Change all SCEV* to SCEV *.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74918 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Analysis/IVUsers.cpp b/lib/Analysis/IVUsers.cpp
index caeb14b..317c869 100644
--- a/lib/Analysis/IVUsers.cpp
+++ b/lib/Analysis/IVUsers.cpp
@@ -39,7 +39,7 @@
/// containsAddRecFromDifferentLoop - Determine whether expression S involves a
/// subexpression that is an AddRec from a loop other than L. An outer loop
/// of L is OK, but not an inner loop nor a disjoint loop.
-static bool containsAddRecFromDifferentLoop(const SCEV* S, Loop *L) {
+static bool containsAddRecFromDifferentLoop(const SCEV *S, Loop *L) {
// This is very common, put it first.
if (isa<SCEVConstant>(S))
return false;
@@ -80,10 +80,10 @@
/// a mix of loop invariant and loop variant expressions. The start cannot,
/// however, contain an AddRec from a different loop, unless that loop is an
/// outer loop of the current loop.
-static bool getSCEVStartAndStride(const SCEV* &SH, Loop *L, Loop *UseLoop,
- const SCEV* &Start, const SCEV* &Stride,
+static bool getSCEVStartAndStride(const SCEV *&SH, Loop *L, Loop *UseLoop,
+ const SCEV *&Start, const SCEV *&Stride,
ScalarEvolution *SE, DominatorTree *DT) {
- const SCEV* TheAddRec = Start; // Initialize to zero.
+ const SCEV *TheAddRec = Start; // Initialize to zero.
// If the outer level is an AddExpr, the operands are all start values except
// for a nested AddRecExpr.
@@ -109,9 +109,9 @@
// Use getSCEVAtScope to attempt to simplify other loops out of
// the picture.
- const SCEV* AddRecStart = AddRec->getStart();
+ const SCEV *AddRecStart = AddRec->getStart();
AddRecStart = SE->getSCEVAtScope(AddRecStart, UseLoop);
- const SCEV* AddRecStride = AddRec->getStepRecurrence(*SE);
+ const SCEV *AddRecStride = AddRec->getStepRecurrence(*SE);
// FIXME: If Start contains an SCEVAddRecExpr from a different loop, other
// than an outer loop of the current loop, reject it. LSR has no concept of
@@ -196,13 +196,13 @@
return true; // Instruction already handled.
// Get the symbolic expression for this instruction.
- const SCEV* ISE = SE->getSCEV(I);
+ const SCEV *ISE = SE->getSCEV(I);
if (isa<SCEVCouldNotCompute>(ISE)) return false;
// Get the start and stride for this expression.
Loop *UseLoop = LI->getLoopFor(I->getParent());
- const SCEV* Start = SE->getIntegerSCEV(0, ISE->getType());
- const SCEV* Stride = Start;
+ const SCEV *Start = SE->getIntegerSCEV(0, ISE->getType());
+ const SCEV *Stride = Start;
if (!getSCEVStartAndStride(ISE, L, UseLoop, Start, Stride, SE, DT))
return false; // Non-reducible symbolic expression, bail out.
@@ -254,7 +254,7 @@
if (IVUseShouldUsePostIncValue(User, I, L, LI, DT, this)) {
// The value used will be incremented by the stride more than we are
// expecting, so subtract this off.
- const SCEV* NewStart = SE->getMinusSCEV(Start, Stride);
+ const SCEV *NewStart = SE->getMinusSCEV(Start, Stride);
StrideUses->addUser(NewStart, User, I);
StrideUses->Users.back().setIsUseOfPostIncrementedValue(true);
DOUT << " USING POSTINC SCEV, START=" << *NewStart<< "\n";
@@ -295,9 +295,9 @@
/// getReplacementExpr - Return a SCEV expression which computes the
/// value of the OperandValToReplace of the given IVStrideUse.
-const SCEV* IVUsers::getReplacementExpr(const IVStrideUse &U) const {
+const SCEV *IVUsers::getReplacementExpr(const IVStrideUse &U) const {
// Start with zero.
- const SCEV* RetVal = SE->getIntegerSCEV(0, U.getParent()->Stride->getType());
+ const SCEV *RetVal = SE->getIntegerSCEV(0, U.getParent()->Stride->getType());
// Create the basic add recurrence.
RetVal = SE->getAddRecExpr(RetVal, U.getParent()->Stride, L);
// Add the offset in a separate step, because it may be loop-variant.
@@ -308,7 +308,7 @@
RetVal = SE->getAddExpr(RetVal, U.getParent()->Stride);
// Evaluate the expression out of the loop, if possible.
if (!L->contains(U.getUser()->getParent())) {
- const SCEV* ExitVal = SE->getSCEVAtScope(RetVal, L->getParentLoop());
+ const SCEV *ExitVal = SE->getSCEVAtScope(RetVal, L->getParentLoop());
if (ExitVal->isLoopInvariant(L))
RetVal = ExitVal;
}
@@ -325,7 +325,7 @@
OS << ":\n";
for (unsigned Stride = 0, e = StrideOrder.size(); Stride != e; ++Stride) {
- std::map<const SCEV*, IVUsersOfOneStride*>::const_iterator SI =
+ std::map<const SCEV *, IVUsersOfOneStride*>::const_iterator SI =
IVUsesByStride.find(StrideOrder[Stride]);
assert(SI != IVUsesByStride.end() && "Stride doesn't exist!");
OS << " Stride " << *SI->first->getType() << " " << *SI->first << ":\n";
diff --git a/lib/Analysis/LoopVR.cpp b/lib/Analysis/LoopVR.cpp
index 3800ef5..1c78ef9 100644
--- a/lib/Analysis/LoopVR.cpp
+++ b/lib/Analysis/LoopVR.cpp
@@ -27,8 +27,8 @@
static RegisterPass<LoopVR> X("loopvr", "Loop Value Ranges", false, true);
/// getRange - determine the range for a particular SCEV within a given Loop
-ConstantRange LoopVR::getRange(const SCEV* S, Loop *L, ScalarEvolution &SE) {
- const SCEV* T = SE.getBackedgeTakenCount(L);
+ConstantRange LoopVR::getRange(const SCEV *S, Loop *L, ScalarEvolution &SE) {
+ const SCEV *T = SE.getBackedgeTakenCount(L);
if (isa<SCEVCouldNotCompute>(T))
return ConstantRange(cast<IntegerType>(S->getType())->getBitWidth(), true);
@@ -37,7 +37,7 @@
}
/// getRange - determine the range for a particular SCEV with a given trip count
-ConstantRange LoopVR::getRange(const SCEV* S, const SCEV* T, ScalarEvolution &SE){
+ConstantRange LoopVR::getRange(const SCEV *S, const SCEV *T, ScalarEvolution &SE){
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
return ConstantRange(C->getValue()->getValue());
@@ -183,8 +183,8 @@
if (!Trip) return FullSet;
if (AddRec->isAffine()) {
- const SCEV* StartHandle = AddRec->getStart();
- const SCEV* StepHandle = AddRec->getOperand(1);
+ const SCEV *StartHandle = AddRec->getStart();
+ const SCEV *StepHandle = AddRec->getOperand(1);
const SCEVConstant *Step = dyn_cast<SCEVConstant>(StepHandle);
if (!Step) return FullSet;
@@ -195,7 +195,7 @@
if ((TripExt * StepExt).ugt(APInt::getLowBitsSet(ExWidth, ExWidth >> 1)))
return FullSet;
- const SCEV* EndHandle = SE.getAddExpr(StartHandle,
+ const SCEV *EndHandle = SE.getAddExpr(StartHandle,
SE.getMulExpr(T, StepHandle));
const SCEVConstant *Start = dyn_cast<SCEVConstant>(StartHandle);
const SCEVConstant *End = dyn_cast<SCEVConstant>(EndHandle);
@@ -255,7 +255,7 @@
ScalarEvolution &SE = getAnalysis<ScalarEvolution>();
- const SCEV* S = SE.getSCEV(I);
+ const SCEV *S = SE.getSCEV(I);
if (isa<SCEVUnknown>(S) || isa<SCEVCouldNotCompute>(S))
return ConstantRange(cast<IntegerType>(V->getType())->getBitWidth(), false);
diff --git a/lib/Analysis/ScalarEvolution.cpp b/lib/Analysis/ScalarEvolution.cpp
index 5773158..a411f2d 100644
--- a/lib/Analysis/ScalarEvolution.cpp
+++ b/lib/Analysis/ScalarEvolution.cpp
@@ -14,7 +14,7 @@
// There are several aspects to this library. First is the representation of
// scalar expressions, which are represented as subclasses of the SCEV class.
// These classes are used to represent certain types of subexpressions that we
-// can handle. These classes are reference counted, managed by the const SCEV*
+// can handle. These classes are reference counted, managed by the const SCEV *
// class. We only create one SCEV of a particular shape, so pointer-comparisons
// for equality are legal.
//
@@ -180,7 +180,7 @@
return S->getSCEVType() == scCouldNotCompute;
}
-const SCEV* ScalarEvolution::getConstant(ConstantInt *V) {
+const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
FoldingSetNodeID ID;
ID.AddInteger(scConstant);
ID.AddPointer(V);
@@ -192,11 +192,11 @@
return S;
}
-const SCEV* ScalarEvolution::getConstant(const APInt& Val) {
+const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
return getConstant(ConstantInt::get(Val));
}
-const SCEV*
+const SCEV *
ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
return getConstant(ConstantInt::get(cast<IntegerType>(Ty), V, isSigned));
}
@@ -213,7 +213,7 @@
}
SCEVCastExpr::SCEVCastExpr(unsigned SCEVTy,
- const SCEV* op, const Type *ty)
+ const SCEV *op, const Type *ty)
: SCEV(SCEVTy), Op(op), Ty(ty) {}
void SCEVCastExpr::Profile(FoldingSetNodeID &ID) const {
@@ -226,7 +226,7 @@
return Op->dominates(BB, DT);
}
-SCEVTruncateExpr::SCEVTruncateExpr(const SCEV* op, const Type *ty)
+SCEVTruncateExpr::SCEVTruncateExpr(const SCEV *op, const Type *ty)
: SCEVCastExpr(scTruncate, op, ty) {
assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
(Ty->isInteger() || isa<PointerType>(Ty)) &&
@@ -237,7 +237,7 @@
OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
}
-SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEV* op, const Type *ty)
+SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEV *op, const Type *ty)
: SCEVCastExpr(scZeroExtend, op, ty) {
assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
(Ty->isInteger() || isa<PointerType>(Ty)) &&
@@ -248,7 +248,7 @@
OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
}
-SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEV* op, const Type *ty)
+SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEV *op, const Type *ty)
: SCEVCastExpr(scSignExtend, op, ty) {
assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
(Ty->isInteger() || isa<PointerType>(Ty)) &&
@@ -274,10 +274,10 @@
const SCEV *Conc,
ScalarEvolution &SE) const {
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
- const SCEV* H =
+ const SCEV *H =
getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
if (H != getOperand(i)) {
- SmallVector<const SCEV*, 8> NewOps;
+ SmallVector<const SCEV *, 8> NewOps;
NewOps.reserve(getNumOperands());
for (unsigned j = 0; j != i; ++j)
NewOps.push_back(getOperand(j));
@@ -352,10 +352,10 @@
const SCEV *Conc,
ScalarEvolution &SE) const {
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
- const SCEV* H =
+ const SCEV *H =
getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
if (H != getOperand(i)) {
- SmallVector<const SCEV*, 8> NewOps;
+ SmallVector<const SCEV *, 8> NewOps;
NewOps.reserve(getNumOperands());
for (unsigned j = 0; j != i; ++j)
NewOps.push_back(getOperand(j));
@@ -558,7 +558,7 @@
/// this to depend on where the addresses of various SCEV objects happened to
/// land in memory.
///
-static void GroupByComplexity(SmallVectorImpl<const SCEV*> &Ops,
+static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
LoopInfo *LI) {
if (Ops.size() < 2) return; // Noop
if (Ops.size() == 2) {
@@ -601,7 +601,7 @@
/// BinomialCoefficient - Compute BC(It, K). The result has width W.
/// Assume, K > 0.
-static const SCEV* BinomialCoefficient(const SCEV* It, unsigned K,
+static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
ScalarEvolution &SE,
const Type* ResultTy) {
// Handle the simplest case efficiently.
@@ -694,15 +694,15 @@
// Calculate the product, at width T+W
const IntegerType *CalculationTy = IntegerType::get(CalculationBits);
- const SCEV* Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
+ const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
for (unsigned i = 1; i != K; ++i) {
- const SCEV* S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
+ const SCEV *S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
Dividend = SE.getMulExpr(Dividend,
SE.getTruncateOrZeroExtend(S, CalculationTy));
}
// Divide by 2^T
- const SCEV* DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
+ const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
// Truncate the result, and divide by K! / 2^T.
@@ -719,14 +719,14 @@
///
/// where BC(It, k) stands for binomial coefficient.
///
-const SCEV* SCEVAddRecExpr::evaluateAtIteration(const SCEV* It,
+const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
ScalarEvolution &SE) const {
- const SCEV* Result = getStart();
+ const SCEV *Result = getStart();
for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
// The computation is correct in the face of overflow provided that the
// multiplication is performed _after_ the evaluation of the binomial
// coefficient.
- const SCEV* Coeff = BinomialCoefficient(It, i, SE, getType());
+ const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
if (isa<SCEVCouldNotCompute>(Coeff))
return Coeff;
@@ -739,7 +739,7 @@
// SCEV Expression folder implementations
//===----------------------------------------------------------------------===//
-const SCEV* ScalarEvolution::getTruncateExpr(const SCEV* Op,
+const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
const Type *Ty) {
assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
"This is not a truncating conversion!");
@@ -766,7 +766,7 @@
// If the input value is a chrec scev, truncate the chrec's operands.
if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
- SmallVector<const SCEV*, 4> Operands;
+ SmallVector<const SCEV *, 4> Operands;
for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
return getAddRecExpr(Operands, AddRec->getLoop());
@@ -784,7 +784,7 @@
return S;
}
-const SCEV* ScalarEvolution::getZeroExtendExpr(const SCEV* Op,
+const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
const Type *Ty) {
assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
"This is not an extending conversion!");
@@ -818,28 +818,28 @@
// in infinite recursion. In the later case, the analysis code will
// cope with a conservative value, and it will take care to purge
// that value once it has finished.
- const SCEV* MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
+ const SCEV *MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
// Manually compute the final value for AR, checking for
// overflow.
- const SCEV* Start = AR->getStart();
- const SCEV* Step = AR->getStepRecurrence(*this);
+ const SCEV *Start = AR->getStart();
+ const SCEV *Step = AR->getStepRecurrence(*this);
// Check whether the backedge-taken count can be losslessly casted to
// the addrec's type. The count is always unsigned.
- const SCEV* CastedMaxBECount =
+ const SCEV *CastedMaxBECount =
getTruncateOrZeroExtend(MaxBECount, Start->getType());
- const SCEV* RecastedMaxBECount =
+ const SCEV *RecastedMaxBECount =
getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
if (MaxBECount == RecastedMaxBECount) {
const Type *WideTy =
IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
// Check whether Start+Step*MaxBECount has no unsigned overflow.
- const SCEV* ZMul =
+ const SCEV *ZMul =
getMulExpr(CastedMaxBECount,
getTruncateOrZeroExtend(Step, Start->getType()));
- const SCEV* Add = getAddExpr(Start, ZMul);
- const SCEV* OperandExtendedAdd =
+ const SCEV *Add = getAddExpr(Start, ZMul);
+ const SCEV *OperandExtendedAdd =
getAddExpr(getZeroExtendExpr(Start, WideTy),
getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
getZeroExtendExpr(Step, WideTy)));
@@ -851,7 +851,7 @@
// Similar to above, only this time treat the step value as signed.
// This covers loops that count down.
- const SCEV* SMul =
+ const SCEV *SMul =
getMulExpr(CastedMaxBECount,
getTruncateOrSignExtend(Step, Start->getType()));
Add = getAddExpr(Start, SMul);
@@ -880,7 +880,7 @@
return S;
}
-const SCEV* ScalarEvolution::getSignExtendExpr(const SCEV* Op,
+const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
const Type *Ty) {
assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
"This is not an extending conversion!");
@@ -914,28 +914,28 @@
// in infinite recursion. In the later case, the analysis code will
// cope with a conservative value, and it will take care to purge
// that value once it has finished.
- const SCEV* MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
+ const SCEV *MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
// Manually compute the final value for AR, checking for
// overflow.
- const SCEV* Start = AR->getStart();
- const SCEV* Step = AR->getStepRecurrence(*this);
+ const SCEV *Start = AR->getStart();
+ const SCEV *Step = AR->getStepRecurrence(*this);
// Check whether the backedge-taken count can be losslessly casted to
// the addrec's type. The count is always unsigned.
- const SCEV* CastedMaxBECount =
+ const SCEV *CastedMaxBECount =
getTruncateOrZeroExtend(MaxBECount, Start->getType());
- const SCEV* RecastedMaxBECount =
+ const SCEV *RecastedMaxBECount =
getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
if (MaxBECount == RecastedMaxBECount) {
const Type *WideTy =
IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
// Check whether Start+Step*MaxBECount has no signed overflow.
- const SCEV* SMul =
+ const SCEV *SMul =
getMulExpr(CastedMaxBECount,
getTruncateOrSignExtend(Step, Start->getType()));
- const SCEV* Add = getAddExpr(Start, SMul);
- const SCEV* OperandExtendedAdd =
+ const SCEV *Add = getAddExpr(Start, SMul);
+ const SCEV *OperandExtendedAdd =
getAddExpr(getSignExtendExpr(Start, WideTy),
getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
getSignExtendExpr(Step, WideTy)));
@@ -963,7 +963,7 @@
/// getAnyExtendExpr - Return a SCEV for the given operand extended with
/// unspecified bits out to the given type.
///
-const SCEV* ScalarEvolution::getAnyExtendExpr(const SCEV* Op,
+const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
const Type *Ty) {
assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
"This is not an extending conversion!");
@@ -978,19 +978,19 @@
// Peel off a truncate cast.
if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
- const SCEV* NewOp = T->getOperand();
+ const SCEV *NewOp = T->getOperand();
if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
return getAnyExtendExpr(NewOp, Ty);
return getTruncateOrNoop(NewOp, Ty);
}
// Next try a zext cast. If the cast is folded, use it.
- const SCEV* ZExt = getZeroExtendExpr(Op, Ty);
+ const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
if (!isa<SCEVZeroExtendExpr>(ZExt))
return ZExt;
// Next try a sext cast. If the cast is folded, use it.
- const SCEV* SExt = getSignExtendExpr(Op, Ty);
+ const SCEV *SExt = getSignExtendExpr(Op, Ty);
if (!isa<SCEVSignExtendExpr>(SExt))
return SExt;
@@ -1028,10 +1028,10 @@
/// is also used as a check to avoid infinite recursion.
///
static bool
-CollectAddOperandsWithScales(DenseMap<const SCEV*, APInt> &M,
- SmallVector<const SCEV*, 8> &NewOps,
+CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
+ SmallVector<const SCEV *, 8> &NewOps,
APInt &AccumulatedConstant,
- const SmallVectorImpl<const SCEV*> &Ops,
+ const SmallVectorImpl<const SCEV *> &Ops,
const APInt &Scale,
ScalarEvolution &SE) {
bool Interesting = false;
@@ -1052,9 +1052,9 @@
} else {
// A multiplication of a constant with some other value. Update
// the map.
- SmallVector<const SCEV*, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
- const SCEV* Key = SE.getMulExpr(MulOps);
- std::pair<DenseMap<const SCEV*, APInt>::iterator, bool> Pair =
+ SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
+ const SCEV *Key = SE.getMulExpr(MulOps);
+ std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
M.insert(std::make_pair(Key, NewScale));
if (Pair.second) {
NewOps.push_back(Pair.first->first);
@@ -1072,7 +1072,7 @@
AccumulatedConstant += Scale * C->getValue()->getValue();
} else {
// An ordinary operand. Update the map.
- std::pair<DenseMap<const SCEV*, APInt>::iterator, bool> Pair =
+ std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
M.insert(std::make_pair(Ops[i], Scale));
if (Pair.second) {
NewOps.push_back(Pair.first->first);
@@ -1098,7 +1098,7 @@
/// getAddExpr - Get a canonical add expression, or something simpler if
/// possible.
-const SCEV* ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV*> &Ops) {
+const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops) {
assert(!Ops.empty() && "Cannot get empty add!");
if (Ops.size() == 1) return Ops[0];
#ifndef NDEBUG
@@ -1142,8 +1142,8 @@
if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
// Found a match, merge the two values into a multiply, and add any
// remaining values to the result.
- const SCEV* Two = getIntegerSCEV(2, Ty);
- const SCEV* Mul = getMulExpr(Ops[i], Two);
+ const SCEV *Two = getIntegerSCEV(2, Ty);
+ const SCEV *Mul = getMulExpr(Ops[i], Two);
if (Ops.size() == 2)
return Mul;
Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
@@ -1159,7 +1159,7 @@
const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
const Type *DstType = Trunc->getType();
const Type *SrcType = Trunc->getOperand()->getType();
- SmallVector<const SCEV*, 8> LargeOps;
+ SmallVector<const SCEV *, 8> LargeOps;
bool Ok = true;
// Check all the operands to see if they can be represented in the
// source type of the truncate.
@@ -1175,7 +1175,7 @@
// is much more likely to be foldable here.
LargeOps.push_back(getSignExtendExpr(C, SrcType));
} else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
- SmallVector<const SCEV*, 8> LargeMulOps;
+ SmallVector<const SCEV *, 8> LargeMulOps;
for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
if (const SCEVTruncateExpr *T =
dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
@@ -1203,7 +1203,7 @@
}
if (Ok) {
// Evaluate the expression in the larger type.
- const SCEV* Fold = getAddExpr(LargeOps);
+ const SCEV *Fold = getAddExpr(LargeOps);
// If it folds to something simple, use it. Otherwise, don't.
if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
return getTruncateExpr(Fold, DstType);
@@ -1240,16 +1240,16 @@
// operands multiplied by constant values.
if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
uint64_t BitWidth = getTypeSizeInBits(Ty);
- DenseMap<const SCEV*, APInt> M;
- SmallVector<const SCEV*, 8> NewOps;
+ DenseMap<const SCEV *, APInt> M;
+ SmallVector<const SCEV *, 8> NewOps;
APInt AccumulatedConstant(BitWidth, 0);
if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Ops, APInt(BitWidth, 1), *this)) {
// Some interesting folding opportunity is present, so its worthwhile to
// re-generate the operands list. Group the operands by constant scale,
// to avoid multiplying by the same constant scale multiple times.
- std::map<APInt, SmallVector<const SCEV*, 4>, APIntCompare> MulOpLists;
- for (SmallVector<const SCEV*, 8>::iterator I = NewOps.begin(),
+ std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
+ for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(),
E = NewOps.end(); I != E; ++I)
MulOpLists[M.find(*I)->second].push_back(*I);
// Re-generate the operands list.
@@ -1279,17 +1279,17 @@
for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) {
// Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
- const SCEV* InnerMul = Mul->getOperand(MulOp == 0);
+ const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
if (Mul->getNumOperands() != 2) {
// If the multiply has more than two operands, we must get the
// Y*Z term.
- SmallVector<const SCEV*, 4> MulOps(Mul->op_begin(), Mul->op_end());
+ SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end());
MulOps.erase(MulOps.begin()+MulOp);
InnerMul = getMulExpr(MulOps);
}
- const SCEV* One = getIntegerSCEV(1, Ty);
- const SCEV* AddOne = getAddExpr(InnerMul, One);
- const SCEV* OuterMul = getMulExpr(AddOne, Ops[AddOp]);
+ const SCEV *One = getIntegerSCEV(1, Ty);
+ const SCEV *AddOne = getAddExpr(InnerMul, One);
+ const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]);
if (Ops.size() == 2) return OuterMul;
if (AddOp < Idx) {
Ops.erase(Ops.begin()+AddOp);
@@ -1313,22 +1313,22 @@
OMulOp != e; ++OMulOp)
if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
// Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
- const SCEV* InnerMul1 = Mul->getOperand(MulOp == 0);
+ const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
if (Mul->getNumOperands() != 2) {
SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Mul->op_end());
MulOps.erase(MulOps.begin()+MulOp);
InnerMul1 = getMulExpr(MulOps);
}
- const SCEV* InnerMul2 = OtherMul->getOperand(OMulOp == 0);
+ const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
if (OtherMul->getNumOperands() != 2) {
SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
OtherMul->op_end());
MulOps.erase(MulOps.begin()+OMulOp);
InnerMul2 = getMulExpr(MulOps);
}
- const SCEV* InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
- const SCEV* OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
+ const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
+ const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
if (Ops.size() == 2) return OuterMul;
Ops.erase(Ops.begin()+Idx);
Ops.erase(Ops.begin()+OtherMulIdx-1);
@@ -1349,7 +1349,7 @@
for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
// Scan all of the other operands to this add and add them to the vector if
// they are loop invariant w.r.t. the recurrence.
- SmallVector<const SCEV*, 8> LIOps;
+ SmallVector<const SCEV *, 8> LIOps;
const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
@@ -1363,11 +1363,11 @@
// NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
LIOps.push_back(AddRec->getStart());
- SmallVector<const SCEV*, 4> AddRecOps(AddRec->op_begin(),
+ SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
AddRec->op_end());
AddRecOps[0] = getAddExpr(LIOps);
- const SCEV* NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
+ const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
// If all of the other operands were loop invariant, we are done.
if (Ops.size() == 1) return NewRec;
@@ -1399,7 +1399,7 @@
}
NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
}
- const SCEV* NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
+ const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
if (Ops.size() == 2) return NewAddRec;
@@ -1432,7 +1432,7 @@
/// getMulExpr - Get a canonical multiply expression, or something simpler if
/// possible.
-const SCEV* ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV*> &Ops) {
+const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops) {
assert(!Ops.empty() && "Cannot get empty mul!");
#ifndef NDEBUG
for (unsigned i = 1, e = Ops.size(); i != e; ++i)
@@ -1513,7 +1513,7 @@
for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
// Scan all of the other operands to this mul and add them to the vector if
// they are loop invariant w.r.t. the recurrence.
- SmallVector<const SCEV*, 8> LIOps;
+ SmallVector<const SCEV *, 8> LIOps;
const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
@@ -1525,7 +1525,7 @@
// If we found some loop invariants, fold them into the recurrence.
if (!LIOps.empty()) {
// NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
- SmallVector<const SCEV*, 4> NewOps;
+ SmallVector<const SCEV *, 4> NewOps;
NewOps.reserve(AddRec->getNumOperands());
if (LIOps.size() == 1) {
const SCEV *Scale = LIOps[0];
@@ -1533,13 +1533,13 @@
NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
} else {
for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
- SmallVector<const SCEV*, 4> MulOps(LIOps.begin(), LIOps.end());
+ SmallVector<const SCEV *, 4> MulOps(LIOps.begin(), LIOps.end());
MulOps.push_back(AddRec->getOperand(i));
NewOps.push_back(getMulExpr(MulOps));
}
}
- const SCEV* NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
+ const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
// If all of the other operands were loop invariant, we are done.
if (Ops.size() == 1) return NewRec;
@@ -1563,14 +1563,14 @@
if (AddRec->getLoop() == OtherAddRec->getLoop()) {
// F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
- const SCEV* NewStart = getMulExpr(F->getStart(),
+ const SCEV *NewStart = getMulExpr(F->getStart(),
G->getStart());
- const SCEV* B = F->getStepRecurrence(*this);
- const SCEV* D = G->getStepRecurrence(*this);
- const SCEV* NewStep = getAddExpr(getMulExpr(F, D),
+ const SCEV *B = F->getStepRecurrence(*this);
+ const SCEV *D = G->getStepRecurrence(*this);
+ const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
getMulExpr(G, B),
getMulExpr(B, D));
- const SCEV* NewAddRec = getAddRecExpr(NewStart, NewStep,
+ const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
F->getLoop());
if (Ops.size() == 2) return NewAddRec;
@@ -1636,24 +1636,24 @@
getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
getZeroExtendExpr(Step, ExtTy),
AR->getLoop())) {
- SmallVector<const SCEV*, 4> Operands;
+ SmallVector<const SCEV *, 4> Operands;
for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
return getAddRecExpr(Operands, AR->getLoop());
}
// (A*B)/C --> A*(B/C) if safe and B/C can be folded.
if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
- SmallVector<const SCEV*, 4> Operands;
+ SmallVector<const SCEV *, 4> Operands;
for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
// Find an operand that's safely divisible.
for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
- const SCEV* Op = M->getOperand(i);
- const SCEV* Div = getUDivExpr(Op, RHSC);
+ const SCEV *Op = M->getOperand(i);
+ const SCEV *Div = getUDivExpr(Op, RHSC);
if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
- const SmallVectorImpl<const SCEV*> &MOperands = M->getOperands();
- Operands = SmallVector<const SCEV*, 4>(MOperands.begin(),
+ const SmallVectorImpl<const SCEV *> &MOperands = M->getOperands();
+ Operands = SmallVector<const SCEV *, 4>(MOperands.begin(),
MOperands.end());
Operands[i] = Div;
return getMulExpr(Operands);
@@ -1662,13 +1662,13 @@
}
// (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
- SmallVector<const SCEV*, 4> Operands;
+ SmallVector<const SCEV *, 4> Operands;
for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
Operands.clear();
for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
- const SCEV* Op = getUDivExpr(A->getOperand(i), RHS);
+ const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i))
break;
Operands.push_back(Op);
@@ -1702,9 +1702,9 @@
/// getAddRecExpr - Get an add recurrence expression for the specified loop.
/// Simplify the expression as much as possible.
-const SCEV* ScalarEvolution::getAddRecExpr(const SCEV* Start,
- const SCEV* Step, const Loop *L) {
- SmallVector<const SCEV*, 4> Operands;
+const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
+ const SCEV *Step, const Loop *L) {
+ SmallVector<const SCEV *, 4> Operands;
Operands.push_back(Start);
if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
if (StepChrec->getLoop() == L) {
@@ -1720,7 +1720,7 @@
/// getAddRecExpr - Get an add recurrence expression for the specified loop.
/// Simplify the expression as much as possible.
const SCEV *
-ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV*> &Operands,
+ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
const Loop *L) {
if (Operands.size() == 1) return Operands[0];
#ifndef NDEBUG
@@ -1739,7 +1739,7 @@
if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
const Loop* NestedLoop = NestedAR->getLoop();
if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
- SmallVector<const SCEV*, 4> NestedOperands(NestedAR->op_begin(),
+ SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
NestedAR->op_end());
Operands[0] = NestedAR->getStart();
// AddRecs require their operands be loop-invariant with respect to their
@@ -1784,14 +1784,14 @@
const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
const SCEV *RHS) {
- SmallVector<const SCEV*, 2> Ops;
+ SmallVector<const SCEV *, 2> Ops;
Ops.push_back(LHS);
Ops.push_back(RHS);
return getSMaxExpr(Ops);
}
-const SCEV*
-ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV*> &Ops) {
+const SCEV *
+ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
assert(!Ops.empty() && "Cannot get empty smax!");
if (Ops.size() == 1) return Ops[0];
#ifndef NDEBUG
@@ -1881,14 +1881,14 @@
const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
const SCEV *RHS) {
- SmallVector<const SCEV*, 2> Ops;
+ SmallVector<const SCEV *, 2> Ops;
Ops.push_back(LHS);
Ops.push_back(RHS);
return getUMaxExpr(Ops);
}
-const SCEV*
-ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV*> &Ops) {
+const SCEV *
+ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
assert(!Ops.empty() && "Cannot get empty umax!");
if (Ops.size() == 1) return Ops[0];
#ifndef NDEBUG
@@ -1988,7 +1988,7 @@
return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
}
-const SCEV* ScalarEvolution::getUnknown(Value *V) {
+const SCEV *ScalarEvolution::getUnknown(Value *V) {
// Don't attempt to do anything other than create a SCEVUnknown object
// here. createSCEV only calls getUnknown after checking for all other
// interesting possibilities, and any other code that calls getUnknown
@@ -2055,7 +2055,7 @@
return TD->getIntPtrType();
}
-const SCEV* ScalarEvolution::getCouldNotCompute() {
+const SCEV *ScalarEvolution::getCouldNotCompute() {
return &CouldNotCompute;
}
@@ -2067,26 +2067,26 @@
/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
/// expression and create a new one.
-const SCEV* ScalarEvolution::getSCEV(Value *V) {
+const SCEV *ScalarEvolution::getSCEV(Value *V) {
assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
- std::map<SCEVCallbackVH, const SCEV*>::iterator I = Scalars.find(V);
+ std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V);
if (I != Scalars.end()) return I->second;
- const SCEV* S = createSCEV(V);
+ const SCEV *S = createSCEV(V);
Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
return S;
}
/// getIntegerSCEV - Given a SCEVable type, create a constant for the
/// specified signed integer value and return a SCEV for the constant.
-const SCEV* ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
+const SCEV *ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
return getConstant(ConstantInt::get(ITy, Val));
}
/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
///
-const SCEV* ScalarEvolution::getNegativeSCEV(const SCEV* V) {
+const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
return getConstant(cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
@@ -2096,13 +2096,13 @@
}
/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
-const SCEV* ScalarEvolution::getNotSCEV(const SCEV* V) {
+const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
return getConstant(cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
const Type *Ty = V->getType();
Ty = getEffectiveSCEVType(Ty);
- const SCEV* AllOnes = getConstant(ConstantInt::getAllOnesValue(Ty));
+ const SCEV *AllOnes = getConstant(ConstantInt::getAllOnesValue(Ty));
return getMinusSCEV(AllOnes, V);
}
@@ -2117,8 +2117,8 @@
/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
/// input value to the specified type. If the type must be extended, it is zero
/// extended.
-const SCEV*
-ScalarEvolution::getTruncateOrZeroExtend(const SCEV* V,
+const SCEV *
+ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
const Type *Ty) {
const Type *SrcTy = V->getType();
assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
@@ -2134,8 +2134,8 @@
/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
/// input value to the specified type. If the type must be extended, it is sign
/// extended.
-const SCEV*
-ScalarEvolution::getTruncateOrSignExtend(const SCEV* V,
+const SCEV *
+ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
const Type *Ty) {
const Type *SrcTy = V->getType();
assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
@@ -2151,8 +2151,8 @@
/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
/// input value to the specified type. If the type must be extended, it is zero
/// extended. The conversion must not be narrowing.
-const SCEV*
-ScalarEvolution::getNoopOrZeroExtend(const SCEV* V, const Type *Ty) {
+const SCEV *
+ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
const Type *SrcTy = V->getType();
assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
(Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
@@ -2167,8 +2167,8 @@
/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
/// input value to the specified type. If the type must be extended, it is sign
/// extended. The conversion must not be narrowing.
-const SCEV*
-ScalarEvolution::getNoopOrSignExtend(const SCEV* V, const Type *Ty) {
+const SCEV *
+ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
const Type *SrcTy = V->getType();
assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
(Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
@@ -2184,8 +2184,8 @@
/// the input value to the specified type. If the type must be extended,
/// it is extended with unspecified bits. The conversion must not be
/// narrowing.
-const SCEV*
-ScalarEvolution::getNoopOrAnyExtend(const SCEV* V, const Type *Ty) {
+const SCEV *
+ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
const Type *SrcTy = V->getType();
assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
(Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
@@ -2199,8 +2199,8 @@
/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
/// input value to the specified type. The conversion must not be widening.
-const SCEV*
-ScalarEvolution::getTruncateOrNoop(const SCEV* V, const Type *Ty) {
+const SCEV *
+ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
const Type *SrcTy = V->getType();
assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
(Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
@@ -2217,8 +2217,8 @@
/// with them.
const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
const SCEV *RHS) {
- const SCEV* PromotedLHS = LHS;
- const SCEV* PromotedRHS = RHS;
+ const SCEV *PromotedLHS = LHS;
+ const SCEV *PromotedRHS = RHS;
if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
@@ -2233,8 +2233,8 @@
/// with them.
const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
const SCEV *RHS) {
- const SCEV* PromotedLHS = LHS;
- const SCEV* PromotedRHS = RHS;
+ const SCEV *PromotedLHS = LHS;
+ const SCEV *PromotedRHS = RHS;
if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
@@ -2251,11 +2251,11 @@
ScalarEvolution::ReplaceSymbolicValueWithConcrete(Instruction *I,
const SCEV *SymName,
const SCEV *NewVal) {
- std::map<SCEVCallbackVH, const SCEV*>::iterator SI =
+ std::map<SCEVCallbackVH, const SCEV *>::iterator SI =
Scalars.find(SCEVCallbackVH(I, this));
if (SI == Scalars.end()) return;
- const SCEV* NV =
+ const SCEV *NV =
SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this);
if (NV == SI->second) return; // No change.
@@ -2271,7 +2271,7 @@
/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
/// a loop header, making it a potential recurrence, or it doesn't.
///
-const SCEV* ScalarEvolution::createNodeForPHI(PHINode *PN) {
+const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized.
if (const Loop *L = LI->getLoopFor(PN->getParent()))
if (L->getHeader() == PN->getParent()) {
@@ -2281,14 +2281,14 @@
unsigned BackEdge = IncomingEdge^1;
// While we are analyzing this PHI node, handle its value symbolically.
- const SCEV* SymbolicName = getUnknown(PN);
+ const SCEV *SymbolicName = getUnknown(PN);
assert(Scalars.find(PN) == Scalars.end() &&
"PHI node already processed?");
Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
// Using this symbolic name for the PHI, analyze the value coming around
// the back-edge.
- const SCEV* BEValue = getSCEV(PN->getIncomingValue(BackEdge));
+ const SCEV *BEValue = getSCEV(PN->getIncomingValue(BackEdge));
// NOTE: If BEValue is loop invariant, we know that the PHI node just
// has a special value for the first iteration of the loop.
@@ -2308,11 +2308,11 @@
if (FoundIndex != Add->getNumOperands()) {
// Create an add with everything but the specified operand.
- SmallVector<const SCEV*, 8> Ops;
+ SmallVector<const SCEV *, 8> Ops;
for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
if (i != FoundIndex)
Ops.push_back(Add->getOperand(i));
- const SCEV* Accum = getAddExpr(Ops);
+ const SCEV *Accum = getAddExpr(Ops);
// This is not a valid addrec if the step amount is varying each
// loop iteration, but is not itself an addrec in this loop.
@@ -2341,13 +2341,13 @@
// Because the other in-value of i (0) fits the evolution of BEValue
// i really is an addrec evolution.
if (AddRec->getLoop() == L && AddRec->isAffine()) {
- const SCEV* StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
+ const SCEV *StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
// If StartVal = j.start - j.stride, we can use StartVal as the
// initial step of the addrec evolution.
if (StartVal == getMinusSCEV(AddRec->getOperand(0),
AddRec->getOperand(1))) {
- const SCEV* PHISCEV =
+ const SCEV *PHISCEV =
getAddRecExpr(StartVal, AddRec->getOperand(1), L);
// Okay, for the entire analysis of this edge we assumed the PHI
@@ -2371,14 +2371,14 @@
/// createNodeForGEP - Expand GEP instructions into add and multiply
/// operations. This allows them to be analyzed by regular SCEV code.
///
-const SCEV* ScalarEvolution::createNodeForGEP(User *GEP) {
+const SCEV *ScalarEvolution::createNodeForGEP(User *GEP) {
const Type *IntPtrTy = TD->getIntPtrType();
Value *Base = GEP->getOperand(0);
// Don't attempt to analyze GEPs over unsized objects.
if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
return getUnknown(GEP);
- const SCEV* TotalOffset = getIntegerSCEV(0, IntPtrTy);
+ const SCEV *TotalOffset = getIntegerSCEV(0, IntPtrTy);
gep_type_iterator GTI = gep_type_begin(GEP);
for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
E = GEP->op_end();
@@ -2394,7 +2394,7 @@
getIntegerSCEV(Offset, IntPtrTy));
} else {
// For an array, add the element offset, explicitly scaled.
- const SCEV* LocalOffset = getSCEV(Index);
+ const SCEV *LocalOffset = getSCEV(Index);
if (!isa<PointerType>(LocalOffset->getType()))
// Getelementptr indicies are signed.
LocalOffset = getTruncateOrSignExtend(LocalOffset,
@@ -2414,7 +2414,7 @@
/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
uint32_t
-ScalarEvolution::GetMinTrailingZeros(const SCEV* S) {
+ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
return C->getValue()->getValue().countTrailingZeros();
@@ -2491,7 +2491,7 @@
}
uint32_t
-ScalarEvolution::GetMinLeadingZeros(const SCEV* S) {
+ScalarEvolution::GetMinLeadingZeros(const SCEV *S) {
// TODO: Handle other SCEV expression types here.
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
@@ -2517,7 +2517,7 @@
}
uint32_t
-ScalarEvolution::GetMinSignBits(const SCEV* S) {
+ScalarEvolution::GetMinSignBits(const SCEV *S) {
// TODO: Handle other SCEV expression types here.
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
@@ -2576,7 +2576,7 @@
/// createSCEV - We know that there is no SCEV for the specified value.
/// Analyze the expression.
///
-const SCEV* ScalarEvolution::createSCEV(Value *V) {
+const SCEV *ScalarEvolution::createSCEV(Value *V) {
if (!isSCEVable(V->getType()))
return getUnknown(V);
@@ -2646,7 +2646,7 @@
// In order for this transformation to be safe, the LHS must be of the
// form X*(2^n) and the Or constant must be less than 2^n.
if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
- const SCEV* LHS = getSCEV(U->getOperand(0));
+ const SCEV *LHS = getSCEV(U->getOperand(0));
const APInt &CIVal = CI->getValue();
if (GetMinTrailingZeros(LHS) >=
(CIVal.getBitWidth() - CIVal.countLeadingZeros()))
@@ -2676,7 +2676,7 @@
if (const SCEVZeroExtendExpr *Z =
dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
const Type *UTy = U->getType();
- const SCEV* Z0 = Z->getOperand();
+ const SCEV *Z0 = Z->getOperand();
const Type *Z0Ty = Z0->getType();
unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
@@ -2845,14 +2845,14 @@
/// loop-invariant backedge-taken count (see
/// hasLoopInvariantBackedgeTakenCount).
///
-const SCEV* ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
+const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
return getBackedgeTakenInfo(L).Exact;
}
/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
/// return the least SCEV value that is known never to be less than the
/// actual backedge taken count.
-const SCEV* ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
+const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
return getBackedgeTakenInfo(L).Max;
}
@@ -2919,7 +2919,7 @@
SmallVector<Instruction *, 16> Worklist;
for (BasicBlock::iterator I = Header->begin();
PHINode *PN = dyn_cast<PHINode>(I); ++I) {
- std::map<SCEVCallbackVH, const SCEV*>::iterator It =
+ std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Scalars.find((Value*)I);
if (It != Scalars.end() && !isa<SCEVUnknown>(It->second))
Worklist.push_back(PN);
@@ -2942,8 +2942,8 @@
L->getExitingBlocks(ExitingBlocks);
// Examine all exits and pick the most conservative values.
- const SCEV* BECount = getCouldNotCompute();
- const SCEV* MaxBECount = getCouldNotCompute();
+ const SCEV *BECount = getCouldNotCompute();
+ const SCEV *MaxBECount = getCouldNotCompute();
bool CouldNotComputeBECount = false;
for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
BackedgeTakenInfo NewBTI =
@@ -3052,8 +3052,8 @@
ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
BackedgeTakenInfo BTI1 =
ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
- const SCEV* BECount = getCouldNotCompute();
- const SCEV* MaxBECount = getCouldNotCompute();
+ const SCEV *BECount = getCouldNotCompute();
+ const SCEV *MaxBECount = getCouldNotCompute();
if (L->contains(TBB)) {
// Both conditions must be true for the loop to continue executing.
// Choose the less conservative count.
@@ -3087,8 +3087,8 @@
ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
BackedgeTakenInfo BTI1 =
ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
- const SCEV* BECount = getCouldNotCompute();
- const SCEV* MaxBECount = getCouldNotCompute();
+ const SCEV *BECount = getCouldNotCompute();
+ const SCEV *MaxBECount = getCouldNotCompute();
if (L->contains(FBB)) {
// Both conditions must be false for the loop to continue executing.
// Choose the less conservative count.
@@ -3146,7 +3146,7 @@
// Handle common loops like: for (X = "string"; *X; ++X)
if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
- const SCEV* ItCnt =
+ const SCEV *ItCnt =
ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
if (!isa<SCEVCouldNotCompute>(ItCnt)) {
unsigned BitWidth = getTypeSizeInBits(ItCnt->getType());
@@ -3156,8 +3156,8 @@
}
}
- const SCEV* LHS = getSCEV(ExitCond->getOperand(0));
- const SCEV* RHS = getSCEV(ExitCond->getOperand(1));
+ const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
+ const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
// Try to evaluate any dependencies out of the loop.
LHS = getSCEVAtScope(LHS, L);
@@ -3180,20 +3180,20 @@
ConstantRange CompRange(
ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
- const SCEV* Ret = AddRec->getNumIterationsInRange(CompRange, *this);
+ const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
}
switch (Cond) {
case ICmpInst::ICMP_NE: { // while (X != Y)
// Convert to: while (X-Y != 0)
- const SCEV* TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
+ const SCEV *TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
if (!isa<SCEVCouldNotCompute>(TC)) return TC;
break;
}
case ICmpInst::ICMP_EQ: {
// Convert to: while (X-Y == 0) // while (X == Y)
- const SCEV* TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
+ const SCEV *TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
if (!isa<SCEVCouldNotCompute>(TC)) return TC;
break;
}
@@ -3237,8 +3237,8 @@
static ConstantInt *
EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
ScalarEvolution &SE) {
- const SCEV* InVal = SE.getConstant(C);
- const SCEV* Val = AddRec->evaluateAtIteration(InVal, SE);
+ const SCEV *InVal = SE.getConstant(C);
+ const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
assert(isa<SCEVConstant>(Val) &&
"Evaluation of SCEV at constant didn't fold correctly?");
return cast<SCEVConstant>(Val)->getValue();
@@ -3317,7 +3317,7 @@
// Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
// Check to see if X is a loop variant variable value now.
- const SCEV* Idx = getSCEV(VarIdx);
+ const SCEV *Idx = getSCEV(VarIdx);
Idx = getSCEVAtScope(Idx, L);
// We can only recognize very limited forms of loop index expressions, in
@@ -3556,7 +3556,7 @@
///
/// In the case that a relevant loop exit value cannot be computed, the
/// original value V is returned.
-const SCEV* ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
+const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
// FIXME: this should be turned into a virtual method on SCEV!
if (isa<SCEVConstant>(V)) return V;
@@ -3573,7 +3573,7 @@
// to see if the loop that contains it has a known backedge-taken
// count. If so, we may be able to force computation of the exit
// value.
- const SCEV* BackedgeTakenCount = getBackedgeTakenCount(LI);
+ const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
if (const SCEVConstant *BTCC =
dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
// Okay, we know how many times the containing loop executes. If
@@ -3611,7 +3611,7 @@
if (!isSCEVable(Op->getType()))
return V;
- const SCEV* OpV = getSCEVAtScope(getSCEV(Op), L);
+ const SCEV *OpV = getSCEVAtScope(getSCEV(Op), L);
if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
Constant *C = SC->getValue();
if (C->getType() != Op->getType())
@@ -3658,7 +3658,7 @@
// Avoid performing the look-up in the common case where the specified
// expression has no loop-variant portions.
for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
- const SCEV* OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
+ const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
if (OpAtScope != Comm->getOperand(i)) {
// Okay, at least one of these operands is loop variant but might be
// foldable. Build a new instance of the folded commutative expression.
@@ -3686,8 +3686,8 @@
}
if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
- const SCEV* LHS = getSCEVAtScope(Div->getLHS(), L);
- const SCEV* RHS = getSCEVAtScope(Div->getRHS(), L);
+ const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
+ const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
if (LHS == Div->getLHS() && RHS == Div->getRHS())
return Div; // must be loop invariant
return getUDivExpr(LHS, RHS);
@@ -3699,7 +3699,7 @@
if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
// To evaluate this recurrence, we need to know how many times the AddRec
// loop iterates. Compute this now.
- const SCEV* BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
+ const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
// Then, evaluate the AddRec.
@@ -3709,21 +3709,21 @@
}
if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
- const SCEV* Op = getSCEVAtScope(Cast->getOperand(), L);
+ const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
if (Op == Cast->getOperand())
return Cast; // must be loop invariant
return getZeroExtendExpr(Op, Cast->getType());
}
if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
- const SCEV* Op = getSCEVAtScope(Cast->getOperand(), L);
+ const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
if (Op == Cast->getOperand())
return Cast; // must be loop invariant
return getSignExtendExpr(Op, Cast->getType());
}
if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
- const SCEV* Op = getSCEVAtScope(Cast->getOperand(), L);
+ const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
if (Op == Cast->getOperand())
return Cast; // must be loop invariant
return getTruncateExpr(Op, Cast->getType());
@@ -3735,7 +3735,7 @@
/// getSCEVAtScope - This is a convenience function which does
/// getSCEVAtScope(getSCEV(V), L).
-const SCEV* ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
+const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
return getSCEVAtScope(getSCEV(V), L);
}
@@ -3748,7 +3748,7 @@
/// A and B isn't important.
///
/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
-static const SCEV* SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
+static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
ScalarEvolution &SE) {
uint32_t BW = A.getBitWidth();
assert(BW == B.getBitWidth() && "Bit widths must be the same.");
@@ -3791,7 +3791,7 @@
/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
/// might be the same) or two SCEVCouldNotCompute objects.
///
-static std::pair<const SCEV*,const SCEV*>
+static std::pair<const SCEV *,const SCEV *>
SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
@@ -3854,7 +3854,7 @@
/// HowFarToZero - Return the number of times a backedge comparing the specified
/// value to zero will execute. If not computable, return CouldNotCompute.
-const SCEV* ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
+const SCEV *ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
// If the value is a constant
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
// If the value is already zero, the branch will execute zero times.
@@ -3902,7 +3902,7 @@
} else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
// If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
// the quadratic equation to solve it.
- std::pair<const SCEV*,const SCEV*> Roots = SolveQuadraticEquation(AddRec,
+ std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
*this);
const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
@@ -3921,7 +3921,7 @@
// We can only use this value if the chrec ends up with an exact zero
// value at this index. When solving for "X*X != 5", for example, we
// should not accept a root of 2.
- const SCEV* Val = AddRec->evaluateAtIteration(R1, *this);
+ const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
if (Val->isZero())
return R1; // We found a quadratic root!
}
@@ -3934,7 +3934,7 @@
/// HowFarToNonZero - Return the number of times a backedge checking the
/// specified value for nonzero will execute. If not computable, return
/// CouldNotCompute
-const SCEV* ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
+const SCEV *ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
// Loops that look like: while (X == 0) are very strange indeed. We don't
// handle them yet except for the trivial case. This could be expanded in the
// future as needed.
@@ -3995,7 +3995,7 @@
/// more general, since a front-end may have replicated the controlling
/// expression.
///
-static bool HasSameValue(const SCEV* A, const SCEV* B) {
+static bool HasSameValue(const SCEV *A, const SCEV *B) {
// Quick check to see if they are the same SCEV.
if (A == B) return true;
@@ -4148,22 +4148,22 @@
/// getBECount - Subtract the end and start values and divide by the step,
/// rounding up, to get the number of times the backedge is executed. Return
/// CouldNotCompute if an intermediate computation overflows.
-const SCEV* ScalarEvolution::getBECount(const SCEV* Start,
- const SCEV* End,
- const SCEV* Step) {
+const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
+ const SCEV *End,
+ const SCEV *Step) {
const Type *Ty = Start->getType();
- const SCEV* NegOne = getIntegerSCEV(-1, Ty);
- const SCEV* Diff = getMinusSCEV(End, Start);
- const SCEV* RoundUp = getAddExpr(Step, NegOne);
+ const SCEV *NegOne = getIntegerSCEV(-1, Ty);
+ const SCEV *Diff = getMinusSCEV(End, Start);
+ const SCEV *RoundUp = getAddExpr(Step, NegOne);
// Add an adjustment to the difference between End and Start so that
// the division will effectively round up.
- const SCEV* Add = getAddExpr(Diff, RoundUp);
+ const SCEV *Add = getAddExpr(Diff, RoundUp);
// Check Add for unsigned overflow.
// TODO: More sophisticated things could be done here.
const Type *WideTy = Context->getIntegerType(getTypeSizeInBits(Ty) + 1);
- const SCEV* OperandExtendedAdd =
+ const SCEV *OperandExtendedAdd =
getAddExpr(getZeroExtendExpr(Diff, WideTy),
getZeroExtendExpr(RoundUp, WideTy));
if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
@@ -4188,7 +4188,7 @@
if (AddRec->isAffine()) {
// FORNOW: We only support unit strides.
unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
- const SCEV* Step = AddRec->getStepRecurrence(*this);
+ const SCEV *Step = AddRec->getStepRecurrence(*this);
// TODO: handle non-constant strides.
const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step);
@@ -4224,7 +4224,7 @@
// treat m-n as signed nor unsigned due to overflow possibility.
// First, we get the value of the LHS in the first iteration: n
- const SCEV* Start = AddRec->getOperand(0);
+ const SCEV *Start = AddRec->getOperand(0);
// Determine the minimum constant start value.
const SCEV *MinStart = isa<SCEVConstant>(Start) ? Start :
@@ -4235,7 +4235,7 @@
// then we know that it will run exactly (m-n)/s times. Otherwise, we
// only know that it will execute (max(m,n)-n)/s times. In both cases,
// the division must round up.
- const SCEV* End = RHS;
+ const SCEV *End = RHS;
if (!isLoopGuardedByCond(L,
isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
getMinusSCEV(Start, Step), RHS))
@@ -4243,7 +4243,7 @@
: getUMaxExpr(RHS, Start);
// Determine the maximum constant end value.
- const SCEV* MaxEnd =
+ const SCEV *MaxEnd =
isa<SCEVConstant>(End) ? End :
getConstant(isSigned ? APInt::getSignedMaxValue(BitWidth)
.ashr(GetMinSignBits(End) - 1) :
@@ -4252,11 +4252,11 @@
// Finally, we subtract these two values and divide, rounding up, to get
// the number of times the backedge is executed.
- const SCEV* BECount = getBECount(Start, End, Step);
+ const SCEV *BECount = getBECount(Start, End, Step);
// The maximum backedge count is similar, except using the minimum start
// value and the maximum end value.
- const SCEV* MaxBECount = getBECount(MinStart, MaxEnd, Step);
+ const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step);
return BackedgeTakenInfo(BECount, MaxBECount);
}
@@ -4269,7 +4269,7 @@
/// this is that it returns the first iteration number where the value is not in
/// the condition, thus computing the exit count. If the iteration count can't
/// be computed, an instance of SCEVCouldNotCompute is returned.
-const SCEV* SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
+const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
ScalarEvolution &SE) const {
if (Range.isFullSet()) // Infinite loop.
return SE.getCouldNotCompute();
@@ -4277,9 +4277,9 @@
// If the start is a non-zero constant, shift the range to simplify things.
if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
if (!SC->getValue()->isZero()) {
- SmallVector<const SCEV*, 4> Operands(op_begin(), op_end());
+ SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Operands[0] = SE.getIntegerSCEV(0, SC->getType());
- const SCEV* Shifted = SE.getAddRecExpr(Operands, getLoop());
+ const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
if (const SCEVAddRecExpr *ShiftedAddRec =
dyn_cast<SCEVAddRecExpr>(Shifted))
return ShiftedAddRec->getNumIterationsInRange(
@@ -4338,12 +4338,12 @@
// quadratic equation to solve it. To do this, we must frame our problem in
// terms of figuring out when zero is crossed, instead of when
// Range.getUpper() is crossed.
- SmallVector<const SCEV*, 4> NewOps(op_begin(), op_end());
+ SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
- const SCEV* NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
+ const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
// Next, solve the constructed addrec
- std::pair<const SCEV*,const SCEV*> Roots =
+ std::pair<const SCEV *,const SCEV *> Roots =
SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
@@ -4525,12 +4525,12 @@
if (isSCEVable(I->getType())) {
OS << *I;
OS << " --> ";
- const SCEV* SV = SE.getSCEV(&*I);
+ const SCEV *SV = SE.getSCEV(&*I);
SV->print(OS);
const Loop *L = LI->getLoopFor((*I).getParent());
- const SCEV* AtUse = SE.getSCEVAtScope(SV, L);
+ const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
if (AtUse != SV) {
OS << " --> ";
AtUse->print(OS);
@@ -4538,7 +4538,7 @@
if (L) {
OS << "\t\t" "Exits: ";
- const SCEV* ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
+ const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
if (!ExitValue->isLoopInvariant(L)) {
OS << "<<Unknown>>";
} else {
diff --git a/lib/Analysis/ScalarEvolutionExpander.cpp b/lib/Analysis/ScalarEvolutionExpander.cpp
index fbb5326..ecfbc8e 100644
--- a/lib/Analysis/ScalarEvolutionExpander.cpp
+++ b/lib/Analysis/ScalarEvolutionExpander.cpp
@@ -156,8 +156,8 @@
/// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
/// unnecessary; in its place, just signed-divide Ops[i] by the scale and
/// check to see if the divide was folded.
-static bool FactorOutConstant(const SCEV* &S,
- const SCEV* &Remainder,
+static bool FactorOutConstant(const SCEV *&S,
+ const SCEV *&Remainder,
const APInt &Factor,
ScalarEvolution &SE) {
// Everything is divisible by one.
@@ -172,7 +172,7 @@
// the value at this scale. It will be considered for subsequent
// smaller scales.
if (C->isZero() || !CI->isZero()) {
- const SCEV* Div = SE.getConstant(CI);
+ const SCEV *Div = SE.getConstant(CI);
S = Div;
Remainder =
SE.getAddExpr(Remainder,
@@ -197,13 +197,13 @@
// In an AddRec, check if both start and step are divisible.
if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
- const SCEV* Step = A->getStepRecurrence(SE);
- const SCEV* StepRem = SE.getIntegerSCEV(0, Step->getType());
+ const SCEV *Step = A->getStepRecurrence(SE);
+ const SCEV *StepRem = SE.getIntegerSCEV(0, Step->getType());
if (!FactorOutConstant(Step, StepRem, Factor, SE))
return false;
if (!StepRem->isZero())
return false;
- const SCEV* Start = A->getStart();
+ const SCEV *Start = A->getStart();
if (!FactorOutConstant(Start, Remainder, Factor, SE))
return false;
S = SE.getAddRecExpr(Start, Step, A->getLoop());
@@ -238,14 +238,14 @@
/// loop-invariant portions of expressions, after considering what
/// can be folded using target addressing modes.
///
-Value *SCEVExpander::expandAddToGEP(const SCEV* const *op_begin,
- const SCEV* const *op_end,
+Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
+ const SCEV *const *op_end,
const PointerType *PTy,
const Type *Ty,
Value *V) {
const Type *ElTy = PTy->getElementType();
SmallVector<Value *, 4> GepIndices;
- SmallVector<const SCEV*, 8> Ops(op_begin, op_end);
+ SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
bool AnyNonZeroIndices = false;
// Decend down the pointer's type and attempt to convert the other
@@ -256,14 +256,14 @@
for (;;) {
APInt ElSize = APInt(SE.getTypeSizeInBits(Ty),
ElTy->isSized() ? SE.TD->getTypeAllocSize(ElTy) : 0);
- SmallVector<const SCEV*, 8> NewOps;
- SmallVector<const SCEV*, 8> ScaledOps;
+ SmallVector<const SCEV *, 8> NewOps;
+ SmallVector<const SCEV *, 8> ScaledOps;
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
// Split AddRecs up into parts as either of the parts may be usable
// without the other.
if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i]))
if (!A->getStart()->isZero()) {
- const SCEV* Start = A->getStart();
+ const SCEV *Start = A->getStart();
Ops.push_back(SE.getAddRecExpr(SE.getIntegerSCEV(0, A->getType()),
A->getStepRecurrence(SE),
A->getLoop()));
@@ -272,8 +272,8 @@
}
// If the scale size is not 0, attempt to factor out a scale.
if (ElSize != 0) {
- const SCEV* Op = Ops[i];
- const SCEV* Remainder = SE.getIntegerSCEV(0, Op->getType());
+ const SCEV *Op = Ops[i];
+ const SCEV *Remainder = SE.getIntegerSCEV(0, Op->getType());
if (FactorOutConstant(Op, Remainder, ElSize, SE)) {
ScaledOps.push_back(Op); // Op now has ElSize factored out.
NewOps.push_back(Remainder);
@@ -370,7 +370,7 @@
// comments on expandAddToGEP for details.
if (SE.TD)
if (const PointerType *PTy = dyn_cast<PointerType>(V->getType())) {
- const SmallVectorImpl<const SCEV*> &Ops = S->getOperands();
+ const SmallVectorImpl<const SCEV *> &Ops = S->getOperands();
return expandAddToGEP(&Ops[0], &Ops[Ops.size() - 1], PTy, Ty, V);
}
@@ -424,7 +424,7 @@
/// Move parts of Base into Rest to leave Base with the minimal
/// expression that provides a pointer operand suitable for a
/// GEP expansion.
-static void ExposePointerBase(const SCEV* &Base, const SCEV* &Rest,
+static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
ScalarEvolution &SE) {
while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
Base = A->getStart();
@@ -435,7 +435,7 @@
}
if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
Base = A->getOperand(A->getNumOperands()-1);
- SmallVector<const SCEV*, 8> NewAddOps(A->op_begin(), A->op_end());
+ SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
NewAddOps.back() = Rest;
Rest = SE.getAddExpr(NewAddOps);
ExposePointerBase(Base, Rest, SE);
@@ -477,16 +477,16 @@
// {X,+,F} --> X + {0,+,F}
if (!S->getStart()->isZero()) {
- const SmallVectorImpl<const SCEV*> &SOperands = S->getOperands();
- SmallVector<const SCEV*, 4> NewOps(SOperands.begin(), SOperands.end());
+ const SmallVectorImpl<const SCEV *> &SOperands = S->getOperands();
+ SmallVector<const SCEV *, 4> NewOps(SOperands.begin(), SOperands.end());
NewOps[0] = SE.getIntegerSCEV(0, Ty);
- const SCEV* Rest = SE.getAddRecExpr(NewOps, L);
+ const SCEV *Rest = SE.getAddRecExpr(NewOps, L);
// Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
// comments on expandAddToGEP for details.
if (SE.TD) {
- const SCEV* Base = S->getStart();
- const SCEV* RestArray[1] = { Rest };
+ const SCEV *Base = S->getStart();
+ const SCEV *RestArray[1] = { Rest };
// Dig into the expression to find the pointer base for a GEP.
ExposePointerBase(Base, RestArray[0], SE);
// If we found a pointer, expand the AddRec with a GEP.
@@ -565,19 +565,19 @@
// folders, then expandCodeFor the closed form. This allows the folders to
// simplify the expression without having to build a bunch of special code
// into this folder.
- const SCEV* IH = SE.getUnknown(I); // Get I as a "symbolic" SCEV.
+ const SCEV *IH = SE.getUnknown(I); // Get I as a "symbolic" SCEV.
// Promote S up to the canonical IV type, if the cast is foldable.
- const SCEV* NewS = S;
- const SCEV* Ext = SE.getNoopOrAnyExtend(S, I->getType());
+ const SCEV *NewS = S;
+ const SCEV *Ext = SE.getNoopOrAnyExtend(S, I->getType());
if (isa<SCEVAddRecExpr>(Ext))
NewS = Ext;
- const SCEV* V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
+ const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
//cerr << "Evaluated: " << *this << "\n to: " << *V << "\n";
// Truncate the result down to the original type, if needed.
- const SCEV* T = SE.getTruncateOrNoop(V, Ty);
+ const SCEV *T = SE.getTruncateOrNoop(V, Ty);
return expand(T);
}
@@ -636,7 +636,7 @@
return LHS;
}
-Value *SCEVExpander::expandCodeFor(const SCEV* SH, const Type *Ty) {
+Value *SCEVExpander::expandCodeFor(const SCEV *SH, const Type *Ty) {
// Expand the code for this SCEV.
Value *V = expand(SH);
if (Ty) {
@@ -697,7 +697,7 @@
SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
const Type *Ty) {
assert(Ty->isInteger() && "Can only insert integer induction variables!");
- const SCEV* H = SE.getAddRecExpr(SE.getIntegerSCEV(0, Ty),
+ const SCEV *H = SE.getAddRecExpr(SE.getIntegerSCEV(0, Ty),
SE.getIntegerSCEV(1, Ty), L);
BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();