| //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the SplitAnalysis class as well as mutator functions for |
| // live range splitting. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "regalloc" |
| #include "SplitKit.h" |
| #include "LiveRangeEdit.h" |
| #include "VirtRegMap.h" |
| #include "llvm/CodeGen/CalcSpillWeights.h" |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h" |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| |
| using namespace llvm; |
| |
| static cl::opt<bool> |
| AllowSplit("spiller-splits-edges", |
| cl::desc("Allow critical edge splitting during spilling")); |
| |
| //===----------------------------------------------------------------------===// |
| // Split Analysis |
| //===----------------------------------------------------------------------===// |
| |
| SplitAnalysis::SplitAnalysis(const MachineFunction &mf, |
| const LiveIntervals &lis, |
| const MachineLoopInfo &mli) |
| : MF(mf), |
| LIS(lis), |
| Loops(mli), |
| TII(*mf.getTarget().getInstrInfo()), |
| CurLI(0) {} |
| |
| void SplitAnalysis::clear() { |
| UseSlots.clear(); |
| UsingInstrs.clear(); |
| UsingBlocks.clear(); |
| UsingLoops.clear(); |
| CurLI = 0; |
| } |
| |
| bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) { |
| MachineBasicBlock *T, *F; |
| SmallVector<MachineOperand, 4> Cond; |
| return !TII.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond); |
| } |
| |
| /// analyzeUses - Count instructions, basic blocks, and loops using CurLI. |
| void SplitAnalysis::analyzeUses() { |
| const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(CurLI->reg), |
| E = MRI.reg_end(); I != E; ++I) { |
| MachineOperand &MO = I.getOperand(); |
| if (MO.isUse() && MO.isUndef()) |
| continue; |
| MachineInstr *MI = MO.getParent(); |
| if (MI->isDebugValue() || !UsingInstrs.insert(MI)) |
| continue; |
| UseSlots.push_back(LIS.getInstructionIndex(MI).getDefIndex()); |
| MachineBasicBlock *MBB = MI->getParent(); |
| if (UsingBlocks[MBB]++) |
| continue; |
| for (MachineLoop *Loop = Loops.getLoopFor(MBB); Loop; |
| Loop = Loop->getParentLoop()) |
| UsingLoops[Loop]++; |
| } |
| array_pod_sort(UseSlots.begin(), UseSlots.end()); |
| DEBUG(dbgs() << " counted " |
| << UsingInstrs.size() << " instrs, " |
| << UsingBlocks.size() << " blocks, " |
| << UsingLoops.size() << " loops.\n"); |
| } |
| |
| void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const { |
| for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) { |
| unsigned count = UsingBlocks.lookup(*I); |
| OS << " BB#" << (*I)->getNumber(); |
| if (count) |
| OS << '(' << count << ')'; |
| } |
| } |
| |
| // Get three sets of basic blocks surrounding a loop: Blocks inside the loop, |
| // predecessor blocks, and exit blocks. |
| void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) { |
| Blocks.clear(); |
| |
| // Blocks in the loop. |
| Blocks.Loop.insert(Loop->block_begin(), Loop->block_end()); |
| |
| // Predecessor blocks. |
| const MachineBasicBlock *Header = Loop->getHeader(); |
| for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(), |
| E = Header->pred_end(); I != E; ++I) |
| if (!Blocks.Loop.count(*I)) |
| Blocks.Preds.insert(*I); |
| |
| // Exit blocks. |
| for (MachineLoop::block_iterator I = Loop->block_begin(), |
| E = Loop->block_end(); I != E; ++I) { |
| const MachineBasicBlock *MBB = *I; |
| for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(), |
| SE = MBB->succ_end(); SI != SE; ++SI) |
| if (!Blocks.Loop.count(*SI)) |
| Blocks.Exits.insert(*SI); |
| } |
| } |
| |
| void SplitAnalysis::print(const LoopBlocks &B, raw_ostream &OS) const { |
| OS << "Loop:"; |
| print(B.Loop, OS); |
| OS << ", preds:"; |
| print(B.Preds, OS); |
| OS << ", exits:"; |
| print(B.Exits, OS); |
| } |
| |
| /// analyzeLoopPeripheralUse - Return an enum describing how CurLI is used in |
| /// and around the Loop. |
| SplitAnalysis::LoopPeripheralUse SplitAnalysis:: |
| analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) { |
| LoopPeripheralUse use = ContainedInLoop; |
| for (BlockCountMap::iterator I = UsingBlocks.begin(), E = UsingBlocks.end(); |
| I != E; ++I) { |
| const MachineBasicBlock *MBB = I->first; |
| // Is this a peripheral block? |
| if (use < MultiPeripheral && |
| (Blocks.Preds.count(MBB) || Blocks.Exits.count(MBB))) { |
| if (I->second > 1) use = MultiPeripheral; |
| else use = SinglePeripheral; |
| continue; |
| } |
| // Is it a loop block? |
| if (Blocks.Loop.count(MBB)) |
| continue; |
| // It must be an unrelated block. |
| DEBUG(dbgs() << ", outside: BB#" << MBB->getNumber()); |
| return OutsideLoop; |
| } |
| return use; |
| } |
| |
| /// getCriticalExits - It may be necessary to partially break critical edges |
| /// leaving the loop if an exit block has predecessors from outside the loop |
| /// periphery. |
| void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks, |
| BlockPtrSet &CriticalExits) { |
| CriticalExits.clear(); |
| |
| // A critical exit block has CurLI live-in, and has a predecessor that is not |
| // in the loop nor a loop predecessor. For such an exit block, the edges |
| // carrying the new variable must be moved to a new pre-exit block. |
| for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end(); |
| I != E; ++I) { |
| const MachineBasicBlock *Exit = *I; |
| // A single-predecessor exit block is definitely not a critical edge. |
| if (Exit->pred_size() == 1) |
| continue; |
| // This exit may not have CurLI live in at all. No need to split. |
| if (!LIS.isLiveInToMBB(*CurLI, Exit)) |
| continue; |
| // Does this exit block have a predecessor that is not a loop block or loop |
| // predecessor? |
| for (MachineBasicBlock::const_pred_iterator PI = Exit->pred_begin(), |
| PE = Exit->pred_end(); PI != PE; ++PI) { |
| const MachineBasicBlock *Pred = *PI; |
| if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred)) |
| continue; |
| // This is a critical exit block, and we need to split the exit edge. |
| CriticalExits.insert(Exit); |
| break; |
| } |
| } |
| } |
| |
| void SplitAnalysis::getCriticalPreds(const SplitAnalysis::LoopBlocks &Blocks, |
| BlockPtrSet &CriticalPreds) { |
| CriticalPreds.clear(); |
| |
| // A critical predecessor block has CurLI live-out, and has a successor that |
| // has CurLI live-in and is not in the loop nor a loop exit block. For such a |
| // predecessor block, we must carry the value in both the 'inside' and |
| // 'outside' registers. |
| for (BlockPtrSet::iterator I = Blocks.Preds.begin(), E = Blocks.Preds.end(); |
| I != E; ++I) { |
| const MachineBasicBlock *Pred = *I; |
| // Definitely not a critical edge. |
| if (Pred->succ_size() == 1) |
| continue; |
| // This block may not have CurLI live out at all if there is a PHI. |
| if (!LIS.isLiveOutOfMBB(*CurLI, Pred)) |
| continue; |
| // Does this block have a successor outside the loop? |
| for (MachineBasicBlock::const_pred_iterator SI = Pred->succ_begin(), |
| SE = Pred->succ_end(); SI != SE; ++SI) { |
| const MachineBasicBlock *Succ = *SI; |
| if (Blocks.Loop.count(Succ) || Blocks.Exits.count(Succ)) |
| continue; |
| if (!LIS.isLiveInToMBB(*CurLI, Succ)) |
| continue; |
| // This is a critical predecessor block. |
| CriticalPreds.insert(Pred); |
| break; |
| } |
| } |
| } |
| |
| /// canSplitCriticalExits - Return true if it is possible to insert new exit |
| /// blocks before the blocks in CriticalExits. |
| bool |
| SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks, |
| BlockPtrSet &CriticalExits) { |
| // If we don't allow critical edge splitting, require no critical exits. |
| if (!AllowSplit) |
| return CriticalExits.empty(); |
| |
| for (BlockPtrSet::iterator I = CriticalExits.begin(), E = CriticalExits.end(); |
| I != E; ++I) { |
| const MachineBasicBlock *Succ = *I; |
| // We want to insert a new pre-exit MBB before Succ, and change all the |
| // in-loop blocks to branch to the pre-exit instead of Succ. |
| // Check that all the in-loop predecessors can be changed. |
| for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(), |
| PE = Succ->pred_end(); PI != PE; ++PI) { |
| const MachineBasicBlock *Pred = *PI; |
| // The external predecessors won't be altered. |
| if (!Blocks.Loop.count(Pred) && !Blocks.Preds.count(Pred)) |
| continue; |
| if (!canAnalyzeBranch(Pred)) |
| return false; |
| } |
| |
| // If Succ's layout predecessor falls through, that too must be analyzable. |
| // We need to insert the pre-exit block in the gap. |
| MachineFunction::const_iterator MFI = Succ; |
| if (MFI == MF.begin()) |
| continue; |
| if (!canAnalyzeBranch(--MFI)) |
| return false; |
| } |
| // No problems found. |
| return true; |
| } |
| |
| void SplitAnalysis::analyze(const LiveInterval *li) { |
| clear(); |
| CurLI = li; |
| analyzeUses(); |
| } |
| |
| void SplitAnalysis::getSplitLoops(LoopPtrSet &Loops) { |
| assert(CurLI && "Call analyze() before getSplitLoops"); |
| if (UsingLoops.empty()) |
| return; |
| |
| LoopBlocks Blocks; |
| BlockPtrSet CriticalExits; |
| |
| // We split around loops where CurLI is used outside the periphery. |
| for (LoopCountMap::const_iterator I = UsingLoops.begin(), |
| E = UsingLoops.end(); I != E; ++I) { |
| const MachineLoop *Loop = I->first; |
| getLoopBlocks(Loop, Blocks); |
| DEBUG({ dbgs() << " "; print(Blocks, dbgs()); }); |
| |
| switch(analyzeLoopPeripheralUse(Blocks)) { |
| case OutsideLoop: |
| break; |
| case MultiPeripheral: |
| // FIXME: We could split a live range with multiple uses in a peripheral |
| // block and still make progress. However, it is possible that splitting |
| // another live range will insert copies into a peripheral block, and |
| // there is a small chance we can enter an infinite loop, inserting copies |
| // forever. |
| // For safety, stick to splitting live ranges with uses outside the |
| // periphery. |
| DEBUG(dbgs() << ": multiple peripheral uses"); |
| break; |
| case ContainedInLoop: |
| DEBUG(dbgs() << ": fully contained\n"); |
| continue; |
| case SinglePeripheral: |
| DEBUG(dbgs() << ": single peripheral use\n"); |
| continue; |
| } |
| // Will it be possible to split around this loop? |
| getCriticalExits(Blocks, CriticalExits); |
| DEBUG(dbgs() << ": " << CriticalExits.size() << " critical exits\n"); |
| if (!canSplitCriticalExits(Blocks, CriticalExits)) |
| continue; |
| // This is a possible split. |
| Loops.insert(Loop); |
| } |
| |
| DEBUG(dbgs() << " getSplitLoops found " << Loops.size() |
| << " candidate loops.\n"); |
| } |
| |
| const MachineLoop *SplitAnalysis::getBestSplitLoop() { |
| LoopPtrSet Loops; |
| getSplitLoops(Loops); |
| if (Loops.empty()) |
| return 0; |
| |
| // Pick the earliest loop. |
| // FIXME: Are there other heuristics to consider? |
| const MachineLoop *Best = 0; |
| SlotIndex BestIdx; |
| for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E; |
| ++I) { |
| SlotIndex Idx = LIS.getMBBStartIdx((*I)->getHeader()); |
| if (!Best || Idx < BestIdx) |
| Best = *I, BestIdx = Idx; |
| } |
| DEBUG(dbgs() << " getBestSplitLoop found " << *Best); |
| return Best; |
| } |
| |
| /// isBypassLoop - Return true if CurLI is live through Loop and has no uses |
| /// inside the loop. Bypass loops are candidates for splitting because it can |
| /// prevent interference inside the loop. |
| bool SplitAnalysis::isBypassLoop(const MachineLoop *Loop) { |
| // If CurLI is live into the loop header and there are no uses in the loop, it |
| // must be live in the entire loop and live on at least one exiting edge. |
| return !UsingLoops.count(Loop) && |
| LIS.isLiveInToMBB(*CurLI, Loop->getHeader()); |
| } |
| |
| /// getBypassLoops - Get all the maximal bypass loops. These are the bypass |
| /// loops whose parent is not a bypass loop. |
| void SplitAnalysis::getBypassLoops(LoopPtrSet &BypassLoops) { |
| SmallVector<MachineLoop*, 8> Todo(Loops.begin(), Loops.end()); |
| while (!Todo.empty()) { |
| MachineLoop *Loop = Todo.pop_back_val(); |
| if (!UsingLoops.count(Loop)) { |
| // This is either a bypass loop or completely irrelevant. |
| if (LIS.isLiveInToMBB(*CurLI, Loop->getHeader())) |
| BypassLoops.insert(Loop); |
| // Either way, skip the child loops. |
| continue; |
| } |
| |
| // The child loops may be bypass loops. |
| Todo.append(Loop->begin(), Loop->end()); |
| } |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // LiveIntervalMap |
| //===----------------------------------------------------------------------===// |
| |
| // Work around the fact that the std::pair constructors are broken for pointer |
| // pairs in some implementations. makeVV(x, 0) works. |
| static inline std::pair<const VNInfo*, VNInfo*> |
| makeVV(const VNInfo *a, VNInfo *b) { |
| return std::make_pair(a, b); |
| } |
| |
| void LiveIntervalMap::reset(LiveInterval *li) { |
| LI = li; |
| Values.clear(); |
| LiveOutCache.clear(); |
| } |
| |
| bool LiveIntervalMap::isComplexMapped(const VNInfo *ParentVNI) const { |
| ValueMap::const_iterator i = Values.find(ParentVNI); |
| return i != Values.end() && i->second == 0; |
| } |
| |
| // defValue - Introduce a LI def for ParentVNI that could be later than |
| // ParentVNI->def. |
| VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) { |
| assert(LI && "call reset first"); |
| assert(ParentVNI && "Mapping NULL value"); |
| assert(Idx.isValid() && "Invalid SlotIndex"); |
| assert(ParentLI.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); |
| |
| // Create a new value. |
| VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator()); |
| |
| // Preserve the PHIDef bit. |
| if (ParentVNI->isPHIDef() && Idx == ParentVNI->def) |
| VNI->setIsPHIDef(true); |
| |
| // Use insert for lookup, so we can add missing values with a second lookup. |
| std::pair<ValueMap::iterator,bool> InsP = |
| Values.insert(makeVV(ParentVNI, Idx == ParentVNI->def ? VNI : 0)); |
| |
| // This is now a complex def. Mark with a NULL in valueMap. |
| if (!InsP.second) |
| InsP.first->second = 0; |
| |
| return VNI; |
| } |
| |
| |
| // mapValue - Find the mapped value for ParentVNI at Idx. |
| // Potentially create phi-def values. |
| VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx, |
| bool *simple) { |
| assert(LI && "call reset first"); |
| assert(ParentVNI && "Mapping NULL value"); |
| assert(Idx.isValid() && "Invalid SlotIndex"); |
| assert(ParentLI.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); |
| |
| // Use insert for lookup, so we can add missing values with a second lookup. |
| std::pair<ValueMap::iterator,bool> InsP = |
| Values.insert(makeVV(ParentVNI, 0)); |
| |
| // This was an unknown value. Create a simple mapping. |
| if (InsP.second) { |
| if (simple) *simple = true; |
| return InsP.first->second = LI->createValueCopy(ParentVNI, |
| LIS.getVNInfoAllocator()); |
| } |
| |
| // This was a simple mapped value. |
| if (InsP.first->second) { |
| if (simple) *simple = true; |
| return InsP.first->second; |
| } |
| |
| // This is a complex mapped value. There may be multiple defs, and we may need |
| // to create phi-defs. |
| if (simple) *simple = false; |
| MachineBasicBlock *IdxMBB = LIS.getMBBFromIndex(Idx); |
| assert(IdxMBB && "No MBB at Idx"); |
| |
| // Is there a def in the same MBB we can extend? |
| if (VNInfo *VNI = extendTo(IdxMBB, Idx)) |
| return VNI; |
| |
| // Now for the fun part. We know that ParentVNI potentially has multiple defs, |
| // and we may need to create even more phi-defs to preserve VNInfo SSA form. |
| // Perform a search for all predecessor blocks where we know the dominating |
| // VNInfo. Insert phi-def VNInfos along the path back to IdxMBB. |
| DEBUG(dbgs() << "\n Reaching defs for BB#" << IdxMBB->getNumber() |
| << " at " << Idx << " in " << *LI << '\n'); |
| |
| // Blocks where LI should be live-in. |
| SmallVector<MachineDomTreeNode*, 16> LiveIn; |
| LiveIn.push_back(MDT[IdxMBB]); |
| |
| // Using LiveOutCache as a visited set, perform a BFS for all reaching defs. |
| for (unsigned i = 0; i != LiveIn.size(); ++i) { |
| MachineBasicBlock *MBB = LiveIn[i]->getBlock(); |
| for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), |
| PE = MBB->pred_end(); PI != PE; ++PI) { |
| MachineBasicBlock *Pred = *PI; |
| // Is this a known live-out block? |
| std::pair<LiveOutMap::iterator,bool> LOIP = |
| LiveOutCache.insert(std::make_pair(Pred, LiveOutPair())); |
| // Yes, we have been here before. |
| if (!LOIP.second) { |
| DEBUG(if (VNInfo *VNI = LOIP.first->second.first) |
| dbgs() << " known valno #" << VNI->id |
| << " at BB#" << Pred->getNumber() << '\n'); |
| continue; |
| } |
| |
| // Does Pred provide a live-out value? |
| SlotIndex Last = LIS.getMBBEndIdx(Pred).getPrevSlot(); |
| if (VNInfo *VNI = extendTo(Pred, Last)) { |
| MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(VNI->def); |
| DEBUG(dbgs() << " found valno #" << VNI->id |
| << " from BB#" << DefMBB->getNumber() |
| << " at BB#" << Pred->getNumber() << '\n'); |
| LiveOutPair &LOP = LOIP.first->second; |
| LOP.first = VNI; |
| LOP.second = MDT[DefMBB]; |
| continue; |
| } |
| // No, we need a live-in value for Pred as well |
| if (Pred != IdxMBB) |
| LiveIn.push_back(MDT[Pred]); |
| } |
| } |
| |
| // We may need to add phi-def values to preserve the SSA form. |
| // This is essentially the same iterative algorithm that SSAUpdater uses, |
| // except we already have a dominator tree, so we don't have to recompute it. |
| VNInfo *IdxVNI = 0; |
| unsigned Changes; |
| do { |
| Changes = 0; |
| DEBUG(dbgs() << " Iterating over " << LiveIn.size() << " blocks.\n"); |
| // Propagate live-out values down the dominator tree, inserting phi-defs when |
| // necessary. Since LiveIn was created by a BFS, going backwards makes it more |
| // likely for us to visit immediate dominators before their children. |
| for (unsigned i = LiveIn.size(); i; --i) { |
| MachineDomTreeNode *Node = LiveIn[i-1]; |
| MachineBasicBlock *MBB = Node->getBlock(); |
| MachineDomTreeNode *IDom = Node->getIDom(); |
| LiveOutPair IDomValue; |
| // We need a live-in value to a block with no immediate dominator? |
| // This is probably an unreachable block that has survived somehow. |
| bool needPHI = !IDom; |
| |
| // Get the IDom live-out value. |
| if (!needPHI) { |
| LiveOutMap::iterator I = LiveOutCache.find(IDom->getBlock()); |
| if (I != LiveOutCache.end()) |
| IDomValue = I->second; |
| else |
| // If IDom is outside our set of live-out blocks, there must be new |
| // defs, and we need a phi-def here. |
| needPHI = true; |
| } |
| |
| // IDom dominates all of our predecessors, but it may not be the immediate |
| // dominator. Check if any of them have live-out values that are properly |
| // dominated by IDom. If so, we need a phi-def here. |
| if (!needPHI) { |
| for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), |
| PE = MBB->pred_end(); PI != PE; ++PI) { |
| LiveOutPair Value = LiveOutCache[*PI]; |
| if (!Value.first || Value.first == IDomValue.first) |
| continue; |
| // This predecessor is carrying something other than IDomValue. |
| // It could be because IDomValue hasn't propagated yet, or it could be |
| // because MBB is in the dominance frontier of that value. |
| if (MDT.dominates(IDom, Value.second)) { |
| needPHI = true; |
| break; |
| } |
| } |
| } |
| |
| // Create a phi-def if required. |
| if (needPHI) { |
| ++Changes; |
| SlotIndex Start = LIS.getMBBStartIdx(MBB); |
| VNInfo *VNI = LI->getNextValue(Start, 0, LIS.getVNInfoAllocator()); |
| VNI->setIsPHIDef(true); |
| DEBUG(dbgs() << " - BB#" << MBB->getNumber() |
| << " phi-def #" << VNI->id << " at " << Start << '\n'); |
| // We no longer need LI to be live-in. |
| LiveIn.erase(LiveIn.begin()+(i-1)); |
| // Blocks in LiveIn are either IdxMBB, or have a value live-through. |
| if (MBB == IdxMBB) |
| IdxVNI = VNI; |
| // Check if we need to update live-out info. |
| LiveOutMap::iterator I = LiveOutCache.find(MBB); |
| if (I == LiveOutCache.end() || I->second.second == Node) { |
| // We already have a live-out defined in MBB, so this must be IdxMBB. |
| assert(MBB == IdxMBB && "Adding phi-def to known live-out"); |
| LI->addRange(LiveRange(Start, Idx.getNextSlot(), VNI)); |
| } else { |
| // This phi-def is also live-out, so color the whole block. |
| LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI)); |
| I->second = LiveOutPair(VNI, Node); |
| } |
| } else if (IDomValue.first) { |
| // No phi-def here. Remember incoming value for IdxMBB. |
| if (MBB == IdxMBB) |
| IdxVNI = IDomValue.first; |
| // Propagate IDomValue if needed: |
| // MBB is live-out and doesn't define its own value. |
| LiveOutMap::iterator I = LiveOutCache.find(MBB); |
| if (I != LiveOutCache.end() && I->second.second != Node && |
| I->second.first != IDomValue.first) { |
| ++Changes; |
| I->second = IDomValue; |
| DEBUG(dbgs() << " - BB#" << MBB->getNumber() |
| << " idom valno #" << IDomValue.first->id |
| << " from BB#" << IDom->getBlock()->getNumber() << '\n'); |
| } |
| } |
| } |
| DEBUG(dbgs() << " - made " << Changes << " changes.\n"); |
| } while (Changes); |
| |
| assert(IdxVNI && "Didn't find value for Idx"); |
| |
| #ifndef NDEBUG |
| // Check the LiveOutCache invariants. |
| for (LiveOutMap::iterator I = LiveOutCache.begin(), E = LiveOutCache.end(); |
| I != E; ++I) { |
| assert(I->first && "Null MBB entry in cache"); |
| assert(I->second.first && "Null VNInfo in cache"); |
| assert(I->second.second && "Null DomTreeNode in cache"); |
| if (I->second.second->getBlock() == I->first) |
| continue; |
| for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(), |
| PE = I->first->pred_end(); PI != PE; ++PI) |
| assert(LiveOutCache.lookup(*PI) == I->second && "Bad invariant"); |
| } |
| #endif |
| |
| // Since we went through the trouble of a full BFS visiting all reaching defs, |
| // the values in LiveIn are now accurate. No more phi-defs are needed |
| // for these blocks, so we can color the live ranges. |
| // This makes the next mapValue call much faster. |
| for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) { |
| MachineBasicBlock *MBB = LiveIn[i]->getBlock(); |
| SlotIndex Start = LIS.getMBBStartIdx(MBB); |
| VNInfo *VNI = LiveOutCache.lookup(MBB).first; |
| |
| // Anything in LiveIn other than IdxMBB is live-through. |
| // In IdxMBB, we should stop at Idx unless the same value is live-out. |
| if (MBB == IdxMBB && IdxVNI != VNI) |
| LI->addRange(LiveRange(Start, Idx.getNextSlot(), IdxVNI)); |
| else |
| LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI)); |
| } |
| |
| return IdxVNI; |
| } |
| |
| #ifndef NDEBUG |
| void LiveIntervalMap::dumpCache() { |
| for (LiveOutMap::iterator I = LiveOutCache.begin(), E = LiveOutCache.end(); |
| I != E; ++I) { |
| assert(I->first && "Null MBB entry in cache"); |
| assert(I->second.first && "Null VNInfo in cache"); |
| assert(I->second.second && "Null DomTreeNode in cache"); |
| dbgs() << " cache: BB#" << I->first->getNumber() |
| << " has valno #" << I->second.first->id << " from BB#" |
| << I->second.second->getBlock()->getNumber() << ", preds"; |
| for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(), |
| PE = I->first->pred_end(); PI != PE; ++PI) |
| dbgs() << " BB#" << (*PI)->getNumber(); |
| dbgs() << '\n'; |
| } |
| dbgs() << " cache: " << LiveOutCache.size() << " entries.\n"; |
| } |
| #endif |
| |
| // extendTo - Find the last LI value defined in MBB at or before Idx. The |
| // ParentLI is assumed to be live at Idx. Extend the live range to Idx. |
| // Return the found VNInfo, or NULL. |
| VNInfo *LiveIntervalMap::extendTo(const MachineBasicBlock *MBB, SlotIndex Idx) { |
| assert(LI && "call reset first"); |
| LiveInterval::iterator I = std::upper_bound(LI->begin(), LI->end(), Idx); |
| if (I == LI->begin()) |
| return 0; |
| --I; |
| if (I->end <= LIS.getMBBStartIdx(MBB)) |
| return 0; |
| if (I->end <= Idx) |
| I->end = Idx.getNextSlot(); |
| return I->valno; |
| } |
| |
| // addSimpleRange - Add a simple range from ParentLI to LI. |
| // ParentVNI must be live in the [Start;End) interval. |
| void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End, |
| const VNInfo *ParentVNI) { |
| assert(LI && "call reset first"); |
| bool simple; |
| VNInfo *VNI = mapValue(ParentVNI, Start, &simple); |
| // A simple mapping is easy. |
| if (simple) { |
| LI->addRange(LiveRange(Start, End, VNI)); |
| return; |
| } |
| |
| // ParentVNI is a complex value. We must map per MBB. |
| MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start); |
| MachineFunction::iterator MBBE = LIS.getMBBFromIndex(End.getPrevSlot()); |
| |
| if (MBB == MBBE) { |
| LI->addRange(LiveRange(Start, End, VNI)); |
| return; |
| } |
| |
| // First block. |
| LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI)); |
| |
| // Run sequence of full blocks. |
| for (++MBB; MBB != MBBE; ++MBB) { |
| Start = LIS.getMBBStartIdx(MBB); |
| LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), |
| mapValue(ParentVNI, Start))); |
| } |
| |
| // Final block. |
| Start = LIS.getMBBStartIdx(MBB); |
| if (Start != End) |
| LI->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start))); |
| } |
| |
| /// addRange - Add live ranges to LI where [Start;End) intersects ParentLI. |
| /// All needed values whose def is not inside [Start;End) must be defined |
| /// beforehand so mapValue will work. |
| void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) { |
| assert(LI && "call reset first"); |
| LiveInterval::const_iterator B = ParentLI.begin(), E = ParentLI.end(); |
| LiveInterval::const_iterator I = std::lower_bound(B, E, Start); |
| |
| // Check if --I begins before Start and overlaps. |
| if (I != B) { |
| --I; |
| if (I->end > Start) |
| addSimpleRange(Start, std::min(End, I->end), I->valno); |
| ++I; |
| } |
| |
| // The remaining ranges begin after Start. |
| for (;I != E && I->start < End; ++I) |
| addSimpleRange(I->start, std::min(End, I->end), I->valno); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Split Editor |
| //===----------------------------------------------------------------------===// |
| |
| /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. |
| SplitEditor::SplitEditor(SplitAnalysis &sa, |
| LiveIntervals &lis, |
| VirtRegMap &vrm, |
| MachineDominatorTree &mdt, |
| LiveRangeEdit &edit) |
| : sa_(sa), LIS(lis), VRM(vrm), |
| MRI(vrm.getMachineFunction().getRegInfo()), |
| MDT(mdt), |
| TII(*vrm.getMachineFunction().getTarget().getInstrInfo()), |
| TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()), |
| Edit(edit), |
| OpenIdx(0), |
| RegAssign(Allocator) |
| { |
| // We don't need an AliasAnalysis since we will only be performing |
| // cheap-as-a-copy remats anyway. |
| Edit.anyRematerializable(LIS, TII, 0); |
| } |
| |
| void SplitEditor::dump() const { |
| if (RegAssign.empty()) { |
| dbgs() << " empty\n"; |
| return; |
| } |
| |
| for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) |
| dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); |
| dbgs() << '\n'; |
| } |
| |
| VNInfo *SplitEditor::defFromParent(unsigned RegIdx, |
| VNInfo *ParentVNI, |
| SlotIndex UseIdx, |
| MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator I) { |
| MachineInstr *CopyMI = 0; |
| SlotIndex Def; |
| LiveInterval *LI = Edit.get(RegIdx); |
| |
| // Attempt cheap-as-a-copy rematerialization. |
| LiveRangeEdit::Remat RM(ParentVNI); |
| if (Edit.canRematerializeAt(RM, UseIdx, true, LIS)) { |
| Def = Edit.rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI); |
| } else { |
| // Can't remat, just insert a copy from parent. |
| CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg) |
| .addReg(Edit.getReg()); |
| Def = LIS.InsertMachineInstrInMaps(CopyMI).getDefIndex(); |
| } |
| |
| // Define the value in Reg. |
| VNInfo *VNI = LIMappers[RegIdx].defValue(ParentVNI, Def); |
| VNI->setCopy(CopyMI); |
| |
| // Add minimal liveness for the new value. |
| Edit.get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI)); |
| return VNI; |
| } |
| |
| /// Create a new virtual register and live interval. |
| void SplitEditor::openIntv() { |
| assert(!OpenIdx && "Previous LI not closed before openIntv"); |
| |
| // Create the complement as index 0. |
| if (Edit.empty()) { |
| Edit.create(MRI, LIS, VRM); |
| LIMappers.push_back(LiveIntervalMap(LIS, MDT, Edit.getParent())); |
| LIMappers.back().reset(Edit.get(0)); |
| } |
| |
| // Create the open interval. |
| OpenIdx = Edit.size(); |
| Edit.create(MRI, LIS, VRM); |
| LIMappers.push_back(LiveIntervalMap(LIS, MDT, Edit.getParent())); |
| LIMappers[OpenIdx].reset(Edit.get(OpenIdx)); |
| } |
| |
| SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { |
| assert(OpenIdx && "openIntv not called before enterIntvBefore"); |
| DEBUG(dbgs() << " enterIntvBefore " << Idx); |
| Idx = Idx.getBaseIndex(); |
| VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx); |
| if (!ParentVNI) { |
| DEBUG(dbgs() << ": not live\n"); |
| return Idx; |
| } |
| DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); |
| MachineInstr *MI = LIS.getInstructionFromIndex(Idx); |
| assert(MI && "enterIntvBefore called with invalid index"); |
| |
| VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); |
| return VNI->def; |
| } |
| |
| SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { |
| assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); |
| SlotIndex End = LIS.getMBBEndIdx(&MBB); |
| SlotIndex Last = End.getPrevSlot(); |
| DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last); |
| VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Last); |
| if (!ParentVNI) { |
| DEBUG(dbgs() << ": not live\n"); |
| return End; |
| } |
| DEBUG(dbgs() << ": valno " << ParentVNI->id); |
| VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, |
| LIS.getLastSplitPoint(Edit.getParent(), &MBB)); |
| RegAssign.insert(VNI->def, End, OpenIdx); |
| DEBUG(dump()); |
| return VNI->def; |
| } |
| |
| /// useIntv - indicate that all instructions in MBB should use OpenLI. |
| void SplitEditor::useIntv(const MachineBasicBlock &MBB) { |
| useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); |
| } |
| |
| void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { |
| assert(OpenIdx && "openIntv not called before useIntv"); |
| DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); |
| RegAssign.insert(Start, End, OpenIdx); |
| DEBUG(dump()); |
| } |
| |
| SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { |
| assert(OpenIdx && "openIntv not called before leaveIntvAfter"); |
| DEBUG(dbgs() << " leaveIntvAfter " << Idx); |
| |
| // The interval must be live beyond the instruction at Idx. |
| Idx = Idx.getBoundaryIndex(); |
| VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx); |
| if (!ParentVNI) { |
| DEBUG(dbgs() << ": not live\n"); |
| return Idx.getNextSlot(); |
| } |
| DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); |
| |
| MachineInstr *MI = LIS.getInstructionFromIndex(Idx); |
| assert(MI && "No instruction at index"); |
| VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), |
| llvm::next(MachineBasicBlock::iterator(MI))); |
| return VNI->def; |
| } |
| |
| SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { |
| assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); |
| SlotIndex Start = LIS.getMBBStartIdx(&MBB); |
| DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); |
| |
| VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Start); |
| if (!ParentVNI) { |
| DEBUG(dbgs() << ": not live\n"); |
| return Start; |
| } |
| |
| VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB, |
| MBB.SkipPHIsAndLabels(MBB.begin())); |
| RegAssign.insert(Start, VNI->def, OpenIdx); |
| DEBUG(dump()); |
| return VNI->def; |
| } |
| |
| void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { |
| assert(OpenIdx && "openIntv not called before overlapIntv"); |
| assert(Edit.getParent().getVNInfoAt(Start) == |
| Edit.getParent().getVNInfoAt(End.getPrevSlot()) && |
| "Parent changes value in extended range"); |
| assert(Edit.get(0)->getVNInfoAt(Start) && "Start must come from leaveIntv*"); |
| assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && |
| "Range cannot span basic blocks"); |
| |
| // Treat this as useIntv() for now. The complement interval will be extended |
| // as needed by mapValue(). |
| DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); |
| RegAssign.insert(Start, End, OpenIdx); |
| DEBUG(dump()); |
| } |
| |
| /// closeIntv - Indicate that we are done editing the currently open |
| /// LiveInterval, and ranges can be trimmed. |
| void SplitEditor::closeIntv() { |
| assert(OpenIdx && "openIntv not called before closeIntv"); |
| OpenIdx = 0; |
| } |
| |
| /// rewriteAssigned - Rewrite all uses of Edit.getReg(). |
| void SplitEditor::rewriteAssigned() { |
| for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit.getReg()), |
| RE = MRI.reg_end(); RI != RE;) { |
| MachineOperand &MO = RI.getOperand(); |
| MachineInstr *MI = MO.getParent(); |
| ++RI; |
| // LiveDebugVariables should have handled all DBG_VALUE instructions. |
| if (MI->isDebugValue()) { |
| DEBUG(dbgs() << "Zapping " << *MI); |
| MO.setReg(0); |
| continue; |
| } |
| |
| // <undef> operands don't really read the register, so just assign them to |
| // the complement. |
| if (MO.isUse() && MO.isUndef()) { |
| MO.setReg(Edit.get(0)->reg); |
| continue; |
| } |
| |
| SlotIndex Idx = LIS.getInstructionIndex(MI); |
| Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex(); |
| |
| // Rewrite to the mapped register at Idx. |
| unsigned RegIdx = RegAssign.lookup(Idx); |
| MO.setReg(Edit.get(RegIdx)->reg); |
| DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t' |
| << Idx << ':' << RegIdx << '\t' << *MI); |
| |
| // Extend liveness to Idx. |
| const VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx); |
| LIMappers[RegIdx].mapValue(ParentVNI, Idx); |
| } |
| } |
| |
| /// rewriteSplit - Rewrite uses of Intvs[0] according to the ConEQ mapping. |
| void SplitEditor::rewriteComponents(const SmallVectorImpl<LiveInterval*> &Intvs, |
| const ConnectedVNInfoEqClasses &ConEq) { |
| for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Intvs[0]->reg), |
| RE = MRI.reg_end(); RI != RE;) { |
| MachineOperand &MO = RI.getOperand(); |
| MachineInstr *MI = MO.getParent(); |
| ++RI; |
| if (MO.isUse() && MO.isUndef()) |
| continue; |
| // DBG_VALUE instructions should have been eliminated earlier. |
| SlotIndex Idx = LIS.getInstructionIndex(MI); |
| Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex(); |
| DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t' |
| << Idx << ':'); |
| const VNInfo *VNI = Intvs[0]->getVNInfoAt(Idx); |
| assert(VNI && "Interval not live at use."); |
| MO.setReg(Intvs[ConEq.getEqClass(VNI)]->reg); |
| DEBUG(dbgs() << VNI->id << '\t' << *MI); |
| } |
| } |
| |
| void SplitEditor::finish() { |
| assert(OpenIdx == 0 && "Previous LI not closed before rewrite"); |
| |
| // At this point, the live intervals in Edit contain VNInfos corresponding to |
| // the inserted copies. |
| |
| // Add the original defs from the parent interval. |
| for (LiveInterval::const_vni_iterator I = Edit.getParent().vni_begin(), |
| E = Edit.getParent().vni_end(); I != E; ++I) { |
| const VNInfo *ParentVNI = *I; |
| if (ParentVNI->isUnused()) |
| continue; |
| LiveIntervalMap &LIM = LIMappers[RegAssign.lookup(ParentVNI->def)]; |
| VNInfo *VNI = LIM.defValue(ParentVNI, ParentVNI->def); |
| LIM.getLI()->addRange(LiveRange(ParentVNI->def, |
| ParentVNI->def.getNextSlot(), VNI)); |
| // Mark all values as complex to force liveness computation. |
| // This should really only be necessary for remat victims, but we are lazy. |
| LIM.markComplexMapped(ParentVNI); |
| } |
| |
| #ifndef NDEBUG |
| // Every new interval must have a def by now, otherwise the split is bogus. |
| for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I) |
| assert((*I)->hasAtLeastOneValue() && "Split interval has no value"); |
| #endif |
| |
| // FIXME: Don't recompute the liveness of all values, infer it from the |
| // overlaps between the parent live interval and RegAssign. |
| // The mapValue algorithm is only necessary when: |
| // - The parent value maps to multiple defs, and new phis are needed, or |
| // - The value has been rematerialized before some uses, and we want to |
| // minimize the live range so it only reaches the remaining uses. |
| // All other values have simple liveness that can be computed from RegAssign |
| // and the parent live interval. |
| |
| // Extend live ranges to be live-out for successor PHI values. |
| for (LiveInterval::const_vni_iterator I = Edit.getParent().vni_begin(), |
| E = Edit.getParent().vni_end(); I != E; ++I) { |
| const VNInfo *PHIVNI = *I; |
| if (PHIVNI->isUnused() || !PHIVNI->isPHIDef()) |
| continue; |
| unsigned RegIdx = RegAssign.lookup(PHIVNI->def); |
| LiveIntervalMap &LIM = LIMappers[RegIdx]; |
| MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def); |
| DEBUG(dbgs() << " map phi in BB#" << MBB->getNumber() << '@' << PHIVNI->def |
| << " -> " << RegIdx << '\n'); |
| for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), |
| PE = MBB->pred_end(); PI != PE; ++PI) { |
| SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot(); |
| DEBUG(dbgs() << " pred BB#" << (*PI)->getNumber() << '@' << End); |
| // The predecessor may not have a live-out value. That is OK, like an |
| // undef PHI operand. |
| if (VNInfo *VNI = Edit.getParent().getVNInfoAt(End)) { |
| DEBUG(dbgs() << " has parent valno #" << VNI->id << " live out\n"); |
| assert(RegAssign.lookup(End) == RegIdx && |
| "Different register assignment in phi predecessor"); |
| LIM.mapValue(VNI, End); |
| } |
| else |
| DEBUG(dbgs() << " is not live-out\n"); |
| } |
| DEBUG(dbgs() << " " << *LIM.getLI() << '\n'); |
| } |
| |
| // Rewrite instructions. |
| rewriteAssigned(); |
| |
| // FIXME: Delete defs that were rematted everywhere. |
| |
| // Get rid of unused values and set phi-kill flags. |
| for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I) |
| (*I)->RenumberValues(LIS); |
| |
| // Now check if any registers were separated into multiple components. |
| ConnectedVNInfoEqClasses ConEQ(LIS); |
| for (unsigned i = 0, e = Edit.size(); i != e; ++i) { |
| // Don't use iterators, they are invalidated by create() below. |
| LiveInterval *li = Edit.get(i); |
| unsigned NumComp = ConEQ.Classify(li); |
| if (NumComp <= 1) |
| continue; |
| DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n'); |
| SmallVector<LiveInterval*, 8> dups; |
| dups.push_back(li); |
| for (unsigned i = 1; i != NumComp; ++i) |
| dups.push_back(&Edit.create(MRI, LIS, VRM)); |
| rewriteComponents(dups, ConEQ); |
| ConEQ.Distribute(&dups[0]); |
| } |
| |
| // Calculate spill weight and allocation hints for new intervals. |
| VirtRegAuxInfo vrai(VRM.getMachineFunction(), LIS, sa_.Loops); |
| for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I){ |
| LiveInterval &li = **I; |
| vrai.CalculateRegClass(li.reg); |
| vrai.CalculateWeightAndHint(li); |
| DEBUG(dbgs() << " new interval " << MRI.getRegClass(li.reg)->getName() |
| << ":" << li << '\n'); |
| } |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Loop Splitting |
| //===----------------------------------------------------------------------===// |
| |
| void SplitEditor::splitAroundLoop(const MachineLoop *Loop) { |
| SplitAnalysis::LoopBlocks Blocks; |
| sa_.getLoopBlocks(Loop, Blocks); |
| |
| DEBUG({ |
| dbgs() << " splitAround"; sa_.print(Blocks, dbgs()); dbgs() << '\n'; |
| }); |
| |
| // Break critical edges as needed. |
| SplitAnalysis::BlockPtrSet CriticalExits; |
| sa_.getCriticalExits(Blocks, CriticalExits); |
| assert(CriticalExits.empty() && "Cannot break critical exits yet"); |
| |
| // Create new live interval for the loop. |
| openIntv(); |
| |
| // Insert copies in the predecessors if live-in to the header. |
| if (LIS.isLiveInToMBB(Edit.getParent(), Loop->getHeader())) { |
| for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(), |
| E = Blocks.Preds.end(); I != E; ++I) { |
| MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I); |
| enterIntvAtEnd(MBB); |
| } |
| } |
| |
| // Switch all loop blocks. |
| for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(), |
| E = Blocks.Loop.end(); I != E; ++I) |
| useIntv(**I); |
| |
| // Insert back copies in the exit blocks. |
| for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(), |
| E = Blocks.Exits.end(); I != E; ++I) { |
| MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I); |
| leaveIntvAtTop(MBB); |
| } |
| |
| // Done. |
| closeIntv(); |
| finish(); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Single Block Splitting |
| //===----------------------------------------------------------------------===// |
| |
| /// getMultiUseBlocks - if CurLI has more than one use in a basic block, it |
| /// may be an advantage to split CurLI for the duration of the block. |
| bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) { |
| // If CurLI is local to one block, there is no point to splitting it. |
| if (UsingBlocks.size() <= 1) |
| return false; |
| // Add blocks with multiple uses. |
| for (BlockCountMap::iterator I = UsingBlocks.begin(), E = UsingBlocks.end(); |
| I != E; ++I) |
| switch (I->second) { |
| case 0: |
| case 1: |
| continue; |
| case 2: { |
| // When there are only two uses and CurLI is both live in and live out, |
| // we don't really win anything by isolating the block since we would be |
| // inserting two copies. |
| // The remaing register would still have two uses in the block. (Unless it |
| // separates into disconnected components). |
| if (LIS.isLiveInToMBB(*CurLI, I->first) && |
| LIS.isLiveOutOfMBB(*CurLI, I->first)) |
| continue; |
| } // Fall through. |
| default: |
| Blocks.insert(I->first); |
| } |
| return !Blocks.empty(); |
| } |
| |
| /// splitSingleBlocks - Split CurLI into a separate live interval inside each |
| /// basic block in Blocks. |
| void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) { |
| DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n"); |
| // Determine the first and last instruction using CurLI in each block. |
| typedef std::pair<SlotIndex,SlotIndex> IndexPair; |
| typedef DenseMap<const MachineBasicBlock*,IndexPair> IndexPairMap; |
| IndexPairMap MBBRange; |
| for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.UsingInstrs.begin(), |
| E = sa_.UsingInstrs.end(); I != E; ++I) { |
| const MachineBasicBlock *MBB = (*I)->getParent(); |
| if (!Blocks.count(MBB)) |
| continue; |
| SlotIndex Idx = LIS.getInstructionIndex(*I); |
| DEBUG(dbgs() << " BB#" << MBB->getNumber() << '\t' << Idx << '\t' << **I); |
| IndexPair &IP = MBBRange[MBB]; |
| if (!IP.first.isValid() || Idx < IP.first) |
| IP.first = Idx; |
| if (!IP.second.isValid() || Idx > IP.second) |
| IP.second = Idx; |
| } |
| |
| // Create a new interval for each block. |
| for (SplitAnalysis::BlockPtrSet::const_iterator I = Blocks.begin(), |
| E = Blocks.end(); I != E; ++I) { |
| IndexPair &IP = MBBRange[*I]; |
| DEBUG(dbgs() << " splitting for BB#" << (*I)->getNumber() << ": [" |
| << IP.first << ';' << IP.second << ")\n"); |
| assert(IP.first.isValid() && IP.second.isValid()); |
| |
| openIntv(); |
| useIntv(enterIntvBefore(IP.first), leaveIntvAfter(IP.second)); |
| closeIntv(); |
| } |
| finish(); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Sub Block Splitting |
| //===----------------------------------------------------------------------===// |
| |
| /// getBlockForInsideSplit - If CurLI is contained inside a single basic block, |
| /// and it wou pay to subdivide the interval inside that block, return it. |
| /// Otherwise return NULL. The returned block can be passed to |
| /// SplitEditor::splitInsideBlock. |
| const MachineBasicBlock *SplitAnalysis::getBlockForInsideSplit() { |
| // The interval must be exclusive to one block. |
| if (UsingBlocks.size() != 1) |
| return 0; |
| // Don't to this for less than 4 instructions. We want to be sure that |
| // splitting actually reduces the instruction count per interval. |
| if (UsingInstrs.size() < 4) |
| return 0; |
| return UsingBlocks.begin()->first; |
| } |
| |
| /// splitInsideBlock - Split CurLI into multiple intervals inside MBB. |
| void SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) { |
| SmallVector<SlotIndex, 32> Uses; |
| Uses.reserve(sa_.UsingInstrs.size()); |
| for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.UsingInstrs.begin(), |
| E = sa_.UsingInstrs.end(); I != E; ++I) |
| if ((*I)->getParent() == MBB) |
| Uses.push_back(LIS.getInstructionIndex(*I)); |
| DEBUG(dbgs() << " splitInsideBlock BB#" << MBB->getNumber() << " for " |
| << Uses.size() << " instructions.\n"); |
| assert(Uses.size() >= 3 && "Need at least 3 instructions"); |
| array_pod_sort(Uses.begin(), Uses.end()); |
| |
| // Simple algorithm: Find the largest gap between uses as determined by slot |
| // indices. Create new intervals for instructions before the gap and after the |
| // gap. |
| unsigned bestPos = 0; |
| int bestGap = 0; |
| DEBUG(dbgs() << " dist (" << Uses[0]); |
| for (unsigned i = 1, e = Uses.size(); i != e; ++i) { |
| int g = Uses[i-1].distance(Uses[i]); |
| DEBUG(dbgs() << ") -" << g << "- (" << Uses[i]); |
| if (g > bestGap) |
| bestPos = i, bestGap = g; |
| } |
| DEBUG(dbgs() << "), best: -" << bestGap << "-\n"); |
| |
| // bestPos points to the first use after the best gap. |
| assert(bestPos > 0 && "Invalid gap"); |
| |
| // FIXME: Don't create intervals for low densities. |
| |
| // First interval before the gap. Don't create single-instr intervals. |
| if (bestPos > 1) { |
| openIntv(); |
| useIntv(enterIntvBefore(Uses.front()), leaveIntvAfter(Uses[bestPos-1])); |
| closeIntv(); |
| } |
| |
| // Second interval after the gap. |
| if (bestPos < Uses.size()-1) { |
| openIntv(); |
| useIntv(enterIntvBefore(Uses[bestPos]), leaveIntvAfter(Uses.back())); |
| closeIntv(); |
| } |
| |
| finish(); |
| } |