| //===-- JIT.cpp - LLVM Just in Time Compiler ------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This tool implements a just-in-time compiler for LLVM, allowing direct |
| // execution of LLVM bitcode in an efficient manner. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "JIT.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Function.h" |
| #include "llvm/GlobalVariable.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/ModuleProvider.h" |
| #include "llvm/CodeGen/MachineCodeEmitter.h" |
| #include "llvm/ExecutionEngine/GenericValue.h" |
| #include "llvm/CodeGen/MachineCodeInfo.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetJITInfo.h" |
| #include "llvm/Support/Dwarf.h" |
| #include "llvm/Support/MutexGuard.h" |
| #include "llvm/System/DynamicLibrary.h" |
| #include "llvm/Config/config.h" |
| |
| using namespace llvm; |
| |
| #ifdef __APPLE__ |
| // Apple gcc defaults to -fuse-cxa-atexit (i.e. calls __cxa_atexit instead |
| // of atexit). It passes the address of linker generated symbol __dso_handle |
| // to the function. |
| // This configuration change happened at version 5330. |
| # include <AvailabilityMacros.h> |
| # if defined(MAC_OS_X_VERSION_10_4) && \ |
| ((MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_4) || \ |
| (MAC_OS_X_VERSION_MIN_REQUIRED == MAC_OS_X_VERSION_10_4 && \ |
| __APPLE_CC__ >= 5330)) |
| # ifndef HAVE___DSO_HANDLE |
| # define HAVE___DSO_HANDLE 1 |
| # endif |
| # endif |
| #endif |
| |
| #if HAVE___DSO_HANDLE |
| extern void *__dso_handle __attribute__ ((__visibility__ ("hidden"))); |
| #endif |
| |
| namespace { |
| |
| static struct RegisterJIT { |
| RegisterJIT() { JIT::Register(); } |
| } JITRegistrator; |
| |
| } |
| |
| namespace llvm { |
| void LinkInJIT() { |
| } |
| } |
| |
| |
| #if defined(__GNUC__) && !defined(__ARM__EABI__) |
| |
| // libgcc defines the __register_frame function to dynamically register new |
| // dwarf frames for exception handling. This functionality is not portable |
| // across compilers and is only provided by GCC. We use the __register_frame |
| // function here so that code generated by the JIT cooperates with the unwinding |
| // runtime of libgcc. When JITting with exception handling enable, LLVM |
| // generates dwarf frames and registers it to libgcc with __register_frame. |
| // |
| // The __register_frame function works with Linux. |
| // |
| // Unfortunately, this functionality seems to be in libgcc after the unwinding |
| // library of libgcc for darwin was written. The code for darwin overwrites the |
| // value updated by __register_frame with a value fetched with "keymgr". |
| // "keymgr" is an obsolete functionality, which should be rewritten some day. |
| // In the meantime, since "keymgr" is on all libgccs shipped with apple-gcc, we |
| // need a workaround in LLVM which uses the "keymgr" to dynamically modify the |
| // values of an opaque key, used by libgcc to find dwarf tables. |
| |
| extern "C" void __register_frame(void*); |
| |
| #if defined(__APPLE__) && MAC_OS_X_VERSION_MAX_ALLOWED <= 1050 |
| # define USE_KEYMGR 1 |
| #else |
| # define USE_KEYMGR 0 |
| #endif |
| |
| #if USE_KEYMGR |
| |
| namespace { |
| |
| // LibgccObject - This is the structure defined in libgcc. There is no #include |
| // provided for this structure, so we also define it here. libgcc calls it |
| // "struct object". The structure is undocumented in libgcc. |
| struct LibgccObject { |
| void *unused1; |
| void *unused2; |
| void *unused3; |
| |
| /// frame - Pointer to the exception table. |
| void *frame; |
| |
| /// encoding - The encoding of the object? |
| union { |
| struct { |
| unsigned long sorted : 1; |
| unsigned long from_array : 1; |
| unsigned long mixed_encoding : 1; |
| unsigned long encoding : 8; |
| unsigned long count : 21; |
| } b; |
| size_t i; |
| } encoding; |
| |
| /// fde_end - libgcc defines this field only if some macro is defined. We |
| /// include this field even if it may not there, to make libgcc happy. |
| char *fde_end; |
| |
| /// next - At least we know it's a chained list! |
| struct LibgccObject *next; |
| }; |
| |
| // "kemgr" stuff. Apparently, all frame tables are stored there. |
| extern "C" void _keymgr_set_and_unlock_processwide_ptr(int, void *); |
| extern "C" void *_keymgr_get_and_lock_processwide_ptr(int); |
| #define KEYMGR_GCC3_DW2_OBJ_LIST 302 /* Dwarf2 object list */ |
| |
| /// LibgccObjectInfo - libgcc defines this struct as km_object_info. It |
| /// probably contains all dwarf tables that are loaded. |
| struct LibgccObjectInfo { |
| |
| /// seenObjects - LibgccObjects already parsed by the unwinding runtime. |
| /// |
| struct LibgccObject* seenObjects; |
| |
| /// unseenObjects - LibgccObjects not parsed yet by the unwinding runtime. |
| /// |
| struct LibgccObject* unseenObjects; |
| |
| unsigned unused[2]; |
| }; |
| |
| /// darwin_register_frame - Since __register_frame does not work with darwin's |
| /// libgcc,we provide our own function, which "tricks" libgcc by modifying the |
| /// "Dwarf2 object list" key. |
| void DarwinRegisterFrame(void* FrameBegin) { |
| // Get the key. |
| LibgccObjectInfo* LOI = (struct LibgccObjectInfo*) |
| _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST); |
| assert(LOI && "This should be preallocated by the runtime"); |
| |
| // Allocate a new LibgccObject to represent this frame. Deallocation of this |
| // object may be impossible: since darwin code in libgcc was written after |
| // the ability to dynamically register frames, things may crash if we |
| // deallocate it. |
| struct LibgccObject* ob = (struct LibgccObject*) |
| malloc(sizeof(struct LibgccObject)); |
| |
| // Do like libgcc for the values of the field. |
| ob->unused1 = (void *)-1; |
| ob->unused2 = 0; |
| ob->unused3 = 0; |
| ob->frame = FrameBegin; |
| ob->encoding.i = 0; |
| ob->encoding.b.encoding = llvm::dwarf::DW_EH_PE_omit; |
| |
| // Put the info on both places, as libgcc uses the first or the the second |
| // field. Note that we rely on having two pointers here. If fde_end was a |
| // char, things would get complicated. |
| ob->fde_end = (char*)LOI->unseenObjects; |
| ob->next = LOI->unseenObjects; |
| |
| // Update the key's unseenObjects list. |
| LOI->unseenObjects = ob; |
| |
| // Finally update the "key". Apparently, libgcc requires it. |
| _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST, |
| LOI); |
| |
| } |
| |
| } |
| #endif // __APPLE__ |
| #endif // __GNUC__ |
| |
| /// createJIT - This is the factory method for creating a JIT for the current |
| /// machine, it does not fall back to the interpreter. This takes ownership |
| /// of the module provider. |
| ExecutionEngine *ExecutionEngine::createJIT(ModuleProvider *MP, |
| std::string *ErrorStr, |
| JITMemoryManager *JMM, |
| CodeGenOpt::Level OptLevel) { |
| ExecutionEngine *EE = JIT::createJIT(MP, ErrorStr, JMM, OptLevel); |
| if (!EE) return 0; |
| |
| // Make sure we can resolve symbols in the program as well. The zero arg |
| // to the function tells DynamicLibrary to load the program, not a library. |
| sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr); |
| return EE; |
| } |
| |
| JIT::JIT(ModuleProvider *MP, TargetMachine &tm, TargetJITInfo &tji, |
| JITMemoryManager *JMM, CodeGenOpt::Level OptLevel) |
| : ExecutionEngine(MP), TM(tm), TJI(tji) { |
| setTargetData(TM.getTargetData()); |
| |
| jitstate = new JITState(MP); |
| |
| // Initialize MCE |
| MCE = createEmitter(*this, JMM); |
| |
| // Add target data |
| MutexGuard locked(lock); |
| FunctionPassManager &PM = jitstate->getPM(locked); |
| PM.add(new TargetData(*TM.getTargetData())); |
| |
| // Turn the machine code intermediate representation into bytes in memory that |
| // may be executed. |
| if (TM.addPassesToEmitMachineCode(PM, *MCE, OptLevel)) { |
| cerr << "Target does not support machine code emission!\n"; |
| abort(); |
| } |
| |
| // Register routine for informing unwinding runtime about new EH frames |
| #if defined(__GNUC__) && !defined(__ARM_EABI__) |
| #if USE_KEYMGR |
| struct LibgccObjectInfo* LOI = (struct LibgccObjectInfo*) |
| _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST); |
| |
| // The key is created on demand, and libgcc creates it the first time an |
| // exception occurs. Since we need the key to register frames, we create |
| // it now. |
| if (!LOI) |
| LOI = (LibgccObjectInfo*)calloc(sizeof(struct LibgccObjectInfo), 1); |
| _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST, LOI); |
| InstallExceptionTableRegister(DarwinRegisterFrame); |
| #else |
| InstallExceptionTableRegister(__register_frame); |
| #endif // __APPLE__ |
| #endif // __GNUC__ |
| |
| // Initialize passes. |
| PM.doInitialization(); |
| } |
| |
| JIT::~JIT() { |
| delete jitstate; |
| delete MCE; |
| delete &TM; |
| } |
| |
| /// addModuleProvider - Add a new ModuleProvider to the JIT. If we previously |
| /// removed the last ModuleProvider, we need re-initialize jitstate with a valid |
| /// ModuleProvider. |
| void JIT::addModuleProvider(ModuleProvider *MP) { |
| MutexGuard locked(lock); |
| |
| if (Modules.empty()) { |
| assert(!jitstate && "jitstate should be NULL if Modules vector is empty!"); |
| |
| jitstate = new JITState(MP); |
| |
| FunctionPassManager &PM = jitstate->getPM(locked); |
| PM.add(new TargetData(*TM.getTargetData())); |
| |
| // Turn the machine code intermediate representation into bytes in memory |
| // that may be executed. |
| if (TM.addPassesToEmitMachineCode(PM, *MCE, CodeGenOpt::Default)) { |
| cerr << "Target does not support machine code emission!\n"; |
| abort(); |
| } |
| |
| // Initialize passes. |
| PM.doInitialization(); |
| } |
| |
| ExecutionEngine::addModuleProvider(MP); |
| } |
| |
| /// removeModuleProvider - If we are removing the last ModuleProvider, |
| /// invalidate the jitstate since the PassManager it contains references a |
| /// released ModuleProvider. |
| Module *JIT::removeModuleProvider(ModuleProvider *MP, std::string *E) { |
| Module *result = ExecutionEngine::removeModuleProvider(MP, E); |
| |
| MutexGuard locked(lock); |
| |
| if (jitstate->getMP() == MP) { |
| delete jitstate; |
| jitstate = 0; |
| } |
| |
| if (!jitstate && !Modules.empty()) { |
| jitstate = new JITState(Modules[0]); |
| |
| FunctionPassManager &PM = jitstate->getPM(locked); |
| PM.add(new TargetData(*TM.getTargetData())); |
| |
| // Turn the machine code intermediate representation into bytes in memory |
| // that may be executed. |
| if (TM.addPassesToEmitMachineCode(PM, *MCE, CodeGenOpt::Default)) { |
| cerr << "Target does not support machine code emission!\n"; |
| abort(); |
| } |
| |
| // Initialize passes. |
| PM.doInitialization(); |
| } |
| return result; |
| } |
| |
| /// deleteModuleProvider - Remove a ModuleProvider from the list of modules, |
| /// and deletes the ModuleProvider and owned Module. Avoids materializing |
| /// the underlying module. |
| void JIT::deleteModuleProvider(ModuleProvider *MP, std::string *E) { |
| ExecutionEngine::deleteModuleProvider(MP, E); |
| |
| MutexGuard locked(lock); |
| |
| if (jitstate->getMP() == MP) { |
| delete jitstate; |
| jitstate = 0; |
| } |
| |
| if (!jitstate && !Modules.empty()) { |
| jitstate = new JITState(Modules[0]); |
| |
| FunctionPassManager &PM = jitstate->getPM(locked); |
| PM.add(new TargetData(*TM.getTargetData())); |
| |
| // Turn the machine code intermediate representation into bytes in memory |
| // that may be executed. |
| if (TM.addPassesToEmitMachineCode(PM, *MCE, CodeGenOpt::Default)) { |
| cerr << "Target does not support machine code emission!\n"; |
| abort(); |
| } |
| |
| // Initialize passes. |
| PM.doInitialization(); |
| } |
| } |
| |
| /// run - Start execution with the specified function and arguments. |
| /// |
| GenericValue JIT::runFunction(Function *F, |
| const std::vector<GenericValue> &ArgValues) { |
| assert(F && "Function *F was null at entry to run()"); |
| |
| void *FPtr = getPointerToFunction(F); |
| assert(FPtr && "Pointer to fn's code was null after getPointerToFunction"); |
| const FunctionType *FTy = F->getFunctionType(); |
| const Type *RetTy = FTy->getReturnType(); |
| |
| assert((FTy->getNumParams() == ArgValues.size() || |
| (FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) && |
| "Wrong number of arguments passed into function!"); |
| assert(FTy->getNumParams() == ArgValues.size() && |
| "This doesn't support passing arguments through varargs (yet)!"); |
| |
| // Handle some common cases first. These cases correspond to common `main' |
| // prototypes. |
| if (RetTy == Type::Int32Ty || RetTy == Type::VoidTy) { |
| switch (ArgValues.size()) { |
| case 3: |
| if (FTy->getParamType(0) == Type::Int32Ty && |
| isa<PointerType>(FTy->getParamType(1)) && |
| isa<PointerType>(FTy->getParamType(2))) { |
| int (*PF)(int, char **, const char **) = |
| (int(*)(int, char **, const char **))(intptr_t)FPtr; |
| |
| // Call the function. |
| GenericValue rv; |
| rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(), |
| (char **)GVTOP(ArgValues[1]), |
| (const char **)GVTOP(ArgValues[2]))); |
| return rv; |
| } |
| break; |
| case 2: |
| if (FTy->getParamType(0) == Type::Int32Ty && |
| isa<PointerType>(FTy->getParamType(1))) { |
| int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr; |
| |
| // Call the function. |
| GenericValue rv; |
| rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(), |
| (char **)GVTOP(ArgValues[1]))); |
| return rv; |
| } |
| break; |
| case 1: |
| if (FTy->getNumParams() == 1 && |
| FTy->getParamType(0) == Type::Int32Ty) { |
| GenericValue rv; |
| int (*PF)(int) = (int(*)(int))(intptr_t)FPtr; |
| rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue())); |
| return rv; |
| } |
| break; |
| } |
| } |
| |
| // Handle cases where no arguments are passed first. |
| if (ArgValues.empty()) { |
| GenericValue rv; |
| switch (RetTy->getTypeID()) { |
| default: assert(0 && "Unknown return type for function call!"); |
| case Type::IntegerTyID: { |
| unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth(); |
| if (BitWidth == 1) |
| rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)()); |
| else if (BitWidth <= 8) |
| rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)()); |
| else if (BitWidth <= 16) |
| rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)()); |
| else if (BitWidth <= 32) |
| rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)()); |
| else if (BitWidth <= 64) |
| rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)()); |
| else |
| assert(0 && "Integer types > 64 bits not supported"); |
| return rv; |
| } |
| case Type::VoidTyID: |
| rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)()); |
| return rv; |
| case Type::FloatTyID: |
| rv.FloatVal = ((float(*)())(intptr_t)FPtr)(); |
| return rv; |
| case Type::DoubleTyID: |
| rv.DoubleVal = ((double(*)())(intptr_t)FPtr)(); |
| return rv; |
| case Type::X86_FP80TyID: |
| case Type::FP128TyID: |
| case Type::PPC_FP128TyID: |
| assert(0 && "long double not supported yet"); |
| return rv; |
| case Type::PointerTyID: |
| return PTOGV(((void*(*)())(intptr_t)FPtr)()); |
| } |
| } |
| |
| // Okay, this is not one of our quick and easy cases. Because we don't have a |
| // full FFI, we have to codegen a nullary stub function that just calls the |
| // function we are interested in, passing in constants for all of the |
| // arguments. Make this function and return. |
| |
| // First, create the function. |
| FunctionType *STy=FunctionType::get(RetTy, std::vector<const Type*>(), false); |
| Function *Stub = Function::Create(STy, Function::InternalLinkage, "", |
| F->getParent()); |
| |
| // Insert a basic block. |
| BasicBlock *StubBB = BasicBlock::Create("", Stub); |
| |
| // Convert all of the GenericValue arguments over to constants. Note that we |
| // currently don't support varargs. |
| SmallVector<Value*, 8> Args; |
| for (unsigned i = 0, e = ArgValues.size(); i != e; ++i) { |
| Constant *C = 0; |
| const Type *ArgTy = FTy->getParamType(i); |
| const GenericValue &AV = ArgValues[i]; |
| switch (ArgTy->getTypeID()) { |
| default: assert(0 && "Unknown argument type for function call!"); |
| case Type::IntegerTyID: |
| C = ConstantInt::get(AV.IntVal); |
| break; |
| case Type::FloatTyID: |
| C = ConstantFP::get(APFloat(AV.FloatVal)); |
| break; |
| case Type::DoubleTyID: |
| C = ConstantFP::get(APFloat(AV.DoubleVal)); |
| break; |
| case Type::PPC_FP128TyID: |
| case Type::X86_FP80TyID: |
| case Type::FP128TyID: |
| C = ConstantFP::get(APFloat(AV.IntVal)); |
| break; |
| case Type::PointerTyID: |
| void *ArgPtr = GVTOP(AV); |
| if (sizeof(void*) == 4) |
| C = ConstantInt::get(Type::Int32Ty, (int)(intptr_t)ArgPtr); |
| else |
| C = ConstantInt::get(Type::Int64Ty, (intptr_t)ArgPtr); |
| C = ConstantExpr::getIntToPtr(C, ArgTy); // Cast the integer to pointer |
| break; |
| } |
| Args.push_back(C); |
| } |
| |
| CallInst *TheCall = CallInst::Create(F, Args.begin(), Args.end(), |
| "", StubBB); |
| TheCall->setCallingConv(F->getCallingConv()); |
| TheCall->setTailCall(); |
| if (TheCall->getType() != Type::VoidTy) |
| ReturnInst::Create(TheCall, StubBB); // Return result of the call. |
| else |
| ReturnInst::Create(StubBB); // Just return void. |
| |
| // Finally, return the value returned by our nullary stub function. |
| return runFunction(Stub, std::vector<GenericValue>()); |
| } |
| |
| /// runJITOnFunction - Run the FunctionPassManager full of |
| /// just-in-time compilation passes on F, hopefully filling in |
| /// GlobalAddress[F] with the address of F's machine code. |
| /// |
| void JIT::runJITOnFunction(Function *F, MachineCodeInfo *MCI) { |
| MutexGuard locked(lock); |
| |
| registerMachineCodeInfo(MCI); |
| |
| runJITOnFunctionUnlocked(F, locked); |
| |
| registerMachineCodeInfo(0); |
| } |
| |
| void JIT::runJITOnFunctionUnlocked(Function *F, const MutexGuard &locked) { |
| static bool isAlreadyCodeGenerating = false; |
| assert(!isAlreadyCodeGenerating && "Error: Recursive compilation detected!"); |
| |
| // JIT the function |
| isAlreadyCodeGenerating = true; |
| jitstate->getPM(locked).run(*F); |
| isAlreadyCodeGenerating = false; |
| |
| // If the function referred to another function that had not yet been |
| // read from bitcode, but we are jitting non-lazily, emit it now. |
| while (!jitstate->getPendingFunctions(locked).empty()) { |
| Function *PF = jitstate->getPendingFunctions(locked).back(); |
| jitstate->getPendingFunctions(locked).pop_back(); |
| |
| // JIT the function |
| isAlreadyCodeGenerating = true; |
| jitstate->getPM(locked).run(*PF); |
| isAlreadyCodeGenerating = false; |
| |
| // Now that the function has been jitted, ask the JITEmitter to rewrite |
| // the stub with real address of the function. |
| updateFunctionStub(PF); |
| } |
| |
| // If the JIT is configured to emit info so that dlsym can be used to |
| // rewrite stubs to external globals, do so now. |
| if (areDlsymStubsEnabled() && isLazyCompilationDisabled()) |
| updateDlsymStubTable(); |
| } |
| |
| /// getPointerToFunction - This method is used to get the address of the |
| /// specified function, compiling it if neccesary. |
| /// |
| void *JIT::getPointerToFunction(Function *F) { |
| |
| if (void *Addr = getPointerToGlobalIfAvailable(F)) |
| return Addr; // Check if function already code gen'd |
| |
| MutexGuard locked(lock); |
| |
| // Make sure we read in the function if it exists in this Module. |
| if (F->hasNotBeenReadFromBitcode()) { |
| // Determine the module provider this function is provided by. |
| Module *M = F->getParent(); |
| ModuleProvider *MP = 0; |
| for (unsigned i = 0, e = Modules.size(); i != e; ++i) { |
| if (Modules[i]->getModule() == M) { |
| MP = Modules[i]; |
| break; |
| } |
| } |
| assert(MP && "Function isn't in a module we know about!"); |
| |
| std::string ErrorMsg; |
| if (MP->materializeFunction(F, &ErrorMsg)) { |
| cerr << "Error reading function '" << F->getName() |
| << "' from bitcode file: " << ErrorMsg << "\n"; |
| abort(); |
| } |
| |
| // Now retry to get the address. |
| if (void *Addr = getPointerToGlobalIfAvailable(F)) |
| return Addr; |
| } |
| |
| if (F->isDeclaration()) { |
| bool AbortOnFailure = |
| !areDlsymStubsEnabled() && !F->hasExternalWeakLinkage(); |
| void *Addr = getPointerToNamedFunction(F->getName(), AbortOnFailure); |
| addGlobalMapping(F, Addr); |
| return Addr; |
| } |
| |
| runJITOnFunctionUnlocked(F, locked); |
| |
| void *Addr = getPointerToGlobalIfAvailable(F); |
| assert(Addr && "Code generation didn't add function to GlobalAddress table!"); |
| return Addr; |
| } |
| |
| /// getOrEmitGlobalVariable - Return the address of the specified global |
| /// variable, possibly emitting it to memory if needed. This is used by the |
| /// Emitter. |
| void *JIT::getOrEmitGlobalVariable(const GlobalVariable *GV) { |
| MutexGuard locked(lock); |
| |
| void *Ptr = getPointerToGlobalIfAvailable(GV); |
| if (Ptr) return Ptr; |
| |
| // If the global is external, just remember the address. |
| if (GV->isDeclaration()) { |
| #if HAVE___DSO_HANDLE |
| if (GV->getName() == "__dso_handle") |
| return (void*)&__dso_handle; |
| #endif |
| Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(GV->getName().c_str()); |
| if (Ptr == 0 && !areDlsymStubsEnabled()) { |
| cerr << "Could not resolve external global address: " |
| << GV->getName() << "\n"; |
| abort(); |
| } |
| addGlobalMapping(GV, Ptr); |
| } else { |
| // GlobalVariable's which are not "constant" will cause trouble in a server |
| // situation. It's returned in the same block of memory as code which may |
| // not be writable. |
| if (isGVCompilationDisabled() && !GV->isConstant()) { |
| cerr << "Compilation of non-internal GlobalValue is disabled!\n"; |
| abort(); |
| } |
| // If the global hasn't been emitted to memory yet, allocate space and |
| // emit it into memory. It goes in the same array as the generated |
| // code, jump tables, etc. |
| const Type *GlobalType = GV->getType()->getElementType(); |
| size_t S = getTargetData()->getTypeAllocSize(GlobalType); |
| size_t A = getTargetData()->getPreferredAlignment(GV); |
| if (GV->isThreadLocal()) { |
| MutexGuard locked(lock); |
| Ptr = TJI.allocateThreadLocalMemory(S); |
| } else if (TJI.allocateSeparateGVMemory()) { |
| if (A <= 8) { |
| Ptr = malloc(S); |
| } else { |
| // Allocate S+A bytes of memory, then use an aligned pointer within that |
| // space. |
| Ptr = malloc(S+A); |
| unsigned MisAligned = ((intptr_t)Ptr & (A-1)); |
| Ptr = (char*)Ptr + (MisAligned ? (A-MisAligned) : 0); |
| } |
| } else { |
| Ptr = MCE->allocateSpace(S, A); |
| } |
| addGlobalMapping(GV, Ptr); |
| EmitGlobalVariable(GV); |
| } |
| return Ptr; |
| } |
| |
| /// recompileAndRelinkFunction - This method is used to force a function |
| /// which has already been compiled, to be compiled again, possibly |
| /// after it has been modified. Then the entry to the old copy is overwritten |
| /// with a branch to the new copy. If there was no old copy, this acts |
| /// just like JIT::getPointerToFunction(). |
| /// |
| void *JIT::recompileAndRelinkFunction(Function *F) { |
| void *OldAddr = getPointerToGlobalIfAvailable(F); |
| |
| // If it's not already compiled there is no reason to patch it up. |
| if (OldAddr == 0) { return getPointerToFunction(F); } |
| |
| // Delete the old function mapping. |
| addGlobalMapping(F, 0); |
| |
| // Recodegen the function |
| runJITOnFunction(F); |
| |
| // Update state, forward the old function to the new function. |
| void *Addr = getPointerToGlobalIfAvailable(F); |
| assert(Addr && "Code generation didn't add function to GlobalAddress table!"); |
| TJI.replaceMachineCodeForFunction(OldAddr, Addr); |
| return Addr; |
| } |
| |
| /// getMemoryForGV - This method abstracts memory allocation of global |
| /// variable so that the JIT can allocate thread local variables depending |
| /// on the target. |
| /// |
| char* JIT::getMemoryForGV(const GlobalVariable* GV) { |
| const Type *ElTy = GV->getType()->getElementType(); |
| size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy); |
| if (GV->isThreadLocal()) { |
| MutexGuard locked(lock); |
| return TJI.allocateThreadLocalMemory(GVSize); |
| } else { |
| return new char[GVSize]; |
| } |
| } |
| |
| void JIT::addPendingFunction(Function *F) { |
| MutexGuard locked(lock); |
| jitstate->getPendingFunctions(locked).push_back(F); |
| } |