 0x%x)", m_data.GetULEB128(&offset), m_data.GetULEB128(&offset));
503// break;
504// case DW_OP_lo_user: s->PutCString("lo_user"); break; // 0xe0
505// case DW_OP_hi_user: s->PutCString("hi_user"); break; // 0xff
506 case DW_OP_APPLE_extern:
507 s->Printf("extern(%u)", m_data.GetULEB128(&offset));
508 break;
509 case DW_OP_APPLE_array_ref:
510 s->PutCString("array_ref");
511 break;
512 case DW_OP_APPLE_uninit:
513 s->PutCString("uninit"); // 0xF0
514 break;
515 case DW_OP_APPLE_assign: // 0xF1 - pops value off and assigns it to second item on stack (2nd item must have assignable context)
516 s->PutCString("assign");
517 break;
518 case DW_OP_APPLE_address_of: // 0xF2 - gets the address of the top stack item (top item must be a variable, or have value_type that is an address already)
519 s->PutCString("address_of");
520 break;
521 case DW_OP_APPLE_value_of: // 0xF3 - pops the value off the stack and pushes the value of that object (top item must be a variable, or expression local)
522 s->PutCString("value_of");
523 break;
524 case DW_OP_APPLE_deref_type: // 0xF4 - gets the address of the top stack item (top item must be a variable, or a clang type)
525 s->PutCString("deref_type");
526 break;
527 case DW_OP_APPLE_expr_local: // 0xF5 - ULEB128 expression local index
528 s->Printf("expr_local(%u)", m_data.GetULEB128(&offset));
529 break;
530 case DW_OP_APPLE_constf: // 0xF6 - 1 byte float size, followed by constant float data
531 {
532 uint8_t float_length = m_data.GetU8(&offset);
533 s->Printf("constf(<%u> ", float_length);
534 m_data.Dump(s, offset, eFormatHex, float_length, 1, UINT32_MAX, DW_INVALID_ADDRESS, 0, 0);
535 s->PutChar(')');
536 // Consume the float data
537 m_data.GetData(&offset, float_length);
538 }
539 break;
540 case DW_OP_APPLE_scalar_cast:
541 s->Printf("scalar_cast(%s)", Scalar::GetValueTypeAsCString ((Scalar::Type)m_data.GetU8(&offset)));
542 break;
543 case DW_OP_APPLE_clang_cast:
544 {
545 clang::Type *clang_type = (clang::Type *)m_data.GetMaxU64(&offset, sizeof(void*));
546 s->Printf("clang_cast(%p)", clang_type);
547 }
548 break;
549 case DW_OP_APPLE_clear:
550 s->PutCString("clear");
551 break;
552 case DW_OP_APPLE_error: // 0xFF - Stops expression evaluation and returns an error (no args)
553 s->PutCString("error");
554 break;
555 }
556 }
557}
558
559void
560DWARFExpression::SetLocationListBaseAddress(Address& base_addr)
561{
562 m_loclist_base_addr = base_addr;
563}
564
565int
566DWARFExpression::GetRegisterKind ()
567{
568 return m_reg_kind;
569}
570
571void
572DWARFExpression::SetRegisterKind (int reg_kind)
573{
574 m_reg_kind = reg_kind;
575}
576
577bool
578DWARFExpression::IsLocationList() const
579{
580 return m_loclist_base_addr.IsSectionOffset();
581}
582
583void
584DWARFExpression::GetDescription (Stream *s, lldb::DescriptionLevel level) const
585{
586 if (IsLocationList())
587 {
588 // We have a location list
589 uint32_t offset = 0;
590 uint32_t count = 0;
591 Address base_addr(m_loclist_base_addr);
592 while (m_data.ValidOffset(offset))
593 {
594 lldb::addr_t begin_addr_offset = m_data.GetAddress(&offset);
595 lldb::addr_t end_addr_offset = m_data.GetAddress(&offset);
596 if (begin_addr_offset < end_addr_offset)
597 {
598 if (count > 0)
599 s->PutCString(", ");
600 AddressRange addr_range(base_addr, end_addr_offset - begin_addr_offset);
601 addr_range.GetBaseAddress().SetOffset(base_addr.GetOffset() + begin_addr_offset);
602 addr_range.Dump (s, NULL, Address::DumpStyleFileAddress);
603 s->PutChar('{');
604 uint32_t location_length = m_data.GetU16(&offset);
605 DumpLocation (s, offset, location_length, level);
606 s->PutChar('}');
607 offset += location_length;
608 }
609 else if (begin_addr_offset == 0 && end_addr_offset == 0)
610 {
611 // The end of the location list is marked by both the start and end offset being zero
612 break;
613 }
614 else
615 {
616 if (m_data.GetAddressByteSize() == 4 && begin_addr_offset == 0xFFFFFFFFull ||
617 m_data.GetAddressByteSize() == 8 && begin_addr_offset == 0xFFFFFFFFFFFFFFFFull)
618 {
619 // We have a new base address
620 if (count > 0)
621 s->PutCString(", ");
622 *s << "base_addr = " << end_addr_offset;
623 }
624 }
625
626 count++;
627 }
628 }
629 else
630 {
631 // We have a normal location that contains DW_OP location opcodes
632 DumpLocation (s, 0, m_data.GetByteSize(), level);
633 }
634}
635
636static bool
637ReadRegisterValueAsScalar
638(
639 ExecutionContext *exe_ctx,
640 uint32_t reg_kind,
641 uint32_t reg_num,
642 Error *error_ptr,
643 Value &value
644)
645{
646 if (exe_ctx && exe_ctx->frame)
647 {
648 RegisterContext *reg_context = exe_ctx->frame->GetRegisterContext();
649
650 if (reg_context == NULL)
651 {
652 if (error_ptr)
653 error_ptr->SetErrorStringWithFormat("No register context in frame.\n");
654 }
655 else
656 {
657 uint32_t native_reg = reg_context->ConvertRegisterKindToRegisterNumber(reg_kind, reg_num);
658 if (native_reg == LLDB_INVALID_REGNUM)
659 {
660 if (error_ptr)
661 error_ptr->SetErrorStringWithFormat("Unable to convert register kind=%u reg_num=%u to a native register number.\n", reg_kind, reg_num);
662 }
663 else
664 {
665 value.SetValueType (Value::eValueTypeScalar);
666 value.SetContext (Value::eContextTypeDCRegisterInfo, const_cast<RegisterInfo *>(reg_context->GetRegisterInfoAtIndex(native_reg)));
667
668 if (reg_context->ReadRegisterValue (native_reg, value.GetScalar()))
669 return true;
670
671 if (error_ptr)
672 error_ptr->SetErrorStringWithFormat("Failed to read register %u.\n", native_reg);
673 }
674 }
675 }
676 else
677 {
678 if (error_ptr)
679 error_ptr->SetErrorStringWithFormat("Invalid frame in execution context.\n");
680 }
681 return false;
682}
683
684bool
685DWARFExpression::LocationListContainsLoadAddress (Process* process, const Address &addr) const
686{
687 if (IsLocationList())
688 {
689 uint32_t offset = 0;
690 const addr_t load_addr = addr.GetLoadAddress(process);
691
692 if (load_addr == LLDB_INVALID_ADDRESS)
693 return false;
694
695 addr_t loc_list_base_addr = m_loclist_base_addr.GetLoadAddress(process);
696
697 if (loc_list_base_addr == LLDB_INVALID_ADDRESS)
698 return false;
699
700 while (m_data.ValidOffset(offset))
701 {
702 // We need to figure out what the value is for the location.
703 addr_t lo_pc = m_data.GetAddress(&offset);
704 addr_t hi_pc = m_data.GetAddress(&offset);
705 if (lo_pc == 0 && hi_pc == 0)
706 break;
707 else
708 {
709 lo_pc += loc_list_base_addr;
710 hi_pc += loc_list_base_addr;
711
712 if (lo_pc <= load_addr && load_addr < hi_pc)
713 return true;
714
715 offset += m_data.GetU16(&offset);
716 }
717 }
718 }
719 return false;
720}
721bool
722DWARFExpression::Evaluate
723(
724 ExecutionContextScope *exe_scope,
725 clang::ASTContext *ast_context,
726 const Value* initial_value_ptr,
727 Value& result,
728 Error *error_ptr
729) const
730{
731 ExecutionContext exe_ctx (exe_scope);
732 return Evaluate(&exe_ctx, ast_context, initial_value_ptr, result, error_ptr);
733}
734
735bool
736DWARFExpression::Evaluate
737(
738 ExecutionContext *exe_ctx,
739 clang::ASTContext *ast_context,
740 const Value* initial_value_ptr,
741 Value& result,
742 Error *error_ptr
743) const
744{
745 if (IsLocationList())
746 {
747 uint32_t offset = 0;
748 addr_t pc = exe_ctx->frame->GetPC().GetLoadAddress(exe_ctx->process);
749
750 if (pc == LLDB_INVALID_ADDRESS)
751 {
752 if (error_ptr)
753 error_ptr->SetErrorString("Invalid PC in frame.");
754 return false;
755 }
756
757 addr_t loc_list_base_addr = m_loclist_base_addr.GetLoadAddress(exe_ctx->process);
758
759 if (loc_list_base_addr == LLDB_INVALID_ADDRESS)
760 {
761 if (error_ptr)
762 error_ptr->SetErrorString("Out of scope.");
763 return false;
764 }
765
766 while (m_data.ValidOffset(offset))
767 {
768 // We need to figure out what the value is for the location.
769 addr_t lo_pc = m_data.GetAddress(&offset);
770 addr_t hi_pc = m_data.GetAddress(&offset);
771 if (lo_pc == 0 && hi_pc == 0)
772 {
773 break;
774 }
775 else
776 {
777 lo_pc += loc_list_base_addr;
778 hi_pc += loc_list_base_addr;
779
780 uint16_t length = m_data.GetU16(&offset);
781
782 if (length > 0 && lo_pc <= pc && pc < hi_pc)
783 {
784 return DWARFExpression::Evaluate (exe_ctx, ast_context, m_data, m_expr_locals, m_decl_map, offset, length, m_reg_kind, initial_value_ptr, result, error_ptr);
785 }
786 offset += length;
787 }
788 }
789 if (error_ptr)
790 error_ptr->SetErrorStringWithFormat("Out of scope.\n", pc);
791 return false;
792 }
793
794 // Not a location list, just a single expression.
795 return DWARFExpression::Evaluate (exe_ctx, ast_context, m_data, m_expr_locals, m_decl_map, 0, m_data.GetByteSize(), m_reg_kind, initial_value_ptr, result, error_ptr);
796}
797
798
799
800bool
801DWARFExpression::Evaluate
802(
803 ExecutionContext *exe_ctx,
804 clang::ASTContext *ast_context,
805 const DataExtractor& opcodes,
806 ClangExpressionVariableList *expr_locals,
807 ClangExpressionDeclMap *decl_map,
808 const uint32_t opcodes_offset,
809 const uint32_t opcodes_length,
810 const uint32_t reg_kind,
811 const Value* initial_value_ptr,
812 Value& result,
813 Error *error_ptr
814)
815{
816 std::vector<Value> stack;
817
818 if (initial_value_ptr)
819 stack.push_back(*initial_value_ptr);
820
821 uint32_t offset = opcodes_offset;
822 const uint32_t end_offset = opcodes_offset + opcodes_length;
823 Value tmp;
824 uint32_t reg_num;
825
826 // Make sure all of the data is available in opcodes.
827 if (!opcodes.ValidOffsetForDataOfSize(opcodes_offset, opcodes_length))
828 {
829 if (error_ptr)
830 error_ptr->SetErrorString ("Invalid offset and/or length for opcodes buffer.");
831 return false;
832 }
833 Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS);
834
835
836 while (opcodes.ValidOffset(offset) && offset < end_offset)
837 {
838 const uint32_t op_offset = offset;
839 const uint8_t op = opcodes.GetU8(&offset);
840
841 if (log)
842 {
843 log->Printf("\n");
844 size_t count = stack.size();
845 for (size_t i=0; i<count; ++i)
846 {
847 StreamString new_value;
848 new_value.Printf("[%zu]", i);
849 stack[i].Dump(&new_value);
850 log->Printf("%s", new_value.GetData());
851 }
852 log->Printf("0x%8.8x: %s", op_offset, DW_OP_value_to_name(op));
853 }
854 switch (op)
855 {
856 //----------------------------------------------------------------------
857 // The DW_OP_addr operation has a single operand that encodes a machine
858 // address and whose size is the size of an address on the target machine.
859 //----------------------------------------------------------------------
860 case DW_OP_addr:
861 stack.push_back(opcodes.GetAddress(&offset));
862 stack.back().SetValueType (Value::eValueTypeFileAddress);
863 break;
864
865 //----------------------------------------------------------------------
866 // The DW_OP_addr_sect_offset4 is used for any location expressions in
867 // shared libraries that have a location like:
868 // DW_OP_addr(0x1000)
869 // If this address resides in a shared library, then this virtual
870 // address won't make sense when it is evaluated in the context of a
871 // running process where shared libraries have been slid. To account for
872 // this, this new address type where we can store the section pointer
873 // and a 4 byte offset.
874 //----------------------------------------------------------------------
875// case DW_OP_addr_sect_offset4:
876// {
877// result_type = eResultTypeFileAddress;
878// lldb::Section *sect = (lldb::Section *)opcodes.GetMaxU64(&offset, sizeof(void *));
879// lldb::addr_t sect_offset = opcodes.GetU32(&offset);
880//
881// Address so_addr (sect, sect_offset);
882// lldb::addr_t load_addr = so_addr.GetLoadAddress();
883// if (load_addr != LLDB_INVALID_ADDRESS)
884// {
885// // We successfully resolve a file address to a load
886// // address.
887// stack.push_back(load_addr);
888// break;
889// }
890// else
891// {
892// // We were able
893// if (error_ptr)
894// error_ptr->SetErrorStringWithFormat ("Section %s in %s is not currently loaded.\n", sect->GetName().AsCString(), sect->GetModule()->GetFileSpec().GetFilename().AsCString());
895// return false;
896// }
897// }
898// break;
899
900 //----------------------------------------------------------------------
901 // OPCODE: DW_OP_deref
902 // OPERANDS: none
903 // DESCRIPTION: Pops the top stack entry and treats it as an address.
904 // The value retrieved from that address is pushed. The size of the
905 // data retrieved from the dereferenced address is the size of an
906 // address on the target machine.
907 //----------------------------------------------------------------------
908 case DW_OP_deref:
909 {
910 Value::ValueType value_type = stack.back().GetValueType();
911 switch (value_type)
912 {
913 case Value::eValueTypeHostAddress:
914 {
915 void *src = (void *)stack.back().GetScalar().ULongLong();
916 intptr_t ptr;
917 ::memcpy (&ptr, src, sizeof(void *));
918 stack.back().GetScalar() = ptr;
919 stack.back().ClearContext();
920 }
921 break;
922 case Value::eValueTypeLoadAddress:
923 if (exe_ctx)
924 {
925 if (exe_ctx->process)
926 {
927 lldb::addr_t pointer_addr = stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
928 uint8_t addr_bytes[sizeof(lldb::addr_t)];
929 uint32_t addr_size = exe_ctx->process->GetAddressByteSize();
930 Error error;
931 if (exe_ctx->process->ReadMemory(pointer_addr, &addr_bytes, addr_size, error) == addr_size)
932 {
933 DataExtractor addr_data(addr_bytes, sizeof(addr_bytes), exe_ctx->process->GetByteOrder(), addr_size);
934 uint32_t addr_data_offset = 0;
935 stack.back().GetScalar() = addr_data.GetPointer(&addr_data_offset);
936 stack.back().ClearContext();
937 }
938 else
939 {
940 if (error_ptr)
941 error_ptr->SetErrorStringWithFormat ("Failed to dereference pointer from 0x%llx for DW_OP_deref: %s\n",
942 pointer_addr,
943 error.AsCString());
944 return false;
945 }
946 }
947 else
948 {
949 if (error_ptr)
950 error_ptr->SetErrorStringWithFormat ("NULL process for DW_OP_deref.\n");
951 return false;
952 }
953 }
954 else
955 {
956 if (error_ptr)
957 error_ptr->SetErrorStringWithFormat ("NULL execution context for DW_OP_deref.\n");
958 return false;
959 }
960 break;
961
962 default:
963 break;
964 }
965
966 }
967 break;
968
969 //----------------------------------------------------------------------
970 // OPCODE: DW_OP_deref_size
971 // OPERANDS: 1
972 // 1 - uint8_t that specifies the size of the data to dereference.
973 // DESCRIPTION: Behaves like the DW_OP_deref operation: it pops the top
974 // stack entry and treats it as an address. The value retrieved from that
975 // address is pushed. In the DW_OP_deref_size operation, however, the
976 // size in bytes of the data retrieved from the dereferenced address is
977 // specified by the single operand. This operand is a 1-byte unsigned
978 // integral constant whose value may not be larger than the size of an
979 // address on the target machine. The data retrieved is zero extended
980 // to the size of an address on the target machine before being pushed
981 // on the expression stack.
982 //----------------------------------------------------------------------
983 case DW_OP_deref_size:
984 if (error_ptr)
985 error_ptr->SetErrorString("Unimplemented opcode: DW_OP_deref_size.");
986 return false;
987
988 //----------------------------------------------------------------------
989 // OPCODE: DW_OP_xderef_size
990 // OPERANDS: 1
991 // 1 - uint8_t that specifies the size of the data to dereference.
992 // DESCRIPTION: Behaves like the DW_OP_xderef operation: the entry at
993 // the top of the stack is treated as an address. The second stack
994 // entry is treated as an “address space identifier” for those
995 // architectures that support multiple address spaces. The top two
996 // stack elements are popped, a data item is retrieved through an
997 // implementation-defined address calculation and pushed as the new
998 // stack top. In the DW_OP_xderef_size operation, however, the size in
999 // bytes of the data retrieved from the dereferenced address is
1000 // specified by the single operand. This operand is a 1-byte unsigned
1001 // integral constant whose value may not be larger than the size of an
1002 // address on the target machine. The data retrieved is zero extended
1003 // to the size of an address on the target machine before being pushed
1004 // on the expression stack.
1005 //----------------------------------------------------------------------
1006 case DW_OP_xderef_size:
1007 if (error_ptr)
1008 error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef_size.");
1009 return false;
1010 //----------------------------------------------------------------------
1011 // OPCODE: DW_OP_xderef
1012 // OPERANDS: none
1013 // DESCRIPTION: Provides an extended dereference mechanism. The entry at
1014 // the top of the stack is treated as an address. The second stack entry
1015 // is treated as an "address space identifier" for those architectures
1016 // that support multiple address spaces. The top two stack elements are
1017 // popped, a data item is retrieved through an implementation-defined
1018 // address calculation and pushed as the new stack top. The size of the
1019 // data retrieved from the dereferenced address is the size of an address
1020 // on the target machine.
1021 //----------------------------------------------------------------------
1022 case DW_OP_xderef:
1023 if (error_ptr)
1024 error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef.");
1025 return false;
1026
1027 //----------------------------------------------------------------------
1028 // All DW_OP_constXXX opcodes have a single operand as noted below:
1029 //
1030 // Opcode Operand 1
1031 // --------------- ----------------------------------------------------
1032 // DW_OP_const1u 1-byte unsigned integer constant
1033 // DW_OP_const1s 1-byte signed integer constant
1034 // DW_OP_const2u 2-byte unsigned integer constant
1035 // DW_OP_const2s 2-byte signed integer constant
1036 // DW_OP_const4u 4-byte unsigned integer constant
1037 // DW_OP_const4s 4-byte signed integer constant
1038 // DW_OP_const8u 8-byte unsigned integer constant
1039 // DW_OP_const8s 8-byte signed integer constant
1040 // DW_OP_constu unsigned LEB128 integer constant
1041 // DW_OP_consts signed LEB128 integer constant
1042 //----------------------------------------------------------------------
1043 case DW_OP_const1u : stack.push_back(( uint8_t)opcodes.GetU8(&offset)); break;
1044 case DW_OP_const1s : stack.push_back(( int8_t)opcodes.GetU8(&offset)); break;
1045 case DW_OP_const2u : stack.push_back((uint16_t)opcodes.GetU16(&offset)); break;
1046 case DW_OP_const2s : stack.push_back(( int16_t)opcodes.GetU16(&offset)); break;
1047 case DW_OP_const4u : stack.push_back((uint32_t)opcodes.GetU32(&offset)); break;
1048 case DW_OP_const4s : stack.push_back(( int32_t)opcodes.GetU32(&offset)); break;
1049 case DW_OP_const8u : stack.push_back((uint64_t)opcodes.GetU64(&offset)); break;
1050 case DW_OP_const8s : stack.push_back(( int64_t)opcodes.GetU64(&offset)); break;
1051 case DW_OP_constu : stack.push_back(opcodes.GetULEB128(&offset)); break;
1052 case DW_OP_consts : stack.push_back(opcodes.GetSLEB128(&offset)); break;
1053
1054 //----------------------------------------------------------------------
1055 // OPCODE: DW_OP_dup
1056 // OPERANDS: none
1057 // DESCRIPTION: duplicates the value at the top of the stack
1058 //----------------------------------------------------------------------
1059 case DW_OP_dup:
1060 if (stack.empty())
1061 {
1062 if (error_ptr)
1063 error_ptr->SetErrorString("Expression stack empty for DW_OP_dup.");
1064 return false;
1065 }
1066 else
1067 stack.push_back(stack.back());
1068 break;
1069
1070 //----------------------------------------------------------------------
1071 // OPCODE: DW_OP_drop
1072 // OPERANDS: none
1073 // DESCRIPTION: pops the value at the top of the stack
1074 //----------------------------------------------------------------------
1075 case DW_OP_drop:
1076 if (stack.empty())
1077 {
1078 if (error_ptr)
1079 error_ptr->SetErrorString("Expression stack empty for DW_OP_drop.");
1080 return false;
1081 }
1082 else
1083 stack.pop_back();
1084 break;
1085
1086 //----------------------------------------------------------------------
1087 // OPCODE: DW_OP_over
1088 // OPERANDS: none
1089 // DESCRIPTION: Duplicates the entry currently second in the stack at
1090 // the top of the stack.
1091 //----------------------------------------------------------------------
1092 case DW_OP_over:
1093 if (stack.size() < 2)
1094 {
1095 if (error_ptr)
1096 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_over.");
1097 return false;
1098 }
1099 else
1100 stack.push_back(stack[stack.size() - 2]);
1101 break;
1102
1103
1104 //----------------------------------------------------------------------
1105 // OPCODE: DW_OP_pick
1106 // OPERANDS: uint8_t index into the current stack
1107 // DESCRIPTION: The stack entry with the specified index (0 through 255,
1108 // inclusive) is pushed on the stack
1109 //----------------------------------------------------------------------
1110 case DW_OP_pick:
1111 {
1112 uint8_t pick_idx = opcodes.GetU8(&offset);
1113 if (pick_idx < stack.size())
1114 stack.push_back(stack[pick_idx]);
1115 else
1116 {
1117 if (error_ptr)
1118 error_ptr->SetErrorStringWithFormat("Index %u out of range for DW_OP_pick.\n", pick_idx);
1119 return false;
1120 }
1121 }
1122 break;
1123
1124 //----------------------------------------------------------------------
1125 // OPCODE: DW_OP_swap
1126 // OPERANDS: none
1127 // DESCRIPTION: swaps the top two stack entries. The entry at the top
1128 // of the stack becomes the second stack entry, and the second entry
1129 // becomes the top of the stack
1130 //----------------------------------------------------------------------
1131 case DW_OP_swap:
1132 if (stack.size() < 2)
1133 {
1134 if (error_ptr)
1135 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_swap.");
1136 return false;
1137 }
1138 else
1139 {
1140 tmp = stack.back();
1141 stack.back() = stack[stack.size() - 2];
1142 stack[stack.size() - 2] = tmp;
1143 }
1144 break;
1145
1146 //----------------------------------------------------------------------
1147 // OPCODE: DW_OP_rot
1148 // OPERANDS: none
1149 // DESCRIPTION: Rotates the first three stack entries. The entry at
1150 // the top of the stack becomes the third stack entry, the second
1151 // entry becomes the top of the stack, and the third entry becomes
1152 // the second entry.
1153 //----------------------------------------------------------------------
1154 case DW_OP_rot:
1155 if (stack.size() < 3)
1156 {
1157 if (error_ptr)
1158 error_ptr->SetErrorString("Expression stack needs at least 3 items for DW_OP_rot.");
1159 return false;
1160 }
1161 else
1162 {
1163 size_t last_idx = stack.size() - 1;
1164 Value old_top = stack[last_idx];
1165 stack[last_idx] = stack[last_idx - 1];
1166 stack[last_idx - 1] = stack[last_idx - 2];
1167 stack[last_idx - 2] = old_top;
1168 }
1169 break;
1170
1171 //----------------------------------------------------------------------
1172 // OPCODE: DW_OP_abs
1173 // OPERANDS: none
1174 // DESCRIPTION: pops the top stack entry, interprets it as a signed
1175 // value and pushes its absolute value. If the absolute value can not be
1176 // represented, the result is undefined.
1177 //----------------------------------------------------------------------
1178 case DW_OP_abs:
1179 if (stack.empty())
1180 {
1181 if (error_ptr)
1182 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_abs.");
1183 return false;
1184 }
1185 else if (stack.back().ResolveValue(exe_ctx, ast_context).AbsoluteValue() == false)
1186 {
1187 if (error_ptr)
1188 error_ptr->SetErrorString("Failed to take the absolute value of the first stack item.");
1189 return false;
1190 }
1191 break;
1192
1193 //----------------------------------------------------------------------
1194 // OPCODE: DW_OP_and
1195 // OPERANDS: none
1196 // DESCRIPTION: pops the top two stack values, performs a bitwise and
1197 // operation on the two, and pushes the result.
1198 //----------------------------------------------------------------------
1199 case DW_OP_and:
1200 if (stack.size() < 2)
1201 {
1202 if (error_ptr)
1203 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_and.");
1204 return false;
1205 }
1206 else
1207 {
1208 tmp = stack.back();
1209 stack.pop_back();
1210 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) & tmp.ResolveValue(exe_ctx, ast_context);
1211 }
1212 break;
1213
1214 //----------------------------------------------------------------------
1215 // OPCODE: DW_OP_div
1216 // OPERANDS: none
1217 // DESCRIPTION: pops the top two stack values, divides the former second
1218 // entry by the former top of the stack using signed division, and
1219 // pushes the result.
1220 //----------------------------------------------------------------------
1221 case DW_OP_div:
1222 if (stack.size() < 2)
1223 {
1224 if (error_ptr)
1225 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_div.");
1226 return false;
1227 }
1228 else
1229 {
1230 tmp = stack.back();
1231 if (tmp.ResolveValue(exe_ctx, ast_context).IsZero())
1232 {
1233 if (error_ptr)
1234 error_ptr->SetErrorString("Divide by zero.");
1235 return false;
1236 }
1237 else
1238 {
1239 stack.pop_back();
1240 stack.back() = stack.back().ResolveValue(exe_ctx, ast_context) / tmp.ResolveValue(exe_ctx, ast_context);
1241 if (!stack.back().ResolveValue(exe_ctx, ast_context).IsValid())
1242 {
1243 if (error_ptr)
1244 error_ptr->SetErrorString("Divide failed.");
1245 return false;
1246 }
1247 }
1248 }
1249 break;
1250
1251 //----------------------------------------------------------------------
1252 // OPCODE: DW_OP_minus
1253 // OPERANDS: none
1254 // DESCRIPTION: pops the top two stack values, subtracts the former top
1255 // of the stack from the former second entry, and pushes the result.
1256 //----------------------------------------------------------------------
1257 case DW_OP_minus:
1258 if (stack.size() < 2)
1259 {
1260 if (error_ptr)
1261 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_minus.");
1262 return false;
1263 }
1264 else
1265 {
1266 tmp = stack.back();
1267 stack.pop_back();
1268 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) - tmp.ResolveValue(exe_ctx, ast_context);
1269 }
1270 break;
1271
1272 //----------------------------------------------------------------------
1273 // OPCODE: DW_OP_mod
1274 // OPERANDS: none
1275 // DESCRIPTION: pops the top two stack values and pushes the result of
1276 // the calculation: former second stack entry modulo the former top of
1277 // the stack.
1278 //----------------------------------------------------------------------
1279 case DW_OP_mod:
1280 if (stack.size() < 2)
1281 {
1282 if (error_ptr)
1283 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_mod.");
1284 return false;
1285 }
1286 else
1287 {
1288 tmp = stack.back();
1289 stack.pop_back();
1290 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) % tmp.ResolveValue(exe_ctx, ast_context);
1291 }
1292 break;
1293
1294
1295 //----------------------------------------------------------------------
1296 // OPCODE: DW_OP_mul
1297 // OPERANDS: none
1298 // DESCRIPTION: pops the top two stack entries, multiplies them
1299 // together, and pushes the result.
1300 //----------------------------------------------------------------------
1301 case DW_OP_mul:
1302 if (stack.size() < 2)
1303 {
1304 if (error_ptr)
1305 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_mul.");
1306 return false;
1307 }
1308 else
1309 {
1310 tmp = stack.back();
1311 stack.pop_back();
1312 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) * tmp.ResolveValue(exe_ctx, ast_context);
1313 }
1314 break;
1315
1316 //----------------------------------------------------------------------
1317 // OPCODE: DW_OP_neg
1318 // OPERANDS: none
1319 // DESCRIPTION: pops the top stack entry, and pushes its negation.
1320 //----------------------------------------------------------------------
1321 case DW_OP_neg:
1322 if (stack.empty())
1323 {
1324 if (error_ptr)
1325 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_neg.");
1326 return false;
1327 }
1328 else
1329 {
1330 if (stack.back().ResolveValue(exe_ctx, ast_context).UnaryNegate() == false)
1331 {
1332 if (error_ptr)
1333 error_ptr->SetErrorString("Unary negate failed.");
1334 return false;
1335 }
1336 }
1337 break;
1338
1339 //----------------------------------------------------------------------
1340 // OPCODE: DW_OP_not
1341 // OPERANDS: none
1342 // DESCRIPTION: pops the top stack entry, and pushes its bitwise
1343 // complement
1344 //----------------------------------------------------------------------
1345 case DW_OP_not:
1346 if (stack.empty())
1347 {
1348 if (error_ptr)
1349 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_not.");
1350 return false;
1351 }
1352 else
1353 {
1354 if (stack.back().ResolveValue(exe_ctx, ast_context).OnesComplement() == false)
1355 {
1356 if (error_ptr)
1357 error_ptr->SetErrorString("Logical NOT failed.");
1358 return false;
1359 }
1360 }
1361 break;
1362
1363 //----------------------------------------------------------------------
1364 // OPCODE: DW_OP_or
1365 // OPERANDS: none
1366 // DESCRIPTION: pops the top two stack entries, performs a bitwise or
1367 // operation on the two, and pushes the result.
1368 //----------------------------------------------------------------------
1369 case DW_OP_or:
1370 if (stack.size() < 2)
1371 {
1372 if (error_ptr)
1373 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_or.");
1374 return false;
1375 }
1376 else
1377 {
1378 tmp = stack.back();
1379 stack.pop_back();
1380 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) | tmp.ResolveValue(exe_ctx, ast_context);
1381 }
1382 break;
1383
1384 //----------------------------------------------------------------------
1385 // OPCODE: DW_OP_plus
1386 // OPERANDS: none
1387 // DESCRIPTION: pops the top two stack entries, adds them together, and
1388 // pushes the result.
1389 //----------------------------------------------------------------------
1390 case DW_OP_plus:
1391 if (stack.size() < 2)
1392 {
1393 if (error_ptr)
1394 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_plus.");
1395 return false;
1396 }
1397 else
1398 {
1399 tmp = stack.back();
1400 stack.pop_back();
1401 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) + tmp.ResolveValue(exe_ctx, ast_context);
1402 }
1403 break;
1404
1405 //----------------------------------------------------------------------
1406 // OPCODE: DW_OP_plus_uconst
1407 // OPERANDS: none
1408 // DESCRIPTION: pops the top stack entry, adds it to the unsigned LEB128
1409 // constant operand and pushes the result.
1410 //----------------------------------------------------------------------
1411 case DW_OP_plus_uconst:
1412 if (stack.empty())
1413 {
1414 if (error_ptr)
1415 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_plus_uconst.");
1416 return false;
1417 }
1418 else
1419 {
1420 uint32_t uconst_value = opcodes.GetULEB128(&offset);
1421 // Implicit conversion from a UINT to a Scalar...
1422 stack.back().ResolveValue(exe_ctx, ast_context) += uconst_value;
1423 if (!stack.back().ResolveValue(exe_ctx, ast_context).IsValid())
1424 {
1425 if (error_ptr)
1426 error_ptr->SetErrorString("DW_OP_plus_uconst failed.");
1427 return false;
1428 }
1429 }
1430 break;
1431
1432 //----------------------------------------------------------------------
1433 // OPCODE: DW_OP_shl
1434 // OPERANDS: none
1435 // DESCRIPTION: pops the top two stack entries, shifts the former
1436 // second entry left by the number of bits specified by the former top
1437 // of the stack, and pushes the result.
1438 //----------------------------------------------------------------------
1439 case DW_OP_shl:
1440 if (stack.size() < 2)
1441 {
1442 if (error_ptr)
1443 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_shl.");
1444 return false;
1445 }
1446 else
1447 {
1448 tmp = stack.back();
1449 stack.pop_back();
1450 stack.back().ResolveValue(exe_ctx, ast_context) <<= tmp.ResolveValue(exe_ctx, ast_context);
1451 }
1452 break;
1453
1454 //----------------------------------------------------------------------
1455 // OPCODE: DW_OP_shr
1456 // OPERANDS: none
1457 // DESCRIPTION: pops the top two stack entries, shifts the former second
1458 // entry right logically (filling with zero bits) by the number of bits
1459 // specified by the former top of the stack, and pushes the result.
1460 //----------------------------------------------------------------------
1461 case DW_OP_shr:
1462 if (stack.size() < 2)
1463 {
1464 if (error_ptr)
1465 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_shr.");
1466 return false;
1467 }
1468 else
1469 {
1470 tmp = stack.back();
1471 stack.pop_back();
1472 if (stack.back().ResolveValue(exe_ctx, ast_context).ShiftRightLogical(tmp.ResolveValue(exe_ctx, ast_context)) == false)
1473 {
1474 if (error_ptr)
1475 error_ptr->SetErrorString("DW_OP_shr failed.");
1476 return false;
1477 }
1478 }
1479 break;
1480
1481 //----------------------------------------------------------------------
1482 // OPCODE: DW_OP_shra
1483 // OPERANDS: none
1484 // DESCRIPTION: pops the top two stack entries, shifts the former second
1485 // entry right arithmetically (divide the magnitude by 2, keep the same
1486 // sign for the result) by the number of bits specified by the former
1487 // top of the stack, and pushes the result.
1488 //----------------------------------------------------------------------
1489 case DW_OP_shra:
1490 if (stack.size() < 2)
1491 {
1492 if (error_ptr)
1493 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_shra.");
1494 return false;
1495 }
1496 else
1497 {
1498 tmp = stack.back();
1499 stack.pop_back();
1500 stack.back().ResolveValue(exe_ctx, ast_context) >>= tmp.ResolveValue(exe_ctx, ast_context);
1501 }
1502 break;
1503
1504 //----------------------------------------------------------------------
1505 // OPCODE: DW_OP_xor
1506 // OPERANDS: none
1507 // DESCRIPTION: pops the top two stack entries, performs the bitwise
1508 // exclusive-or operation on the two, and pushes the result.
1509 //----------------------------------------------------------------------
1510 case DW_OP_xor:
1511 if (stack.size() < 2)
1512 {
1513 if (error_ptr)
1514 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_xor.");
1515 return false;
1516 }
1517 else
1518 {
1519 tmp = stack.back();
1520 stack.pop_back();
1521 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) ^ tmp.ResolveValue(exe_ctx, ast_context);
1522 }
1523 break;
1524
1525
1526 //----------------------------------------------------------------------
1527 // OPCODE: DW_OP_skip
1528 // OPERANDS: int16_t
1529 // DESCRIPTION: An unconditional branch. Its single operand is a 2-byte
1530 // signed integer constant. The 2-byte constant is the number of bytes
1531 // of the DWARF expression to skip forward or backward from the current
1532 // operation, beginning after the 2-byte constant.
1533 //----------------------------------------------------------------------
1534 case DW_OP_skip:
1535 {
1536 int16_t skip_offset = (int16_t)opcodes.GetU16(&offset);
1537 uint32_t new_offset = offset + skip_offset;
1538 if (new_offset >= opcodes_offset && new_offset < end_offset)
1539 offset = new_offset;
1540 else
1541 {
1542 if (error_ptr)
1543 error_ptr->SetErrorString("Invalid opcode offset in DW_OP_skip.");
1544 return false;
1545 }
1546 }
1547 break;
1548
1549 //----------------------------------------------------------------------
1550 // OPCODE: DW_OP_bra
1551 // OPERANDS: int16_t
1552 // DESCRIPTION: A conditional branch. Its single operand is a 2-byte
1553 // signed integer constant. This operation pops the top of stack. If
1554 // the value popped is not the constant 0, the 2-byte constant operand
1555 // is the number of bytes of the DWARF expression to skip forward or
1556 // backward from the current operation, beginning after the 2-byte
1557 // constant.
1558 //----------------------------------------------------------------------
1559 case DW_OP_bra:
1560 {
1561 tmp = stack.back();
1562 stack.pop_back();
1563 int16_t bra_offset = (int16_t)opcodes.GetU16(&offset);
1564 Scalar zero(0);
1565 if (tmp.ResolveValue(exe_ctx, ast_context) != zero)
1566 {
1567 uint32_t new_offset = offset + bra_offset;
1568 if (new_offset >= opcodes_offset && new_offset < end_offset)
1569 offset = new_offset;
1570 else
1571 {
1572 if (error_ptr)
1573 error_ptr->SetErrorString("Invalid opcode offset in DW_OP_bra.");
1574 return false;
1575 }
1576 }
1577 }
1578 break;
1579
1580 //----------------------------------------------------------------------
1581 // OPCODE: DW_OP_eq
1582 // OPERANDS: none
1583 // DESCRIPTION: pops the top two stack values, compares using the
1584 // equals (==) operator.
1585 // STACK RESULT: push the constant value 1 onto the stack if the result
1586 // of the operation is true or the constant value 0 if the result of the
1587 // operation is false.
1588 //----------------------------------------------------------------------
1589 case DW_OP_eq:
1590 if (stack.size() < 2)
1591 {
1592 if (error_ptr)
1593 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_eq.");
1594 return false;
1595 }
1596 else
1597 {
1598 tmp = stack.back();
1599 stack.pop_back();
1600 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) == tmp.ResolveValue(exe_ctx, ast_context);
1601 }
1602 break;
1603
1604 //----------------------------------------------------------------------
1605 // OPCODE: DW_OP_ge
1606 // OPERANDS: none
1607 // DESCRIPTION: pops the top two stack values, compares using the
1608 // greater than or equal to (>=) operator.
1609 // STACK RESULT: push the constant value 1 onto the stack if the result
1610 // of the operation is true or the constant value 0 if the result of the
1611 // operation is false.
1612 //----------------------------------------------------------------------
1613 case DW_OP_ge:
1614 if (stack.size() < 2)
1615 {
1616 if (error_ptr)
1617 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_ge.");
1618 return false;
1619 }
1620 else
1621 {
1622 tmp = stack.back();
1623 stack.pop_back();
1624 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) >= tmp.ResolveValue(exe_ctx, ast_context);
1625 }
1626 break;
1627
1628 //----------------------------------------------------------------------
1629 // OPCODE: DW_OP_gt
1630 // OPERANDS: none
1631 // DESCRIPTION: pops the top two stack values, compares using the
1632 // greater than (>) operator.
1633 // STACK RESULT: push the constant value 1 onto the stack if the result
1634 // of the operation is true or the constant value 0 if the result of the
1635 // operation is false.
1636 //----------------------------------------------------------------------
1637 case DW_OP_gt:
1638 if (stack.size() < 2)
1639 {
1640 if (error_ptr)
1641 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_gt.");
1642 return false;
1643 }
1644 else
1645 {
1646 tmp = stack.back();
1647 stack.pop_back();
1648 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) > tmp.ResolveValue(exe_ctx, ast_context);
1649 }
1650 break;
1651
1652 //----------------------------------------------------------------------
1653 // OPCODE: DW_OP_le
1654 // OPERANDS: none
1655 // DESCRIPTION: pops the top two stack values, compares using the
1656 // less than or equal to (<=) operator.
1657 // STACK RESULT: push the constant value 1 onto the stack if the result
1658 // of the operation is true or the constant value 0 if the result of the
1659 // operation is false.
1660 //----------------------------------------------------------------------
1661 case DW_OP_le:
1662 if (stack.size() < 2)
1663 {
1664 if (error_ptr)
1665 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_le.");
1666 return false;
1667 }
1668 else
1669 {
1670 tmp = stack.back();
1671 stack.pop_back();
1672 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) <= tmp.ResolveValue(exe_ctx, ast_context);
1673 }
1674 break;
1675
1676 //----------------------------------------------------------------------
1677 // OPCODE: DW_OP_lt
1678 // OPERANDS: none
1679 // DESCRIPTION: pops the top two stack values, compares using the
1680 // less than (<) operator.
1681 // STACK RESULT: push the constant value 1 onto the stack if the result
1682 // of the operation is true or the constant value 0 if the result of the
1683 // operation is false.
1684 //----------------------------------------------------------------------
1685 case DW_OP_lt:
1686 if (stack.size() < 2)
1687 {
1688 if (error_ptr)
1689 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_lt.");
1690 return false;
1691 }
1692 else
1693 {
1694 tmp = stack.back();
1695 stack.pop_back();
1696 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) < tmp.ResolveValue(exe_ctx, ast_context);
1697 }
1698 break;
1699
1700 //----------------------------------------------------------------------
1701 // OPCODE: DW_OP_ne
1702 // OPERANDS: none
1703 // DESCRIPTION: pops the top two stack values, compares using the
1704 // not equal (!=) operator.
1705 // STACK RESULT: push the constant value 1 onto the stack if the result
1706 // of the operation is true or the constant value 0 if the result of the
1707 // operation is false.
1708 //----------------------------------------------------------------------
1709 case DW_OP_ne:
1710 if (stack.size() < 2)
1711 {
1712 if (error_ptr)
1713 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_ne.");
1714 return false;
1715 }
1716 else
1717 {
1718 tmp = stack.back();
1719 stack.pop_back();
1720 stack.back().ResolveValue(exe_ctx, ast_context) = stack.back().ResolveValue(exe_ctx, ast_context) != tmp.ResolveValue(exe_ctx, ast_context);
1721 }
1722 break;
1723
1724 //----------------------------------------------------------------------
1725 // OPCODE: DW_OP_litn
1726 // OPERANDS: none
1727 // DESCRIPTION: encode the unsigned literal values from 0 through 31.
1728 // STACK RESULT: push the unsigned literal constant value onto the top
1729 // of the stack.
1730 //----------------------------------------------------------------------
1731 case DW_OP_lit0:
1732 case DW_OP_lit1:
1733 case DW_OP_lit2:
1734 case DW_OP_lit3:
1735 case DW_OP_lit4:
1736 case DW_OP_lit5:
1737 case DW_OP_lit6:
1738 case DW_OP_lit7:
1739 case DW_OP_lit8:
1740 case DW_OP_lit9:
1741 case DW_OP_lit10:
1742 case DW_OP_lit11:
1743 case DW_OP_lit12:
1744 case DW_OP_lit13:
1745 case DW_OP_lit14:
1746 case DW_OP_lit15:
1747 case DW_OP_lit16:
1748 case DW_OP_lit17:
1749 case DW_OP_lit18:
1750 case DW_OP_lit19:
1751 case DW_OP_lit20:
1752 case DW_OP_lit21:
1753 case DW_OP_lit22:
1754 case DW_OP_lit23:
1755 case DW_OP_lit24:
1756 case DW_OP_lit25:
1757 case DW_OP_lit26:
1758 case DW_OP_lit27:
1759 case DW_OP_lit28:
1760 case DW_OP_lit29:
1761 case DW_OP_lit30:
1762 case DW_OP_lit31:
1763 stack.push_back(op - DW_OP_lit0);
1764 break;
1765
1766 //----------------------------------------------------------------------
1767 // OPCODE: DW_OP_regN
1768 // OPERANDS: none
1769 // DESCRIPTION: Push the value in register n on the top of the stack.
1770 //----------------------------------------------------------------------
1771 case DW_OP_reg0:
1772 case DW_OP_reg1:
1773 case DW_OP_reg2:
1774 case DW_OP_reg3:
1775 case DW_OP_reg4:
1776 case DW_OP_reg5:
1777 case DW_OP_reg6:
1778 case DW_OP_reg7:
1779 case DW_OP_reg8:
1780 case DW_OP_reg9:
1781 case DW_OP_reg10:
1782 case DW_OP_reg11:
1783 case DW_OP_reg12:
1784 case DW_OP_reg13:
1785 case DW_OP_reg14:
1786 case DW_OP_reg15:
1787 case DW_OP_reg16:
1788 case DW_OP_reg17:
1789 case DW_OP_reg18:
1790 case DW_OP_reg19:
1791 case DW_OP_reg20:
1792 case DW_OP_reg21:
1793 case DW_OP_reg22:
1794 case DW_OP_reg23:
1795 case DW_OP_reg24:
1796 case DW_OP_reg25:
1797 case DW_OP_reg26:
1798 case DW_OP_reg27:
1799 case DW_OP_reg28:
1800 case DW_OP_reg29:
1801 case DW_OP_reg30:
1802 case DW_OP_reg31:
1803 {
1804 reg_num = op - DW_OP_reg0;
1805
1806 if (ReadRegisterValueAsScalar (exe_ctx, reg_kind, reg_num, error_ptr, tmp))
1807 stack.push_back(tmp);
1808 else
1809 return false;
1810 }
1811 break;
1812 //----------------------------------------------------------------------
1813 // OPCODE: DW_OP_regx
1814 // OPERANDS:
1815 // ULEB128 literal operand that encodes the register.
1816 // DESCRIPTION: Push the value in register on the top of the stack.
1817 //----------------------------------------------------------------------
1818 case DW_OP_regx:
1819 {
1820 reg_num = opcodes.GetULEB128(&offset);
1821 if (ReadRegisterValueAsScalar (exe_ctx, reg_kind, reg_num, error_ptr, tmp))
1822 stack.push_back(tmp);
1823 else
1824 return false;
1825 }
1826 break;
1827
1828 //----------------------------------------------------------------------
1829 // OPCODE: DW_OP_bregN
1830 // OPERANDS:
1831 // SLEB128 offset from register N
1832 // DESCRIPTION: Value is in memory at the address specified by register
1833 // N plus an offset.
1834 //----------------------------------------------------------------------
1835 case DW_OP_breg0:
1836 case DW_OP_breg1:
1837 case DW_OP_breg2:
1838 case DW_OP_breg3:
1839 case DW_OP_breg4:
1840 case DW_OP_breg5:
1841 case DW_OP_breg6:
1842 case DW_OP_breg7:
1843 case DW_OP_breg8:
1844 case DW_OP_breg9:
1845 case DW_OP_breg10:
1846 case DW_OP_breg11:
1847 case DW_OP_breg12:
1848 case DW_OP_breg13:
1849 case DW_OP_breg14:
1850 case DW_OP_breg15:
1851 case DW_OP_breg16:
1852 case DW_OP_breg17:
1853 case DW_OP_breg18:
1854 case DW_OP_breg19:
1855 case DW_OP_breg20:
1856 case DW_OP_breg21:
1857 case DW_OP_breg22:
1858 case DW_OP_breg23:
1859 case DW_OP_breg24:
1860 case DW_OP_breg25:
1861 case DW_OP_breg26:
1862 case DW_OP_breg27:
1863 case DW_OP_breg28:
1864 case DW_OP_breg29:
1865 case DW_OP_breg30:
1866 case DW_OP_breg31:
1867 {
1868 reg_num = op - DW_OP_breg0;
1869
1870 if (ReadRegisterValueAsScalar (exe_ctx, reg_kind, reg_num, error_ptr, tmp))
1871 {
1872 int64_t breg_offset = opcodes.GetSLEB128(&offset);
1873 tmp.ResolveValue(exe_ctx, ast_context) += (uint64_t)breg_offset;
1874 stack.push_back(tmp);
1875 stack.back().SetValueType (Value::eValueTypeLoadAddress);
1876 }
1877 else
1878 return false;
1879 }
1880 break;
1881 //----------------------------------------------------------------------
1882 // OPCODE: DW_OP_bregx
1883 // OPERANDS: 2
1884 // ULEB128 literal operand that encodes the register.
1885 // SLEB128 offset from register N
1886 // DESCRIPTION: Value is in memory at the address specified by register
1887 // N plus an offset.
1888 //----------------------------------------------------------------------
1889 case DW_OP_bregx:
1890 {
1891 reg_num = opcodes.GetULEB128(&offset);
1892
1893 if (ReadRegisterValueAsScalar (exe_ctx, reg_kind, reg_num, error_ptr, tmp))
1894 {
1895 int64_t breg_offset = opcodes.GetSLEB128(&offset);
1896 tmp.ResolveValue(exe_ctx, ast_context) += (uint64_t)breg_offset;
1897 stack.push_back(tmp);
1898 stack.back().SetValueType (Value::eValueTypeLoadAddress);
1899 }
1900 else
1901 return false;
1902 }
1903 break;
1904
1905 case DW_OP_fbreg:
1906 if (exe_ctx && exe_ctx->frame)
1907 {
1908 Scalar value;
1909 if (exe_ctx->frame->GetFrameBaseValue(value, error_ptr))
1910 {
1911 int64_t fbreg_offset = opcodes.GetSLEB128(&offset);
1912 value += fbreg_offset;
1913 stack.push_back(value);
1914 stack.back().SetValueType (Value::eValueTypeLoadAddress);
1915 }
1916 else
1917 return false;
1918 }
1919 else
1920 {
1921 if (error_ptr)
1922 error_ptr->SetErrorString ("Invalid stack frame in context for DW_OP_fbreg opcode.");
1923 return false;
1924 }
1925 break;
1926
1927 //----------------------------------------------------------------------
1928 // OPCODE: DW_OP_nop
1929 // OPERANDS: none
1930 // DESCRIPTION: A place holder. It has no effect on the location stack
1931 // or any of its values.
1932 //----------------------------------------------------------------------
1933 case DW_OP_nop:
1934 break;
1935
1936 //----------------------------------------------------------------------
1937 // OPCODE: DW_OP_piece
1938 // OPERANDS: 1
1939 // ULEB128: byte size of the piece
1940 // DESCRIPTION: The operand describes the size in bytes of the piece of
1941 // the object referenced by the DWARF expression whose result is at the
1942 // top of the stack. If the piece is located in a register, but does not
1943 // occupy the entire register, the placement of the piece within that
1944 // register is defined by the ABI.
1945 //
1946 // Many compilers store a single variable in sets of registers, or store
1947 // a variable partially in memory and partially in registers.
1948 // DW_OP_piece provides a way of describing how large a part of a
1949 // variable a particular DWARF expression refers to.
1950 //----------------------------------------------------------------------
1951 case DW_OP_piece:
1952 if (error_ptr)
1953 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_piece.");
1954 return false;
1955
1956 //----------------------------------------------------------------------
1957 // OPCODE: DW_OP_push_object_address
1958 // OPERANDS: none
1959 // DESCRIPTION: Pushes the address of the object currently being
1960 // evaluated as part of evaluation of a user presented expression.
1961 // This object may correspond to an independent variable described by
1962 // its own DIE or it may be a component of an array, structure, or class
1963 // whose address has been dynamically determined by an earlier step
1964 // during user expression evaluation.
1965 //----------------------------------------------------------------------
1966 case DW_OP_push_object_address:
1967 if (error_ptr)
1968 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_push_object_address.");
1969 return false;
1970
1971 //----------------------------------------------------------------------
1972 // OPCODE: DW_OP_call2
1973 // OPERANDS:
1974 // uint16_t compile unit relative offset of a DIE
1975 // DESCRIPTION: Performs subroutine calls during evaluation
1976 // of a DWARF expression. The operand is the 2-byte unsigned offset
1977 // of a debugging information entry in the current compilation unit.
1978 //
1979 // Operand interpretation is exactly like that for DW_FORM_ref2.
1980 //
1981 // This operation transfers control of DWARF expression evaluation
1982 // to the DW_AT_location attribute of the referenced DIE. If there is
1983 // no such attribute, then there is no effect. Execution of the DWARF
1984 // expression of a DW_AT_location attribute may add to and/or remove from
1985 // values on the stack. Execution returns to the point following the call
1986 // when the end of the attribute is reached. Values on the stack at the
1987 // time of the call may be used as parameters by the called expression
1988 // and values left on the stack by the called expression may be used as
1989 // return values by prior agreement between the calling and called
1990 // expressions.
1991 //----------------------------------------------------------------------
1992 case DW_OP_call2:
1993 if (error_ptr)
1994 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_call2.");
1995 return false;
1996 //----------------------------------------------------------------------
1997 // OPCODE: DW_OP_call4
1998 // OPERANDS: 1
1999 // uint32_t compile unit relative offset of a DIE
2000 // DESCRIPTION: Performs a subroutine call during evaluation of a DWARF
2001 // expression. For DW_OP_call4, the operand is a 4-byte unsigned offset
2002 // of a debugging information entry in the current compilation unit.
2003 //
2004 // Operand interpretation DW_OP_call4 is exactly like that for
2005 // DW_FORM_ref4.
2006 //
2007 // This operation transfers control of DWARF expression evaluation
2008 // to the DW_AT_location attribute of the referenced DIE. If there is
2009 // no such attribute, then there is no effect. Execution of the DWARF
2010 // expression of a DW_AT_location attribute may add to and/or remove from
2011 // values on the stack. Execution returns to the point following the call
2012 // when the end of the attribute is reached. Values on the stack at the
2013 // time of the call may be used as parameters by the called expression
2014 // and values left on the stack by the called expression may be used as
2015 // return values by prior agreement between the calling and called
2016 // expressions.
2017 //----------------------------------------------------------------------
2018 case DW_OP_call4:
2019 if (error_ptr)
2020 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_call4.");
2021 return false;
2022
2023
2024 //----------------------------------------------------------------------
2025 // OPCODE: DW_OP_call_ref
2026 // OPERANDS:
2027 // uint32_t absolute DIE offset for 32-bit DWARF or a uint64_t
2028 // absolute DIE offset for 64 bit DWARF.
2029 // DESCRIPTION: Performs a subroutine call during evaluation of a DWARF
2030 // expression. Takes a single operand. In the 32-bit DWARF format, the
2031 // operand is a 4-byte unsigned value; in the 64-bit DWARF format, it
2032 // is an 8-byte unsigned value. The operand is used as the offset of a
2033 // debugging information entry in a .debug_info section which may be
2034 // contained in a shared object for executable other than that
2035 // containing the operator. For references from one shared object or
2036 // executable to another, the relocation must be performed by the
2037 // consumer.
2038 //
2039 // Operand interpretation of DW_OP_call_ref is exactly like that for
2040 // DW_FORM_ref_addr.
2041 //
2042 // This operation transfers control of DWARF expression evaluation
2043 // to the DW_AT_location attribute of the referenced DIE. If there is
2044 // no such attribute, then there is no effect. Execution of the DWARF
2045 // expression of a DW_AT_location attribute may add to and/or remove from
2046 // values on the stack. Execution returns to the point following the call
2047 // when the end of the attribute is reached. Values on the stack at the
2048 // time of the call may be used as parameters by the called expression
2049 // and values left on the stack by the called expression may be used as
2050 // return values by prior agreement between the calling and called
2051 // expressions.
2052 //----------------------------------------------------------------------
2053 case DW_OP_call_ref:
2054 if (error_ptr)
2055 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_call_ref.");
2056 return false;
2057
2058 //----------------------------------------------------------------------
2059 // OPCODE: DW_OP_APPLE_array_ref
2060 // OPERANDS: none
2061 // DESCRIPTION: Pops a value off the stack and uses it as the array
2062 // index. Pops a second value off the stack and uses it as the array
2063 // itself. Pushes a value onto the stack representing the element of
2064 // the array specified by the index.
2065 //----------------------------------------------------------------------
2066 case DW_OP_APPLE_array_ref:
2067 {
2068 if (stack.size() < 2)
2069 {
2070 if (error_ptr)
2071 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_APPLE_array_ref.");
2072 return false;
2073 }
2074
2075 Value index_val = stack.back();
2076 stack.pop_back();
2077 Value array_val = stack.back();
2078 stack.pop_back();
2079
2080 Scalar &index_scalar = index_val.ResolveValue(exe_ctx, ast_context);
2081 int64_t index = index_scalar.SLongLong(LONG_LONG_MAX);
2082
2083 if (index == LONG_LONG_MAX)
2084 {
2085 if (error_ptr)
2086 error_ptr->SetErrorString("Invalid array index.");
2087 return false;
2088 }
2089
2090 if (array_val.GetContextType() != Value::eContextTypeOpaqueClangQualType)
2091 {
2092 if (error_ptr)
2093 error_ptr->SetErrorString("Arrays without Clang types are unhandled at this time.");
2094 return false;
2095 }
2096
2097 if (array_val.GetValueType() != Value::eValueTypeLoadAddress &&
2098 array_val.GetValueType() != Value::eValueTypeHostAddress)
2099 {
2100 if (error_ptr)
2101 error_ptr->SetErrorString("Array must be stored in memory.");
2102 return false;
2103 }
2104
2105 void *array_type = array_val.GetOpaqueClangQualType();
2106
2107 void *member_type;
2108 uint64_t size = 0;
2109
2110 if ((!ClangASTContext::IsPointerType(array_type, &member_type)) &&
2111 (!ClangASTContext::IsArrayType(array_type, &member_type, &size)))
2112 {
2113 if (error_ptr)
2114 error_ptr->SetErrorString("Array reference from something that is neither a pointer nor an array.");
2115 return false;
2116 }
2117
2118 if (size && (index >= size || index < 0))
2119 {
2120 if (error_ptr)
2121 error_ptr->SetErrorStringWithFormat("Out of bounds array access. %lld is not in [0, %llu]", index, size);
2122 return false;
2123 }
2124
2125 uint64_t member_bit_size = ClangASTContext::GetTypeBitSize(ast_context, member_type);
2126 uint64_t member_bit_align = ClangASTContext::GetTypeBitAlign(ast_context, member_type);
2127 uint64_t member_bit_incr = ((member_bit_size + member_bit_align - 1) / member_bit_align) * member_bit_align;
2128 if (member_bit_incr % 8)
2129 {
2130 if (error_ptr)
2131 error_ptr->SetErrorStringWithFormat("Array increment is not byte aligned", index, size);
2132 return false;
2133 }
2134 int64_t member_offset = (int64_t)(member_bit_incr / 8) * index;
2135
2136 Value member;
2137
2138 member.SetContext(Value::eContextTypeOpaqueClangQualType, member_type);
2139 member.SetValueType(array_val.GetValueType());
2140
2141 addr_t array_base = (addr_t)array_val.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
2142 addr_t member_loc = array_base + member_offset;
2143 member.GetScalar() = (uint64_t)member_loc;
2144
2145 stack.push_back(member);
2146 }
2147 break;
2148
2149 //----------------------------------------------------------------------
2150 // OPCODE: DW_OP_APPLE_uninit
2151 // OPERANDS: none
2152 // DESCRIPTION: Lets us know that the value is currently not initialized
2153 //----------------------------------------------------------------------
2154 case DW_OP_APPLE_uninit:
2155 //return eResultTypeErrorUninitialized;
2156 break; // Ignore this as we have seen cases where this value is incorrectly added
2157
2158 //----------------------------------------------------------------------
2159 // OPCODE: DW_OP_APPLE_assign
2160 // OPERANDS: none
2161 // DESCRIPTION: Pops a value off of the stack and assigns it to the next
2162 // item on the stack which must be something assignable (inferior
2163 // Variable, inferior Type with address, inferior register, or
2164 // expression local variable.
2165 //----------------------------------------------------------------------
2166 case DW_OP_APPLE_assign:
2167 if (stack.size() < 2)
2168 {
2169 if (error_ptr)
2170 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_APPLE_assign.");
2171 return false;
2172 }
2173 else
2174 {
2175 tmp = stack.back();
2176 stack.pop_back();
2177 Value::ContextType context_type = stack.back().GetContextType();
2178 StreamString new_value(Stream::eBinary, 4, eByteOrderHost);
2179 switch (context_type)
2180 {
2181 case Value::eContextTypeOpaqueClangQualType:
2182 {
2183 void *clang_type = stack.back().GetOpaqueClangQualType();
2184
2185 if (ClangASTContext::IsAggregateType (clang_type))
2186 {
2187 Value::ValueType source_value_type = tmp.GetValueType();
2188 Value::ValueType target_value_type = stack.back().GetValueType();
2189
2190 addr_t source_addr = (addr_t)tmp.GetScalar().ULongLong();
2191 addr_t target_addr = (addr_t)stack.back().GetScalar().ULongLong();
2192
2193 size_t byte_size = (ClangASTContext::GetTypeBitSize(ast_context, clang_type) + 7) / 8;
2194
2195 switch (source_value_type)
2196 {
2197 case Value::eValueTypeLoadAddress:
2198 switch (target_value_type)
2199 {
2200 case Value::eValueTypeLoadAddress:
2201 {
2202 DataBufferHeap data;
2203 data.SetByteSize(byte_size);
2204
2205 Error error;
2206 if (exe_ctx->process->ReadMemory (source_addr, data.GetBytes(), byte_size, error) != byte_size)
2207 {
2208 if (error_ptr)
2209 error_ptr->SetErrorStringWithFormat ("Couldn't read a composite type from the target: %s", error.AsCString());
2210 return false;
2211 }
2212
2213 if (exe_ctx->process->WriteMemory (target_addr, data.GetBytes(), byte_size, error) != byte_size)
2214 {
2215 if (error_ptr)
2216 error_ptr->SetErrorStringWithFormat ("Couldn't write a composite type to the target: %s", error.AsCString());
2217 return false;
2218 }
2219 }
2220 break;
2221 case Value::eValueTypeHostAddress:
2222 if (exe_ctx->process->GetByteOrder() != Host::GetByteOrder())
2223 {
2224 if (error_ptr)
2225 error_ptr->SetErrorStringWithFormat ("Copy of composite types between incompatible byte orders is unimplemented");
2226 return false;
2227 }
2228 else
2229 {
2230 Error error;
2231 if (exe_ctx->process->ReadMemory (source_addr, (uint8_t*)target_addr, byte_size, error) != byte_size)
2232 {
2233 if (error_ptr)
2234 error_ptr->SetErrorStringWithFormat ("Couldn't read a composite type from the target: %s", error.AsCString());
2235 return false;
2236 }
2237 }
2238 break;
2239 default:
2240 return false;
2241 }
2242 break;
2243 case Value::eValueTypeHostAddress:
2244 switch (target_value_type)
2245 {
2246 case Value::eValueTypeLoadAddress:
2247 if (exe_ctx->process->GetByteOrder() != Host::GetByteOrder())
2248 {
2249 if (error_ptr)
2250 error_ptr->SetErrorStringWithFormat ("Copy of composite types between incompatible byte orders is unimplemented");
2251 return false;
2252 }
2253 else
2254 {
2255 Error error;
2256 if (exe_ctx->process->WriteMemory (target_addr, (uint8_t*)source_addr, byte_size, error) != byte_size)
2257 {
2258 if (error_ptr)
2259 error_ptr->SetErrorStringWithFormat ("Couldn't write a composite type to the target: %s", error.AsCString());
2260 return false;
2261 }
2262 }
2263 case Value::eValueTypeHostAddress:
2264 memcpy ((uint8_t*)target_addr, (uint8_t*)source_addr, byte_size);
2265 break;
2266 default:
2267 return false;
2268 }
2269 }
2270 }
2271 else
2272 {
2273 if (!Type::SetValueFromScalar(ast_context,
2274 clang_type,
2275 tmp.ResolveValue(exe_ctx, ast_context),
2276 new_value))
2277 {
2278 if (error_ptr)
2279 error_ptr->SetErrorStringWithFormat ("Couldn't extract a value from an integral type.\n");
2280 return false;
2281 }
2282
2283 Value::ValueType value_type = stack.back().GetValueType();
2284
2285 switch (value_type)
2286 {
2287 case Value::eValueTypeLoadAddress:
2288 case Value::eValueTypeHostAddress:
2289 {
2290 lldb::AddressType address_type = (value_type == Value::eValueTypeLoadAddress ? eAddressTypeLoad : eAddressTypeHost);
2291 lldb::addr_t addr = stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
2292 if (!Type::WriteToMemory (exe_ctx,
2293 ast_context,
2294 clang_type,
2295 addr,
2296 address_type,
2297 new_value))
2298 {
2299 if (error_ptr)
2300 error_ptr->SetErrorStringWithFormat ("Failed to write value to memory at 0x%llx.\n", addr);
2301 return false;
2302 }
2303 }
2304 break;
2305
2306 default:
2307 break;
2308 }
2309 }
2310 }
2311 break;
2312
2313 default:
2314 if (error_ptr)
2315 error_ptr->SetErrorString ("Assign failed.");
2316 return false;
2317 }
2318 }
2319 break;
2320
2321 //----------------------------------------------------------------------
2322 // OPCODE: DW_OP_APPLE_address_of
2323 // OPERANDS: none
2324 // DESCRIPTION: Pops a value off of the stack and pushed its address.
2325 // The top item on the stack must be a variable, or already be a memory
2326 // location.
2327 //----------------------------------------------------------------------
2328 case DW_OP_APPLE_address_of:
2329 if (stack.empty())
2330 {
2331 if (error_ptr)
2332 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_APPLE_address_of.");
2333 return false;
2334 }
2335 else
2336 {
2337 Value::ValueType value_type = stack.back().GetValueType();
2338 switch (value_type)
2339 {
2340 default:
2341 case Value::eValueTypeScalar: // raw scalar value
2342 if (error_ptr)
2343 error_ptr->SetErrorString("Top stack item isn't a memory based object.");
2344 return false;
2345
2346 case Value::eValueTypeLoadAddress: // load address value
2347 case Value::eValueTypeFileAddress: // file address value
2348 case Value::eValueTypeHostAddress: // host address value (for memory in the process that is using liblldb)
2349 // Taking the address of an object reduces it to the address
2350 // of the value and removes any extra context it had.
2351 //stack.back().SetValueType(Value::eValueTypeScalar);
2352 stack.back().ClearContext();
2353 break;
2354 }
2355 }
2356 break;
2357
2358 //----------------------------------------------------------------------
2359 // OPCODE: DW_OP_APPLE_value_of
2360 // OPERANDS: none
2361 // DESCRIPTION: Pops a value off of the stack and pushed its value.
2362 // The top item on the stack must be a variable, expression variable.
2363 //----------------------------------------------------------------------
2364 case DW_OP_APPLE_value_of:
2365 if (stack.empty())
2366 {
2367 if (error_ptr)
2368 error_ptr->SetErrorString("Expression stack needs at least 1 items for DW_OP_APPLE_value_of.");
2369 return false;
2370 }
2371 else if (!stack.back().ValueOf(exe_ctx, ast_context))
2372 {
2373 if (error_ptr)
2374 error_ptr->SetErrorString ("Top stack item isn't a valid candidate for DW_OP_APPLE_value_of.");
2375 return false;
2376 }
2377 break;
2378
2379 //----------------------------------------------------------------------
2380 // OPCODE: DW_OP_APPLE_deref_type
2381 // OPERANDS: none
2382 // DESCRIPTION: gets the value pointed to by the top stack item
2383 //----------------------------------------------------------------------
2384 case DW_OP_APPLE_deref_type:
2385 {
2386 if (stack.empty())
2387 {
2388 if (error_ptr)
2389 error_ptr->SetErrorString("Expression stack needs at least 1 items for DW_OP_APPLE_deref_type.");
2390 return false;
2391 }
2392
2393 tmp = stack.back();
2394 stack.pop_back();
2395
2396 if (tmp.GetContextType() != Value::eContextTypeOpaqueClangQualType)
2397 {
2398 if (error_ptr)
2399 error_ptr->SetErrorString("Item at top of expression stack must have a Clang type");
2400 return false;
2401 }
2402
2403 void *ptr_type = tmp.GetOpaqueClangQualType();
2404 void *target_type;
2405
2406 if (!ClangASTContext::IsPointerType(ptr_type, &target_type))
2407 {
2408 if (error_ptr)
2409 error_ptr->SetErrorString("Dereferencing a non-pointer type");
2410 return false;
2411 }
2412
2413 // TODO do we want all pointers to be dereferenced as load addresses?
2414 Value::ValueType value_type = tmp.GetValueType();
2415
2416 tmp.ResolveValue(exe_ctx, ast_context);
2417
2418 tmp.SetValueType(value_type);
2419 tmp.SetContext(Value::eContextTypeOpaqueClangQualType, target_type);
2420
2421 stack.push_back(tmp);
2422 }
2423 break;
2424
2425 //----------------------------------------------------------------------
2426 // OPCODE: DW_OP_APPLE_expr_local
2427 // OPERANDS: ULEB128
2428 // DESCRIPTION: pushes the expression local variable index onto the
2429 // stack and set the appropriate context so we know the stack item is
2430 // an expression local variable index.
2431 //----------------------------------------------------------------------
2432 case DW_OP_APPLE_expr_local:
2433 {
2434 uint32_t idx = opcodes.GetULEB128(&offset);
2435 if (expr_locals == NULL)
2436 {
2437 if (error_ptr)
2438 error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_expr_local(%u) opcode encountered with no local variable list.\n", idx);
2439 return false;
2440 }
2441 Value *expr_local_variable = expr_locals->GetVariableAtIndex(idx);
2442 if (expr_local_variable == NULL)
2443 {
2444 if (error_ptr)
2445 error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_expr_local(%u) with invalid index %u.\n", idx, idx);
2446 return false;
2447 }
2448 Value *proxy = expr_local_variable->CreateProxy();
2449 stack.push_back(*proxy);
2450 delete proxy;
2451 //stack.back().SetContext (Value::eContextTypeOpaqueClangQualType, expr_local_variable->GetOpaqueClangQualType());
2452 }
2453 break;
2454
2455 //----------------------------------------------------------------------
2456 // OPCODE: DW_OP_APPLE_extern
2457 // OPERANDS: ULEB128
2458 // DESCRIPTION: pushes a proxy for the extern object index onto the
2459 // stack.
2460 //----------------------------------------------------------------------
2461 case DW_OP_APPLE_extern:
2462 {
2463 uint32_t idx = opcodes.GetULEB128(&offset);
2464 if (!decl_map)
2465 {
2466 if (error_ptr)
2467 error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_extern(%u) opcode encountered with no decl map.\n", idx);
2468 return false;
2469 }
2470 Value *extern_var = decl_map->GetValueForIndex(idx);
2471 if (!extern_var)
2472 {
2473 if (error_ptr)
2474 error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_extern(%u) with invalid index %u.\n", idx, idx);
2475 return false;
2476 }
2477 Value *proxy = extern_var->CreateProxy();
2478 stack.push_back(*proxy);
2479 delete proxy;
2480 }
2481 break;
2482
2483 case DW_OP_APPLE_scalar_cast:
2484 if (stack.empty())
2485 {
2486 if (error_ptr)
2487 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_APPLE_scalar_cast.");
2488 return false;
2489 }
2490 else
2491 {
2492 // Simple scalar cast
2493 if (!stack.back().ResolveValue(exe_ctx, ast_context).Cast((Scalar::Type)opcodes.GetU8(&offset)))
2494 {
2495 if (error_ptr)
2496 error_ptr->SetErrorString("Cast failed.");
2497 return false;
2498 }
2499 }
2500 break;
2501
2502
2503 case DW_OP_APPLE_clang_cast:
2504 if (stack.empty())
2505 {
2506 if (error_ptr)
2507 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_APPLE_clang_cast.");
2508 return false;
2509 }
2510 else
2511 {
2512 void *clang_type = (void *)opcodes.GetMaxU64(&offset, sizeof(void*));
2513 stack.back().SetContext (Value::eContextTypeOpaqueClangQualType, clang_type);
2514 }
2515 break;
2516 //----------------------------------------------------------------------
2517 // OPCODE: DW_OP_APPLE_constf
2518 // OPERANDS: 1 byte float length, followed by that many bytes containing
2519 // the constant float data.
2520 // DESCRIPTION: Push a float value onto the expression stack.
2521 //----------------------------------------------------------------------
2522 case DW_OP_APPLE_constf: // 0xF6 - 1 byte float size, followed by constant float data
2523 {
2524 uint8_t float_length = opcodes.GetU8(&offset);
2525 if (sizeof(float) == float_length)
2526 tmp.ResolveValue(exe_ctx, ast_context) = opcodes.GetFloat (&offset);
2527 else if (sizeof(double) == float_length)
2528 tmp.ResolveValue(exe_ctx, ast_context) = opcodes.GetDouble (&offset);
2529 else if (sizeof(long double) == float_length)
2530 tmp.ResolveValue(exe_ctx, ast_context) = opcodes.GetLongDouble (&offset);
2531 else
2532 {
2533 StreamString new_value;
2534 opcodes.Dump(&new_value, offset, eFormatBytes, 1, float_length, UINT32_MAX, DW_INVALID_ADDRESS, 0, 0);
2535
2536 if (error_ptr)
2537 error_ptr->SetErrorStringWithFormat ("DW_OP_APPLE_constf(<%u> %s) unsupported float size.\n", float_length, new_value.GetData());
2538 return false;
2539 }
2540 tmp.SetValueType(Value::eValueTypeScalar);
2541 tmp.ClearContext();
2542 stack.push_back(tmp);
2543 }
2544 break;
2545 //----------------------------------------------------------------------
2546 // OPCODE: DW_OP_APPLE_clear
2547 // OPERANDS: none
2548 // DESCRIPTION: Clears the expression stack.
2549 //----------------------------------------------------------------------
2550 case DW_OP_APPLE_clear:
2551 stack.clear();
2552 break;
2553
2554 //----------------------------------------------------------------------
2555 // OPCODE: DW_OP_APPLE_error
2556 // OPERANDS: none
2557 // DESCRIPTION: Pops a value off of the stack and pushed its value.
2558 // The top item on the stack must be a variable, expression variable.
2559 //----------------------------------------------------------------------
2560 case DW_OP_APPLE_error: // 0xFF - Stops expression evaluation and returns an error (no args)
2561 if (error_ptr)
2562 error_ptr->SetErrorString ("Generic error.");
2563 return false;
2564 }
2565 }
2566
2567 if (stack.empty())
2568 {
2569 if (error_ptr)
2570 error_ptr->SetErrorString ("Stack empty after evaluation.");
2571 return false;
2572 }
2573 else if (log)
2574 {
2575 log->Printf("\n");
2576 size_t count = stack.size();
2577 for (size_t i=0; i<count; ++i)
2578 {
2579 StreamString new_value;
2580 new_value.Printf("[%zu]", i);
2581 stack[i].Dump(&new_value);
2582 log->Printf("%s", new_value.GetData());
2583 }
2584 }
2585
2586 result = stack.back();
2587 return true; // Return true on success
2588}
2589