This is a prototype of an experimental register allocation
framework. It's purpose is not to improve register allocation per se,
but to make it easier to develop powerful live range splitting. I call
it the basic allocator because it is as simple as a global allocator
can be but provides the building blocks for sophisticated register
allocation with live range splitting. 

A minimal implementation is provided that trivially spills whenever it
runs out of registers. I'm checking in now to get high-level design
and style feedback. I've only done minimal testing. The next step is
implementing a "greedy" allocation algorithm that does some register
reassignment and makes better splitting decisions.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@117174 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/CodeGen/LiveIntervalUnion.cpp b/lib/CodeGen/LiveIntervalUnion.cpp
new file mode 100644
index 0000000..b22f466
--- /dev/null
+++ b/lib/CodeGen/LiveIntervalUnion.cpp
@@ -0,0 +1,167 @@
+//===-- LiveIntervalUnion.cpp - Live interval union data structure --------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// LiveIntervalUnion represents a coalesced set of live intervals. This may be
+// used during coalescing to represent a congruence class, or during register
+// allocation to model liveness of a physical register.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "regalloc"
+#include "LiveIntervalUnion.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+using namespace llvm;
+
+// Merge a LiveInterval's segments. Guarantee no overlaps.
+void LiveIntervalUnion::unify(LiveInterval &lvr) {
+  // Add this live virtual register to the union
+  LiveVirtRegs::iterator pos = std::upper_bound(lvrs_.begin(), lvrs_.end(),
+                                                &lvr, less_ptr<LiveInterval>());
+  assert(pos == lvrs_.end() || *pos != &lvr && "duplicate LVR insertion");
+  lvrs_.insert(pos, &lvr);
+  // Insert each of the virtual register's live segments into the map
+  SegmentIter segPos = segments_.begin();
+  for (LiveInterval::iterator lvrI = lvr.begin(), lvrEnd = lvr.end();
+       lvrI != lvrEnd; ++lvrI ) {
+    LiveSegment segment(lvrI->start, lvrI->end, lvr);
+    segPos = segments_.insert(segPos, segment);
+    assert(*segPos == segment && "need equal val for equal key");
+  }
+}
+
+namespace {
+
+// Keep LVRs sorted for fast membership test and extraction.
+struct LessReg
+  : public std::binary_function<LiveInterval*, LiveInterval*, bool> {
+  bool operator()(const LiveInterval *left, const LiveInterval *right) const {
+    return left->reg < right->reg;
+  }
+};
+                    
+// Low-level helper to find the first segment in the range [segI,segEnd) that
+// intersects with a live virtual register segment, or segI.start >= lvr.end
+//
+// This logic is tied to the underlying LiveSegments data structure. For now, we
+// use a binary search within the vector to find the nearest starting position,
+// then reverse iterate to find the first overlap.
+//
+// Upon entry we have segI.start < lvrSeg.end
+// seg   |--...
+//        \   .
+// lvr ...-|
+// 
+// After binary search, we have segI.start >= lvrSeg.start:
+// seg   |--...
+//      /
+// lvr |--...
+//
+// Assuming intervals are disjoint, if an intersection exists, it must be the
+// segment found or immediately behind it. We continue reverse iterating to
+// return the first overlap.
+//
+// FIXME: support extract(), handle tombstones of extracted lvrs.
+typedef LiveIntervalUnion::SegmentIter SegmentIter;
+SegmentIter upperBound(SegmentIter segBegin,
+                       SegmentIter segEnd,
+                       const LiveRange &lvrSeg) {
+  assert(lvrSeg.end > segBegin->start && "segment iterator precondition");
+  // get the next LIU segment such that setg.start is not less than
+  // lvrSeg.start
+  SegmentIter segI = std::upper_bound(segBegin, segEnd, lvrSeg.start);
+  while (segI != segBegin) {
+    --segI;
+    if (lvrSeg.start >= segI->end)
+      return ++segI;
+  }
+  return segI;
+}
+} // end anonymous namespace
+
+// Private interface accessed by Query.
+//
+// Find a pair of segments that intersect, one in the live virtual register
+// (LiveInterval), and the other in this LiveIntervalUnion. The caller (Query)
+// is responsible for advancing the LiveIntervalUnion segments to find a
+// "notable" intersection, which requires query-specific logic.
+// 
+// This design assumes only a fast mechanism for intersecting a single live
+// virtual register segment with a set of LiveIntervalUnion segments.  This may
+// be ok since most LVRs have very few segments.  If we had a data
+// structure that optimizd MxN intersection of segments, then we would bypass
+// the loop that advances within the LiveInterval.
+//
+// If no intersection exists, set lvrI = lvrEnd, and set segI to the first
+// segment whose start point is greater than LiveInterval's end point.
+//
+// Assumes that segments are sorted by start position in both
+// LiveInterval and LiveSegments.
+void LiveIntervalUnion::Query::findIntersection(InterferenceResult &ir) const {
+  LiveInterval::iterator lvrEnd = lvr_.end();
+  SegmentIter liuEnd = liu_.end();
+  while (ir.liuSegI_ != liuEnd) {
+    // Slowly advance the live virtual reg iterator until we surpass the next
+    // segment in this union. If this is ever used for coalescing of fixed
+    // registers and we have a LiveInterval with thousands of segments, then use
+    // upper bound instead.
+    while (ir.lvrSegI_ != lvrEnd && ir.lvrSegI_->end <= ir.liuSegI_->start)
+      ++ir.lvrSegI_;
+    if (ir.lvrSegI_ == lvrEnd)
+      break;
+    // lvrSegI_ may have advanced far beyond liuSegI_,
+    // do a fast intersection test to "catch up"
+    ir.liuSegI_ = upperBound(ir.liuSegI_, liuEnd, *ir.lvrSegI_);
+    // Check if no liuSegI_ exists with lvrSegI_->start < liuSegI_.end
+    if (ir.liuSegI_ == liuEnd)
+      break;
+    if (ir.liuSegI_->start < ir.lvrSegI_->end) {
+      assert(overlap(*ir.lvrSegI_, *ir.liuSegI_) && "upperBound postcondition");
+      break;
+    }
+  }
+  if (ir.liuSegI_ == liuEnd)
+    ir.lvrSegI_ = lvrEnd;
+}
+
+// Find the first intersection, and cache interference info
+// (retain segment iterators into both lvr_ and liu_).
+LiveIntervalUnion::InterferenceResult
+LiveIntervalUnion::Query::firstInterference() {
+  if (firstInterference_ != LiveIntervalUnion::InterferenceResult()) {
+    return firstInterference_;
+  }
+  firstInterference_ = InterferenceResult(lvr_.begin(), liu_.begin());
+  findIntersection(firstInterference_);
+  return firstInterference_;
+}
+
+// Treat the result as an iterator and advance to the next interfering pair
+// of segments. This is a plain iterator with no filter.
+bool LiveIntervalUnion::Query::nextInterference(InterferenceResult &ir) const {
+  assert(isInterference(ir) && "iteration past end of interferences");
+  // Advance either the lvr or liu segment to ensure that we visit all unique
+  // overlapping pairs.
+  if (ir.lvrSegI_->end < ir.liuSegI_->end) {
+    if (++ir.lvrSegI_ == lvr_.end())
+      return false;
+  }
+  else {
+    if (++ir.liuSegI_ == liu_.end()) {
+      ir.lvrSegI_ = lvr_.end();
+      return false;
+    }
+  }
+  if (overlap(*ir.lvrSegI_, *ir.liuSegI_))
+    return true;
+  // find the next intersection
+  findIntersection(ir);
+  return isInterference(ir);
+}