| //===-- MachOWriter.cpp - Target-independent Mach-O Writer code -----------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file implements the target-independent Mach-O writer.  This file writes | 
 | // out the Mach-O file in the following order: | 
 | // | 
 | //  #1 FatHeader (universal-only) | 
 | //  #2 FatArch (universal-only, 1 per universal arch) | 
 | //  Per arch: | 
 | //    #3 Header | 
 | //    #4 Load Commands | 
 | //    #5 Sections | 
 | //    #6 Relocations | 
 | //    #7 Symbols | 
 | //    #8 Strings | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "MachOWriter.h" | 
 | #include "llvm/Constants.h" | 
 | #include "llvm/DerivedTypes.h" | 
 | #include "llvm/Module.h" | 
 | #include "llvm/PassManager.h" | 
 | #include "llvm/CodeGen/FileWriters.h" | 
 | #include "llvm/CodeGen/MachineCodeEmitter.h" | 
 | #include "llvm/CodeGen/MachineConstantPool.h" | 
 | #include "llvm/CodeGen/MachineJumpTableInfo.h" | 
 | #include "llvm/Target/TargetAsmInfo.h" | 
 | #include "llvm/Target/TargetJITInfo.h" | 
 | #include "llvm/Support/Mangler.h" | 
 | #include "llvm/Support/MathExtras.h" | 
 | #include "llvm/Support/OutputBuffer.h" | 
 | #include "llvm/Support/Streams.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include <algorithm> | 
 | #include <cstring> | 
 | using namespace llvm; | 
 |  | 
 | /// AddMachOWriter - Concrete function to add the Mach-O writer to the function | 
 | /// pass manager. | 
 | MachineCodeEmitter *llvm::AddMachOWriter(PassManagerBase &PM, | 
 |                                          raw_ostream &O, | 
 |                                          TargetMachine &TM) { | 
 |   MachOWriter *MOW = new MachOWriter(O, TM); | 
 |   PM.add(MOW); | 
 |   return &MOW->getMachineCodeEmitter(); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                       MachOCodeEmitter Implementation | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | namespace llvm { | 
 |   /// MachOCodeEmitter - This class is used by the MachOWriter to emit the code  | 
 |   /// for functions to the Mach-O file. | 
 |   class MachOCodeEmitter : public MachineCodeEmitter { | 
 |     MachOWriter &MOW; | 
 |  | 
 |     /// Target machine description. | 
 |     TargetMachine &TM; | 
 |  | 
 |     /// is64Bit/isLittleEndian - This information is inferred from the target | 
 |     /// machine directly, indicating what header values and flags to set. | 
 |     bool is64Bit, isLittleEndian; | 
 |  | 
 |     /// Relocations - These are the relocations that the function needs, as | 
 |     /// emitted. | 
 |     std::vector<MachineRelocation> Relocations; | 
 |      | 
 |     /// CPLocations - This is a map of constant pool indices to offsets from the | 
 |     /// start of the section for that constant pool index. | 
 |     std::vector<intptr_t> CPLocations; | 
 |  | 
 |     /// CPSections - This is a map of constant pool indices to the MachOSection | 
 |     /// containing the constant pool entry for that index. | 
 |     std::vector<unsigned> CPSections; | 
 |  | 
 |     /// JTLocations - This is a map of jump table indices to offsets from the | 
 |     /// start of the section for that jump table index. | 
 |     std::vector<intptr_t> JTLocations; | 
 |  | 
 |     /// MBBLocations - This vector is a mapping from MBB ID's to their address. | 
 |     /// It is filled in by the StartMachineBasicBlock callback and queried by | 
 |     /// the getMachineBasicBlockAddress callback. | 
 |     std::vector<intptr_t> MBBLocations; | 
 |      | 
 |   public: | 
 |     MachOCodeEmitter(MachOWriter &mow) : MOW(mow), TM(MOW.TM) { | 
 |       is64Bit = TM.getTargetData()->getPointerSizeInBits() == 64; | 
 |       isLittleEndian = TM.getTargetData()->isLittleEndian(); | 
 |     } | 
 |  | 
 |     virtual void startFunction(MachineFunction &MF); | 
 |     virtual bool finishFunction(MachineFunction &MF); | 
 |  | 
 |     virtual void addRelocation(const MachineRelocation &MR) { | 
 |       Relocations.push_back(MR); | 
 |     } | 
 |      | 
 |     void emitConstantPool(MachineConstantPool *MCP); | 
 |     void emitJumpTables(MachineJumpTableInfo *MJTI); | 
 |      | 
 |     virtual intptr_t getConstantPoolEntryAddress(unsigned Index) const { | 
 |       assert(CPLocations.size() > Index && "CP not emitted!"); | 
 |       return CPLocations[Index]; | 
 |     } | 
 |     virtual intptr_t getJumpTableEntryAddress(unsigned Index) const { | 
 |       assert(JTLocations.size() > Index && "JT not emitted!"); | 
 |       return JTLocations[Index]; | 
 |     } | 
 |  | 
 |     virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) { | 
 |       if (MBBLocations.size() <= (unsigned)MBB->getNumber()) | 
 |         MBBLocations.resize((MBB->getNumber()+1)*2); | 
 |       MBBLocations[MBB->getNumber()] = getCurrentPCOffset(); | 
 |     } | 
 |  | 
 |     virtual intptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const { | 
 |       assert(MBBLocations.size() > (unsigned)MBB->getNumber() &&  | 
 |              MBBLocations[MBB->getNumber()] && "MBB not emitted!"); | 
 |       return MBBLocations[MBB->getNumber()]; | 
 |     } | 
 |  | 
 |     virtual intptr_t getLabelAddress(uint64_t Label) const { | 
 |       assert(0 && "get Label not implemented"); | 
 |       abort(); | 
 |       return 0; | 
 |     } | 
 |  | 
 |     virtual void emitLabel(uint64_t LabelID) { | 
 |       assert(0 && "emit Label not implemented"); | 
 |       abort(); | 
 |     } | 
 |  | 
 |  | 
 |     virtual void setModuleInfo(llvm::MachineModuleInfo* MMI) { } | 
 |  | 
 |     /// JIT SPECIFIC FUNCTIONS - DO NOT IMPLEMENT THESE HERE! | 
 |     virtual void startFunctionStub(const GlobalValue* F, unsigned StubSize, | 
 |                                    unsigned Alignment = 1) { | 
 |       assert(0 && "JIT specific function called!"); | 
 |       abort(); | 
 |     } | 
 |     virtual void *finishFunctionStub(const GlobalValue* F) { | 
 |       assert(0 && "JIT specific function called!"); | 
 |       abort(); | 
 |       return 0; | 
 |     } | 
 |   }; | 
 | } | 
 |  | 
 | /// startFunction - This callback is invoked when a new machine function is | 
 | /// about to be emitted. | 
 | void MachOCodeEmitter::startFunction(MachineFunction &MF) { | 
 |   const TargetData *TD = TM.getTargetData(); | 
 |   const Function *F = MF.getFunction(); | 
 |  | 
 |   // Align the output buffer to the appropriate alignment, power of 2. | 
 |   unsigned FnAlign = F->getAlignment(); | 
 |   unsigned TDAlign = TD->getPrefTypeAlignment(F->getType()); | 
 |   unsigned Align = Log2_32(std::max(FnAlign, TDAlign)); | 
 |   assert(!(Align & (Align-1)) && "Alignment is not a power of two!"); | 
 |  | 
 |   // Get the Mach-O Section that this function belongs in. | 
 |   MachOWriter::MachOSection *MOS = MOW.getTextSection(); | 
 |    | 
 |   // FIXME: better memory management | 
 |   MOS->SectionData.reserve(4096); | 
 |   BufferBegin = &MOS->SectionData[0]; | 
 |   BufferEnd = BufferBegin + MOS->SectionData.capacity(); | 
 |  | 
 |   // Upgrade the section alignment if required. | 
 |   if (MOS->align < Align) MOS->align = Align; | 
 |  | 
 |   // Round the size up to the correct alignment for starting the new function. | 
 |   if ((MOS->size & ((1 << Align) - 1)) != 0) { | 
 |     MOS->size += (1 << Align); | 
 |     MOS->size &= ~((1 << Align) - 1); | 
 |   } | 
 |  | 
 |   // FIXME: Using MOS->size directly here instead of calculating it from the | 
 |   // output buffer size (impossible because the code emitter deals only in raw | 
 |   // bytes) forces us to manually synchronize size and write padding zero bytes | 
 |   // to the output buffer for all non-text sections.  For text sections, we do | 
 |   // not synchonize the output buffer, and we just blow up if anyone tries to | 
 |   // write non-code to it.  An assert should probably be added to | 
 |   // AddSymbolToSection to prevent calling it on the text section. | 
 |   CurBufferPtr = BufferBegin + MOS->size; | 
 |  | 
 |   // Clear per-function data structures. | 
 |   CPLocations.clear(); | 
 |   CPSections.clear(); | 
 |   JTLocations.clear(); | 
 |   MBBLocations.clear(); | 
 | } | 
 |  | 
 | /// finishFunction - This callback is invoked after the function is completely | 
 | /// finished. | 
 | bool MachOCodeEmitter::finishFunction(MachineFunction &MF) { | 
 |   // Get the Mach-O Section that this function belongs in. | 
 |   MachOWriter::MachOSection *MOS = MOW.getTextSection(); | 
 |  | 
 |   // Get a symbol for the function to add to the symbol table | 
 |   // FIXME: it seems like we should call something like AddSymbolToSection | 
 |   // in startFunction rather than changing the section size and symbol n_value | 
 |   // here. | 
 |   const GlobalValue *FuncV = MF.getFunction(); | 
 |   MachOSym FnSym(FuncV, MOW.Mang->getValueName(FuncV), MOS->Index, TM); | 
 |   FnSym.n_value = MOS->size; | 
 |   MOS->size = CurBufferPtr - BufferBegin; | 
 |    | 
 |   // Emit constant pool to appropriate section(s) | 
 |   emitConstantPool(MF.getConstantPool()); | 
 |  | 
 |   // Emit jump tables to appropriate section | 
 |   emitJumpTables(MF.getJumpTableInfo()); | 
 |    | 
 |   // If we have emitted any relocations to function-specific objects such as  | 
 |   // basic blocks, constant pools entries, or jump tables, record their | 
 |   // addresses now so that we can rewrite them with the correct addresses | 
 |   // later. | 
 |   for (unsigned i = 0, e = Relocations.size(); i != e; ++i) { | 
 |     MachineRelocation &MR = Relocations[i]; | 
 |     intptr_t Addr; | 
 |  | 
 |     if (MR.isBasicBlock()) { | 
 |       Addr = getMachineBasicBlockAddress(MR.getBasicBlock()); | 
 |       MR.setConstantVal(MOS->Index); | 
 |       MR.setResultPointer((void*)Addr); | 
 |     } else if (MR.isJumpTableIndex()) { | 
 |       Addr = getJumpTableEntryAddress(MR.getJumpTableIndex()); | 
 |       MR.setConstantVal(MOW.getJumpTableSection()->Index); | 
 |       MR.setResultPointer((void*)Addr); | 
 |     } else if (MR.isConstantPoolIndex()) { | 
 |       Addr = getConstantPoolEntryAddress(MR.getConstantPoolIndex()); | 
 |       MR.setConstantVal(CPSections[MR.getConstantPoolIndex()]); | 
 |       MR.setResultPointer((void*)Addr); | 
 |     } else if (MR.isGlobalValue()) { | 
 |       // FIXME: This should be a set or something that uniques | 
 |       MOW.PendingGlobals.push_back(MR.getGlobalValue()); | 
 |     } else { | 
 |       assert(0 && "Unhandled relocation type"); | 
 |     } | 
 |     MOS->Relocations.push_back(MR); | 
 |   } | 
 |   Relocations.clear(); | 
 |    | 
 |   // Finally, add it to the symtab. | 
 |   MOW.SymbolTable.push_back(FnSym); | 
 |   return false; | 
 | } | 
 |  | 
 | /// emitConstantPool - For each constant pool entry, figure out which section | 
 | /// the constant should live in, allocate space for it, and emit it to the  | 
 | /// Section data buffer. | 
 | void MachOCodeEmitter::emitConstantPool(MachineConstantPool *MCP) { | 
 |   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); | 
 |   if (CP.empty()) return; | 
 |  | 
 |   // FIXME: handle PIC codegen | 
 |   bool isPIC = TM.getRelocationModel() == Reloc::PIC_; | 
 |   assert(!isPIC && "PIC codegen not yet handled for mach-o jump tables!"); | 
 |  | 
 |   // Although there is no strict necessity that I am aware of, we will do what | 
 |   // gcc for OS X does and put each constant pool entry in a section of constant | 
 |   // objects of a certain size.  That means that float constants go in the | 
 |   // literal4 section, and double objects go in literal8, etc. | 
 |   // | 
 |   // FIXME: revisit this decision if we ever do the "stick everything into one | 
 |   // "giant object for PIC" optimization. | 
 |   for (unsigned i = 0, e = CP.size(); i != e; ++i) { | 
 |     const Type *Ty = CP[i].getType(); | 
 |     unsigned Size = TM.getTargetData()->getABITypeSize(Ty); | 
 |  | 
 |     MachOWriter::MachOSection *Sec = MOW.getConstSection(CP[i].Val.ConstVal); | 
 |     OutputBuffer SecDataOut(Sec->SectionData, is64Bit, isLittleEndian); | 
 |  | 
 |     CPLocations.push_back(Sec->SectionData.size()); | 
 |     CPSections.push_back(Sec->Index); | 
 |      | 
 |     // FIXME: remove when we have unified size + output buffer | 
 |     Sec->size += Size; | 
 |  | 
 |     // Allocate space in the section for the global. | 
 |     // FIXME: need alignment? | 
 |     // FIXME: share between here and AddSymbolToSection? | 
 |     for (unsigned j = 0; j < Size; ++j) | 
 |       SecDataOut.outbyte(0); | 
 |  | 
 |     MOW.InitMem(CP[i].Val.ConstVal, &Sec->SectionData[0], CPLocations[i], | 
 |                 TM.getTargetData(), Sec->Relocations); | 
 |   } | 
 | } | 
 |  | 
 | /// emitJumpTables - Emit all the jump tables for a given jump table info | 
 | /// record to the appropriate section. | 
 | void MachOCodeEmitter::emitJumpTables(MachineJumpTableInfo *MJTI) { | 
 |   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); | 
 |   if (JT.empty()) return; | 
 |  | 
 |   // FIXME: handle PIC codegen | 
 |   bool isPIC = TM.getRelocationModel() == Reloc::PIC_; | 
 |   assert(!isPIC && "PIC codegen not yet handled for mach-o jump tables!"); | 
 |  | 
 |   MachOWriter::MachOSection *Sec = MOW.getJumpTableSection(); | 
 |   unsigned TextSecIndex = MOW.getTextSection()->Index; | 
 |   OutputBuffer SecDataOut(Sec->SectionData, is64Bit, isLittleEndian); | 
 |  | 
 |   for (unsigned i = 0, e = JT.size(); i != e; ++i) { | 
 |     // For each jump table, record its offset from the start of the section, | 
 |     // reserve space for the relocations to the MBBs, and add the relocations. | 
 |     const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs; | 
 |     JTLocations.push_back(Sec->SectionData.size()); | 
 |     for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) { | 
 |       MachineRelocation MR(MOW.GetJTRelocation(Sec->SectionData.size(), | 
 |                                                MBBs[mi])); | 
 |       MR.setResultPointer((void *)JTLocations[i]); | 
 |       MR.setConstantVal(TextSecIndex); | 
 |       Sec->Relocations.push_back(MR); | 
 |       SecDataOut.outaddr(0); | 
 |     } | 
 |   } | 
 |   // FIXME: remove when we have unified size + output buffer | 
 |   Sec->size = Sec->SectionData.size(); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                          MachOWriter Implementation | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | char MachOWriter::ID = 0; | 
 | MachOWriter::MachOWriter(raw_ostream &o, TargetMachine &tm)  | 
 |   : MachineFunctionPass(&ID), O(o), TM(tm) { | 
 |   is64Bit = TM.getTargetData()->getPointerSizeInBits() == 64; | 
 |   isLittleEndian = TM.getTargetData()->isLittleEndian(); | 
 |  | 
 |   // Create the machine code emitter object for this target. | 
 |   MCE = new MachOCodeEmitter(*this); | 
 | } | 
 |  | 
 | MachOWriter::~MachOWriter() { | 
 |   delete MCE; | 
 | } | 
 |  | 
 | void MachOWriter::AddSymbolToSection(MachOSection *Sec, GlobalVariable *GV) { | 
 |   const Type *Ty = GV->getType()->getElementType(); | 
 |   unsigned Size = TM.getTargetData()->getABITypeSize(Ty); | 
 |   unsigned Align = TM.getTargetData()->getPreferredAlignment(GV); | 
 |  | 
 |   // Reserve space in the .bss section for this symbol while maintaining the | 
 |   // desired section alignment, which must be at least as much as required by | 
 |   // this symbol. | 
 |   OutputBuffer SecDataOut(Sec->SectionData, is64Bit, isLittleEndian); | 
 |  | 
 |   if (Align) { | 
 |     uint64_t OrigSize = Sec->size; | 
 |     Align = Log2_32(Align); | 
 |     Sec->align = std::max(unsigned(Sec->align), Align); | 
 |     Sec->size = (Sec->size + Align - 1) & ~(Align-1); | 
 |      | 
 |     // Add alignment padding to buffer as well. | 
 |     // FIXME: remove when we have unified size + output buffer | 
 |     unsigned AlignedSize = Sec->size - OrigSize; | 
 |     for (unsigned i = 0; i < AlignedSize; ++i) | 
 |       SecDataOut.outbyte(0); | 
 |   } | 
 |   // Globals without external linkage apparently do not go in the symbol table. | 
 |   if (GV->getLinkage() != GlobalValue::InternalLinkage) { | 
 |     MachOSym Sym(GV, Mang->getValueName(GV), Sec->Index, TM); | 
 |     Sym.n_value = Sec->size; | 
 |     SymbolTable.push_back(Sym); | 
 |   } | 
 |  | 
 |   // Record the offset of the symbol, and then allocate space for it. | 
 |   // FIXME: remove when we have unified size + output buffer | 
 |   Sec->size += Size; | 
 |    | 
 |   // Now that we know what section the GlovalVariable is going to be emitted  | 
 |   // into, update our mappings. | 
 |   // FIXME: We may also need to update this when outputting non-GlobalVariable | 
 |   // GlobalValues such as functions. | 
 |   GVSection[GV] = Sec; | 
 |   GVOffset[GV] = Sec->SectionData.size(); | 
 |    | 
 |   // Allocate space in the section for the global. | 
 |   for (unsigned i = 0; i < Size; ++i) | 
 |     SecDataOut.outbyte(0); | 
 | } | 
 |  | 
 | void MachOWriter::EmitGlobal(GlobalVariable *GV) { | 
 |   const Type *Ty = GV->getType()->getElementType(); | 
 |   unsigned Size = TM.getTargetData()->getABITypeSize(Ty); | 
 |   bool NoInit = !GV->hasInitializer(); | 
 |    | 
 |   // If this global has a zero initializer, it is part of the .bss or common | 
 |   // section. | 
 |   if (NoInit || GV->getInitializer()->isNullValue()) { | 
 |     // If this global is part of the common block, add it now.  Variables are | 
 |     // part of the common block if they are zero initialized and allowed to be | 
 |     // merged with other symbols. | 
 |     if (NoInit || GV->hasLinkOnceLinkage() || GV->hasWeakLinkage() || | 
 |         GV->hasCommonLinkage()) { | 
 |       MachOSym ExtOrCommonSym(GV, Mang->getValueName(GV), MachOSym::NO_SECT,TM); | 
 |       // For undefined (N_UNDF) external (N_EXT) types, n_value is the size in | 
 |       // bytes of the symbol. | 
 |       ExtOrCommonSym.n_value = Size; | 
 |       SymbolTable.push_back(ExtOrCommonSym); | 
 |       // Remember that we've seen this symbol | 
 |       GVOffset[GV] = Size; | 
 |       return; | 
 |     } | 
 |     // Otherwise, this symbol is part of the .bss section. | 
 |     MachOSection *BSS = getBSSSection(); | 
 |     AddSymbolToSection(BSS, GV); | 
 |     return; | 
 |   } | 
 |    | 
 |   // Scalar read-only data goes in a literal section if the scalar is 4, 8, or | 
 |   // 16 bytes, or a cstring.  Other read only data goes into a regular const | 
 |   // section.  Read-write data goes in the data section. | 
 |   MachOSection *Sec = GV->isConstant() ? getConstSection(GV->getInitializer()) :  | 
 |                                          getDataSection(); | 
 |   AddSymbolToSection(Sec, GV); | 
 |   InitMem(GV->getInitializer(), &Sec->SectionData[0], GVOffset[GV], | 
 |           TM.getTargetData(), Sec->Relocations); | 
 | } | 
 |  | 
 |  | 
 | bool MachOWriter::runOnMachineFunction(MachineFunction &MF) { | 
 |   // Nothing to do here, this is all done through the MCE object. | 
 |   return false; | 
 | } | 
 |  | 
 | bool MachOWriter::doInitialization(Module &M) { | 
 |   // Set the magic value, now that we know the pointer size and endianness | 
 |   Header.setMagic(isLittleEndian, is64Bit); | 
 |  | 
 |   // Set the file type | 
 |   // FIXME: this only works for object files, we do not support the creation | 
 |   //        of dynamic libraries or executables at this time. | 
 |   Header.filetype = MachOHeader::MH_OBJECT; | 
 |  | 
 |   Mang = new Mangler(M); | 
 |   return false; | 
 | } | 
 |  | 
 | /// doFinalization - Now that the module has been completely processed, emit | 
 | /// the Mach-O file to 'O'. | 
 | bool MachOWriter::doFinalization(Module &M) { | 
 |   // FIXME: we don't handle debug info yet, we should probably do that. | 
 |  | 
 |   // Okay, the.text section has been completed, build the .data, .bss, and  | 
 |   // "common" sections next. | 
 |   for (Module::global_iterator I = M.global_begin(), E = M.global_end(); | 
 |        I != E; ++I) | 
 |     EmitGlobal(I); | 
 |    | 
 |   // Emit the header and load commands. | 
 |   EmitHeaderAndLoadCommands(); | 
 |  | 
 |   // Emit the various sections and their relocation info. | 
 |   EmitSections(); | 
 |  | 
 |   // Write the symbol table and the string table to the end of the file. | 
 |   O.write((char*)&SymT[0], SymT.size()); | 
 |   O.write((char*)&StrT[0], StrT.size()); | 
 |  | 
 |   // We are done with the abstract symbols. | 
 |   SectionList.clear(); | 
 |   SymbolTable.clear(); | 
 |   DynamicSymbolTable.clear(); | 
 |  | 
 |   // Release the name mangler object. | 
 |   delete Mang; Mang = 0; | 
 |   return false; | 
 | } | 
 |  | 
 | void MachOWriter::EmitHeaderAndLoadCommands() { | 
 |   // Step #0: Fill in the segment load command size, since we need it to figure | 
 |   //          out the rest of the header fields | 
 |   MachOSegment SEG("", is64Bit); | 
 |   SEG.nsects  = SectionList.size(); | 
 |   SEG.cmdsize = SEG.cmdSize(is64Bit) +  | 
 |                 SEG.nsects * SectionList[0]->cmdSize(is64Bit); | 
 |    | 
 |   // Step #1: calculate the number of load commands.  We always have at least | 
 |   //          one, for the LC_SEGMENT load command, plus two for the normal | 
 |   //          and dynamic symbol tables, if there are any symbols. | 
 |   Header.ncmds = SymbolTable.empty() ? 1 : 3; | 
 |    | 
 |   // Step #2: calculate the size of the load commands | 
 |   Header.sizeofcmds = SEG.cmdsize; | 
 |   if (!SymbolTable.empty()) | 
 |     Header.sizeofcmds += SymTab.cmdsize + DySymTab.cmdsize; | 
 |      | 
 |   // Step #3: write the header to the file | 
 |   // Local alias to shortenify coming code. | 
 |   DataBuffer &FH = Header.HeaderData; | 
 |   OutputBuffer FHOut(FH, is64Bit, isLittleEndian); | 
 |  | 
 |   FHOut.outword(Header.magic); | 
 |   FHOut.outword(TM.getMachOWriterInfo()->getCPUType()); | 
 |   FHOut.outword(TM.getMachOWriterInfo()->getCPUSubType()); | 
 |   FHOut.outword(Header.filetype); | 
 |   FHOut.outword(Header.ncmds); | 
 |   FHOut.outword(Header.sizeofcmds); | 
 |   FHOut.outword(Header.flags); | 
 |   if (is64Bit) | 
 |     FHOut.outword(Header.reserved); | 
 |    | 
 |   // Step #4: Finish filling in the segment load command and write it out | 
 |   for (std::vector<MachOSection*>::iterator I = SectionList.begin(), | 
 |          E = SectionList.end(); I != E; ++I) | 
 |     SEG.filesize += (*I)->size; | 
 |  | 
 |   SEG.vmsize = SEG.filesize; | 
 |   SEG.fileoff = Header.cmdSize(is64Bit) + Header.sizeofcmds; | 
 |    | 
 |   FHOut.outword(SEG.cmd); | 
 |   FHOut.outword(SEG.cmdsize); | 
 |   FHOut.outstring(SEG.segname, 16); | 
 |   FHOut.outaddr(SEG.vmaddr); | 
 |   FHOut.outaddr(SEG.vmsize); | 
 |   FHOut.outaddr(SEG.fileoff); | 
 |   FHOut.outaddr(SEG.filesize); | 
 |   FHOut.outword(SEG.maxprot); | 
 |   FHOut.outword(SEG.initprot); | 
 |   FHOut.outword(SEG.nsects); | 
 |   FHOut.outword(SEG.flags); | 
 |    | 
 |   // Step #5: Finish filling in the fields of the MachOSections  | 
 |   uint64_t currentAddr = 0; | 
 |   for (std::vector<MachOSection*>::iterator I = SectionList.begin(), | 
 |          E = SectionList.end(); I != E; ++I) { | 
 |     MachOSection *MOS = *I; | 
 |     MOS->addr = currentAddr; | 
 |     MOS->offset = currentAddr + SEG.fileoff; | 
 |  | 
 |     // FIXME: do we need to do something with alignment here? | 
 |     currentAddr += MOS->size; | 
 |   } | 
 |    | 
 |   // Step #6: Emit the symbol table to temporary buffers, so that we know the | 
 |   // size of the string table when we write the next load command.  This also | 
 |   // sorts and assigns indices to each of the symbols, which is necessary for | 
 |   // emitting relocations to externally-defined objects. | 
 |   BufferSymbolAndStringTable(); | 
 |    | 
 |   // Step #7: Calculate the number of relocations for each section and write out | 
 |   // the section commands for each section | 
 |   currentAddr += SEG.fileoff; | 
 |   for (std::vector<MachOSection*>::iterator I = SectionList.begin(), | 
 |          E = SectionList.end(); I != E; ++I) { | 
 |     MachOSection *MOS = *I; | 
 |     // Convert the relocations to target-specific relocations, and fill in the | 
 |     // relocation offset for this section. | 
 |     CalculateRelocations(*MOS); | 
 |     MOS->reloff = MOS->nreloc ? currentAddr : 0; | 
 |     currentAddr += MOS->nreloc * 8; | 
 |      | 
 |     // write the finalized section command to the output buffer | 
 |     FHOut.outstring(MOS->sectname, 16); | 
 |     FHOut.outstring(MOS->segname, 16); | 
 |     FHOut.outaddr(MOS->addr); | 
 |     FHOut.outaddr(MOS->size); | 
 |     FHOut.outword(MOS->offset); | 
 |     FHOut.outword(MOS->align); | 
 |     FHOut.outword(MOS->reloff); | 
 |     FHOut.outword(MOS->nreloc); | 
 |     FHOut.outword(MOS->flags); | 
 |     FHOut.outword(MOS->reserved1); | 
 |     FHOut.outword(MOS->reserved2); | 
 |     if (is64Bit) | 
 |       FHOut.outword(MOS->reserved3); | 
 |   } | 
 |    | 
 |   // Step #8: Emit LC_SYMTAB/LC_DYSYMTAB load commands | 
 |   SymTab.symoff  = currentAddr; | 
 |   SymTab.nsyms   = SymbolTable.size(); | 
 |   SymTab.stroff  = SymTab.symoff + SymT.size(); | 
 |   SymTab.strsize = StrT.size(); | 
 |   FHOut.outword(SymTab.cmd); | 
 |   FHOut.outword(SymTab.cmdsize); | 
 |   FHOut.outword(SymTab.symoff); | 
 |   FHOut.outword(SymTab.nsyms); | 
 |   FHOut.outword(SymTab.stroff); | 
 |   FHOut.outword(SymTab.strsize); | 
 |  | 
 |   // FIXME: set DySymTab fields appropriately | 
 |   // We should probably just update these in BufferSymbolAndStringTable since | 
 |   // thats where we're partitioning up the different kinds of symbols. | 
 |   FHOut.outword(DySymTab.cmd); | 
 |   FHOut.outword(DySymTab.cmdsize); | 
 |   FHOut.outword(DySymTab.ilocalsym); | 
 |   FHOut.outword(DySymTab.nlocalsym); | 
 |   FHOut.outword(DySymTab.iextdefsym); | 
 |   FHOut.outword(DySymTab.nextdefsym); | 
 |   FHOut.outword(DySymTab.iundefsym); | 
 |   FHOut.outword(DySymTab.nundefsym); | 
 |   FHOut.outword(DySymTab.tocoff); | 
 |   FHOut.outword(DySymTab.ntoc); | 
 |   FHOut.outword(DySymTab.modtaboff); | 
 |   FHOut.outword(DySymTab.nmodtab); | 
 |   FHOut.outword(DySymTab.extrefsymoff); | 
 |   FHOut.outword(DySymTab.nextrefsyms); | 
 |   FHOut.outword(DySymTab.indirectsymoff); | 
 |   FHOut.outword(DySymTab.nindirectsyms); | 
 |   FHOut.outword(DySymTab.extreloff); | 
 |   FHOut.outword(DySymTab.nextrel); | 
 |   FHOut.outword(DySymTab.locreloff); | 
 |   FHOut.outword(DySymTab.nlocrel); | 
 |    | 
 |   O.write((char*)&FH[0], FH.size()); | 
 | } | 
 |  | 
 | /// EmitSections - Now that we have constructed the file header and load | 
 | /// commands, emit the data for each section to the file. | 
 | void MachOWriter::EmitSections() { | 
 |   for (std::vector<MachOSection*>::iterator I = SectionList.begin(), | 
 |          E = SectionList.end(); I != E; ++I) | 
 |     // Emit the contents of each section | 
 |     O.write((char*)&(*I)->SectionData[0], (*I)->size); | 
 |   for (std::vector<MachOSection*>::iterator I = SectionList.begin(), | 
 |          E = SectionList.end(); I != E; ++I) | 
 |     // Emit the relocation entry data for each section. | 
 |     O.write((char*)&(*I)->RelocBuffer[0], (*I)->RelocBuffer.size()); | 
 | } | 
 |  | 
 | /// PartitionByLocal - Simple boolean predicate that returns true if Sym is | 
 | /// a local symbol rather than an external symbol. | 
 | bool MachOWriter::PartitionByLocal(const MachOSym &Sym) { | 
 |   return (Sym.n_type & (MachOSym::N_EXT | MachOSym::N_PEXT)) == 0; | 
 | } | 
 |  | 
 | /// PartitionByDefined - Simple boolean predicate that returns true if Sym is | 
 | /// defined in this module. | 
 | bool MachOWriter::PartitionByDefined(const MachOSym &Sym) { | 
 |   // FIXME: Do N_ABS or N_INDR count as defined? | 
 |   return (Sym.n_type & MachOSym::N_SECT) == MachOSym::N_SECT; | 
 | } | 
 |  | 
 | /// BufferSymbolAndStringTable - Sort the symbols we encountered and assign them | 
 | /// each a string table index so that they appear in the correct order in the | 
 | /// output file. | 
 | void MachOWriter::BufferSymbolAndStringTable() { | 
 |   // The order of the symbol table is: | 
 |   // 1. local symbols | 
 |   // 2. defined external symbols (sorted by name) | 
 |   // 3. undefined external symbols (sorted by name) | 
 |    | 
 |   // Before sorting the symbols, check the PendingGlobals for any undefined | 
 |   // globals that need to be put in the symbol table. | 
 |   for (std::vector<GlobalValue*>::iterator I = PendingGlobals.begin(), | 
 |          E = PendingGlobals.end(); I != E; ++I) { | 
 |     if (GVOffset[*I] == 0 && GVSection[*I] == 0) { | 
 |       MachOSym UndfSym(*I, Mang->getValueName(*I), MachOSym::NO_SECT, TM); | 
 |       SymbolTable.push_back(UndfSym); | 
 |       GVOffset[*I] = -1; | 
 |     } | 
 |   } | 
 |    | 
 |   // Sort the symbols by name, so that when we partition the symbols by scope | 
 |   // of definition, we won't have to sort by name within each partition. | 
 |   std::sort(SymbolTable.begin(), SymbolTable.end(), MachOSymCmp()); | 
 |  | 
 |   // Parition the symbol table entries so that all local symbols come before  | 
 |   // all symbols with external linkage. { 1 | 2 3 } | 
 |   std::partition(SymbolTable.begin(), SymbolTable.end(), PartitionByLocal); | 
 |    | 
 |   // Advance iterator to beginning of external symbols and partition so that | 
 |   // all external symbols defined in this module come before all external | 
 |   // symbols defined elsewhere. { 1 | 2 | 3 } | 
 |   for (std::vector<MachOSym>::iterator I = SymbolTable.begin(), | 
 |          E = SymbolTable.end(); I != E; ++I) { | 
 |     if (!PartitionByLocal(*I)) { | 
 |       std::partition(I, E, PartitionByDefined); | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   // Calculate the starting index for each of the local, extern defined, and  | 
 |   // undefined symbols, as well as the number of each to put in the LC_DYSYMTAB | 
 |   // load command. | 
 |   for (std::vector<MachOSym>::iterator I = SymbolTable.begin(), | 
 |          E = SymbolTable.end(); I != E; ++I) { | 
 |     if (PartitionByLocal(*I)) { | 
 |       ++DySymTab.nlocalsym; | 
 |       ++DySymTab.iextdefsym; | 
 |       ++DySymTab.iundefsym; | 
 |     } else if (PartitionByDefined(*I)) { | 
 |       ++DySymTab.nextdefsym; | 
 |       ++DySymTab.iundefsym; | 
 |     } else { | 
 |       ++DySymTab.nundefsym; | 
 |     } | 
 |   } | 
 |    | 
 |   // Write out a leading zero byte when emitting string table, for n_strx == 0 | 
 |   // which means an empty string. | 
 |   OutputBuffer StrTOut(StrT, is64Bit, isLittleEndian); | 
 |   StrTOut.outbyte(0); | 
 |  | 
 |   // The order of the string table is: | 
 |   // 1. strings for external symbols | 
 |   // 2. strings for local symbols | 
 |   // Since this is the opposite order from the symbol table, which we have just | 
 |   // sorted, we can walk the symbol table backwards to output the string table. | 
 |   for (std::vector<MachOSym>::reverse_iterator I = SymbolTable.rbegin(), | 
 |         E = SymbolTable.rend(); I != E; ++I) { | 
 |     if (I->GVName == "") { | 
 |       I->n_strx = 0; | 
 |     } else { | 
 |       I->n_strx = StrT.size(); | 
 |       StrTOut.outstring(I->GVName, I->GVName.length()+1); | 
 |     } | 
 |   } | 
 |  | 
 |   OutputBuffer SymTOut(SymT, is64Bit, isLittleEndian); | 
 |  | 
 |   unsigned index = 0; | 
 |   for (std::vector<MachOSym>::iterator I = SymbolTable.begin(), | 
 |          E = SymbolTable.end(); I != E; ++I, ++index) { | 
 |     // Add the section base address to the section offset in the n_value field | 
 |     // to calculate the full address. | 
 |     // FIXME: handle symbols where the n_value field is not the address | 
 |     GlobalValue *GV = const_cast<GlobalValue*>(I->GV); | 
 |     if (GV && GVSection[GV]) | 
 |       I->n_value += GVSection[GV]->addr; | 
 |     if (GV && (GVOffset[GV] == -1)) | 
 |       GVOffset[GV] = index; | 
 |           | 
 |     // Emit nlist to buffer | 
 |     SymTOut.outword(I->n_strx); | 
 |     SymTOut.outbyte(I->n_type); | 
 |     SymTOut.outbyte(I->n_sect); | 
 |     SymTOut.outhalf(I->n_desc); | 
 |     SymTOut.outaddr(I->n_value); | 
 |   } | 
 | } | 
 |  | 
 | /// CalculateRelocations - For each MachineRelocation in the current section, | 
 | /// calculate the index of the section containing the object to be relocated, | 
 | /// and the offset into that section.  From this information, create the | 
 | /// appropriate target-specific MachORelocation type and add buffer it to be | 
 | /// written out after we are finished writing out sections. | 
 | void MachOWriter::CalculateRelocations(MachOSection &MOS) { | 
 |   for (unsigned i = 0, e = MOS.Relocations.size(); i != e; ++i) { | 
 |     MachineRelocation &MR = MOS.Relocations[i]; | 
 |     unsigned TargetSection = MR.getConstantVal(); | 
 |     unsigned TargetAddr = 0; | 
 |     unsigned TargetIndex = 0; | 
 |  | 
 |     // This is a scattered relocation entry if it points to a global value with | 
 |     // a non-zero offset. | 
 |     bool Scattered = false; | 
 |     bool Extern = false; | 
 |  | 
 |     // Since we may not have seen the GlobalValue we were interested in yet at | 
 |     // the time we emitted the relocation for it, fix it up now so that it | 
 |     // points to the offset into the correct section. | 
 |     if (MR.isGlobalValue()) { | 
 |       GlobalValue *GV = MR.getGlobalValue(); | 
 |       MachOSection *MOSPtr = GVSection[GV]; | 
 |       intptr_t Offset = GVOffset[GV]; | 
 |        | 
 |       // If we have never seen the global before, it must be to a symbol | 
 |       // defined in another module (N_UNDF). | 
 |       if (!MOSPtr) { | 
 |         // FIXME: need to append stub suffix | 
 |         Extern = true; | 
 |         TargetAddr = 0; | 
 |         TargetIndex = GVOffset[GV]; | 
 |       } else { | 
 |         Scattered = TargetSection != 0; | 
 |         TargetSection = MOSPtr->Index; | 
 |       } | 
 |       MR.setResultPointer((void*)Offset); | 
 |     } | 
 |      | 
 |     // If the symbol is locally defined, pass in the address of the section and | 
 |     // the section index to the code which will generate the target relocation. | 
 |     if (!Extern) { | 
 |         MachOSection &To = *SectionList[TargetSection - 1]; | 
 |         TargetAddr = To.addr; | 
 |         TargetIndex = To.Index; | 
 |     } | 
 |  | 
 |     OutputBuffer RelocOut(MOS.RelocBuffer, is64Bit, isLittleEndian); | 
 |     OutputBuffer SecOut(MOS.SectionData, is64Bit, isLittleEndian); | 
 |      | 
 |     MOS.nreloc += GetTargetRelocation(MR, MOS.Index, TargetAddr, TargetIndex, | 
 |                                       RelocOut, SecOut, Scattered, Extern); | 
 |   } | 
 | } | 
 |  | 
 | // InitMem - Write the value of a Constant to the specified memory location, | 
 | // converting it into bytes and relocations. | 
 | void MachOWriter::InitMem(const Constant *C, void *Addr, intptr_t Offset, | 
 |                           const TargetData *TD,  | 
 |                           std::vector<MachineRelocation> &MRs) { | 
 |   typedef std::pair<const Constant*, intptr_t> CPair; | 
 |   std::vector<CPair> WorkList; | 
 |    | 
 |   WorkList.push_back(CPair(C,(intptr_t)Addr + Offset)); | 
 |    | 
 |   intptr_t ScatteredOffset = 0; | 
 |    | 
 |   while (!WorkList.empty()) { | 
 |     const Constant *PC = WorkList.back().first; | 
 |     intptr_t PA = WorkList.back().second; | 
 |     WorkList.pop_back(); | 
 |      | 
 |     if (isa<UndefValue>(PC)) { | 
 |       continue; | 
 |     } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(PC)) { | 
 |       unsigned ElementSize = | 
 |         TD->getABITypeSize(CP->getType()->getElementType()); | 
 |       for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) | 
 |         WorkList.push_back(CPair(CP->getOperand(i), PA+i*ElementSize)); | 
 |     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(PC)) { | 
 |       // | 
 |       // FIXME: Handle ConstantExpression.  See EE::getConstantValue() | 
 |       // | 
 |       switch (CE->getOpcode()) { | 
 |       case Instruction::GetElementPtr: { | 
 |         SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end()); | 
 |         ScatteredOffset = TD->getIndexedOffset(CE->getOperand(0)->getType(), | 
 |                                                &Indices[0], Indices.size()); | 
 |         WorkList.push_back(CPair(CE->getOperand(0), PA)); | 
 |         break; | 
 |       } | 
 |       case Instruction::Add: | 
 |       default: | 
 |         cerr << "ConstantExpr not handled as global var init: " << *CE << "\n"; | 
 |         abort(); | 
 |         break; | 
 |       } | 
 |     } else if (PC->getType()->isSingleValueType()) { | 
 |       unsigned char *ptr = (unsigned char *)PA; | 
 |       switch (PC->getType()->getTypeID()) { | 
 |       case Type::IntegerTyID: { | 
 |         unsigned NumBits = cast<IntegerType>(PC->getType())->getBitWidth(); | 
 |         uint64_t val = cast<ConstantInt>(PC)->getZExtValue(); | 
 |         if (NumBits <= 8) | 
 |           ptr[0] = val; | 
 |         else if (NumBits <= 16) { | 
 |           if (TD->isBigEndian()) | 
 |             val = ByteSwap_16(val); | 
 |           ptr[0] = val; | 
 |           ptr[1] = val >> 8; | 
 |         } else if (NumBits <= 32) { | 
 |           if (TD->isBigEndian()) | 
 |             val = ByteSwap_32(val); | 
 |           ptr[0] = val; | 
 |           ptr[1] = val >> 8; | 
 |           ptr[2] = val >> 16; | 
 |           ptr[3] = val >> 24; | 
 |         } else if (NumBits <= 64) { | 
 |           if (TD->isBigEndian()) | 
 |             val = ByteSwap_64(val); | 
 |           ptr[0] = val; | 
 |           ptr[1] = val >> 8; | 
 |           ptr[2] = val >> 16; | 
 |           ptr[3] = val >> 24; | 
 |           ptr[4] = val >> 32; | 
 |           ptr[5] = val >> 40; | 
 |           ptr[6] = val >> 48; | 
 |           ptr[7] = val >> 56; | 
 |         } else { | 
 |           assert(0 && "Not implemented: bit widths > 64"); | 
 |         } | 
 |         break; | 
 |       } | 
 |       case Type::FloatTyID: { | 
 |         uint32_t val = cast<ConstantFP>(PC)->getValueAPF().convertToAPInt(). | 
 |                         getZExtValue(); | 
 |         if (TD->isBigEndian()) | 
 |           val = ByteSwap_32(val); | 
 |         ptr[0] = val; | 
 |         ptr[1] = val >> 8; | 
 |         ptr[2] = val >> 16; | 
 |         ptr[3] = val >> 24; | 
 |         break; | 
 |       } | 
 |       case Type::DoubleTyID: { | 
 |         uint64_t val = cast<ConstantFP>(PC)->getValueAPF().convertToAPInt(). | 
 |                          getZExtValue(); | 
 |         if (TD->isBigEndian()) | 
 |           val = ByteSwap_64(val); | 
 |         ptr[0] = val; | 
 |         ptr[1] = val >> 8; | 
 |         ptr[2] = val >> 16; | 
 |         ptr[3] = val >> 24; | 
 |         ptr[4] = val >> 32; | 
 |         ptr[5] = val >> 40; | 
 |         ptr[6] = val >> 48; | 
 |         ptr[7] = val >> 56; | 
 |         break; | 
 |       } | 
 |       case Type::PointerTyID: | 
 |         if (isa<ConstantPointerNull>(PC)) | 
 |           memset(ptr, 0, TD->getPointerSize()); | 
 |         else if (const GlobalValue* GV = dyn_cast<GlobalValue>(PC)) { | 
 |           // FIXME: what about function stubs? | 
 |           MRs.push_back(MachineRelocation::getGV(PA-(intptr_t)Addr,  | 
 |                                                  MachineRelocation::VANILLA, | 
 |                                                  const_cast<GlobalValue*>(GV), | 
 |                                                  ScatteredOffset)); | 
 |           ScatteredOffset = 0; | 
 |         } else | 
 |           assert(0 && "Unknown constant pointer type!"); | 
 |         break; | 
 |       default: | 
 |         cerr << "ERROR: Constant unimp for type: " << *PC->getType() << "\n"; | 
 |         abort(); | 
 |       } | 
 |     } else if (isa<ConstantAggregateZero>(PC)) { | 
 |       memset((void*)PA, 0, (size_t)TD->getABITypeSize(PC->getType())); | 
 |     } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(PC)) { | 
 |       unsigned ElementSize = | 
 |         TD->getABITypeSize(CPA->getType()->getElementType()); | 
 |       for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) | 
 |         WorkList.push_back(CPair(CPA->getOperand(i), PA+i*ElementSize)); | 
 |     } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(PC)) { | 
 |       const StructLayout *SL = | 
 |         TD->getStructLayout(cast<StructType>(CPS->getType())); | 
 |       for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) | 
 |         WorkList.push_back(CPair(CPS->getOperand(i), | 
 |                                  PA+SL->getElementOffset(i))); | 
 |     } else { | 
 |       cerr << "Bad Type: " << *PC->getType() << "\n"; | 
 |       assert(0 && "Unknown constant type to initialize memory with!"); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | MachOSym::MachOSym(const GlobalValue *gv, std::string name, uint8_t sect, | 
 |                    TargetMachine &TM) : | 
 |   GV(gv), n_strx(0), n_type(sect == NO_SECT ? N_UNDF : N_SECT), n_sect(sect), | 
 |   n_desc(0), n_value(0) { | 
 |  | 
 |   const TargetAsmInfo *TAI = TM.getTargetAsmInfo();   | 
 |    | 
 |   switch (GV->getLinkage()) { | 
 |   default: | 
 |     assert(0 && "Unexpected linkage type!"); | 
 |     break; | 
 |   case GlobalValue::WeakLinkage: | 
 |   case GlobalValue::LinkOnceLinkage: | 
 |   case GlobalValue::CommonLinkage: | 
 |     assert(!isa<Function>(gv) && "Unexpected linkage type for Function!"); | 
 |   case GlobalValue::ExternalLinkage: | 
 |     GVName = TAI->getGlobalPrefix() + name; | 
 |     n_type |= GV->hasHiddenVisibility() ? N_PEXT : N_EXT; | 
 |     break; | 
 |   case GlobalValue::InternalLinkage: | 
 |     GVName = TAI->getGlobalPrefix() + name; | 
 |     break; | 
 |   } | 
 | } |