| //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the common interface used by the various execution engine |
| // subclasses. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "jit" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Module.h" |
| #include "llvm/ModuleProvider.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ExecutionEngine/ExecutionEngine.h" |
| #include "llvm/ExecutionEngine/GenericValue.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/MutexGuard.h" |
| #include "llvm/System/DynamicLibrary.h" |
| #include "llvm/Target/TargetData.h" |
| #include <iostream> |
| using namespace llvm; |
| |
| namespace { |
| Statistic<> NumInitBytes("lli", "Number of bytes of global vars initialized"); |
| Statistic<> NumGlobals ("lli", "Number of global vars initialized"); |
| } |
| |
| ExecutionEngine::EECtorFn ExecutionEngine::JITCtor = 0; |
| ExecutionEngine::EECtorFn ExecutionEngine::InterpCtor = 0; |
| |
| ExecutionEngine::ExecutionEngine(ModuleProvider *P) : |
| CurMod(*P->getModule()), MP(P) { |
| assert(P && "ModuleProvider is null?"); |
| } |
| |
| ExecutionEngine::ExecutionEngine(Module *M) : CurMod(*M), MP(0) { |
| assert(M && "Module is null?"); |
| } |
| |
| ExecutionEngine::~ExecutionEngine() { |
| delete MP; |
| } |
| |
| /// addGlobalMapping - Tell the execution engine that the specified global is |
| /// at the specified location. This is used internally as functions are JIT'd |
| /// and as global variables are laid out in memory. It can and should also be |
| /// used by clients of the EE that want to have an LLVM global overlay |
| /// existing data in memory. |
| void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { |
| MutexGuard locked(lock); |
| |
| void *&CurVal = state.getGlobalAddressMap(locked)[GV]; |
| assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); |
| CurVal = Addr; |
| |
| // If we are using the reverse mapping, add it too |
| if (!state.getGlobalAddressReverseMap(locked).empty()) { |
| const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; |
| assert((V == 0 || GV == 0) && "GlobalMapping already established!"); |
| V = GV; |
| } |
| } |
| |
| /// clearAllGlobalMappings - Clear all global mappings and start over again |
| /// use in dynamic compilation scenarios when you want to move globals |
| void ExecutionEngine::clearAllGlobalMappings() { |
| MutexGuard locked(lock); |
| |
| state.getGlobalAddressMap(locked).clear(); |
| state.getGlobalAddressReverseMap(locked).clear(); |
| } |
| |
| /// updateGlobalMapping - Replace an existing mapping for GV with a new |
| /// address. This updates both maps as required. If "Addr" is null, the |
| /// entry for the global is removed from the mappings. |
| void ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { |
| MutexGuard locked(lock); |
| |
| // Deleting from the mapping? |
| if (Addr == 0) { |
| state.getGlobalAddressMap(locked).erase(GV); |
| if (!state.getGlobalAddressReverseMap(locked).empty()) |
| state.getGlobalAddressReverseMap(locked).erase(Addr); |
| return; |
| } |
| |
| void *&CurVal = state.getGlobalAddressMap(locked)[GV]; |
| if (CurVal && !state.getGlobalAddressReverseMap(locked).empty()) |
| state.getGlobalAddressReverseMap(locked).erase(CurVal); |
| CurVal = Addr; |
| |
| // If we are using the reverse mapping, add it too |
| if (!state.getGlobalAddressReverseMap(locked).empty()) { |
| const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; |
| assert((V == 0 || GV == 0) && "GlobalMapping already established!"); |
| V = GV; |
| } |
| } |
| |
| /// getPointerToGlobalIfAvailable - This returns the address of the specified |
| /// global value if it is has already been codegen'd, otherwise it returns null. |
| /// |
| void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { |
| MutexGuard locked(lock); |
| |
| std::map<const GlobalValue*, void*>::iterator I = |
| state.getGlobalAddressMap(locked).find(GV); |
| return I != state.getGlobalAddressMap(locked).end() ? I->second : 0; |
| } |
| |
| /// getGlobalValueAtAddress - Return the LLVM global value object that starts |
| /// at the specified address. |
| /// |
| const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { |
| MutexGuard locked(lock); |
| |
| // If we haven't computed the reverse mapping yet, do so first. |
| if (state.getGlobalAddressReverseMap(locked).empty()) { |
| for (std::map<const GlobalValue*, void *>::iterator |
| I = state.getGlobalAddressMap(locked).begin(), |
| E = state.getGlobalAddressMap(locked).end(); I != E; ++I) |
| state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second, |
| I->first)); |
| } |
| |
| std::map<void *, const GlobalValue*>::iterator I = |
| state.getGlobalAddressReverseMap(locked).find(Addr); |
| return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0; |
| } |
| |
| // CreateArgv - Turn a vector of strings into a nice argv style array of |
| // pointers to null terminated strings. |
| // |
| static void *CreateArgv(ExecutionEngine *EE, |
| const std::vector<std::string> &InputArgv) { |
| unsigned PtrSize = EE->getTargetData()->getPointerSize(); |
| char *Result = new char[(InputArgv.size()+1)*PtrSize]; |
| |
| DEBUG(std::cerr << "ARGV = " << (void*)Result << "\n"); |
| const Type *SBytePtr = PointerType::get(Type::SByteTy); |
| |
| for (unsigned i = 0; i != InputArgv.size(); ++i) { |
| unsigned Size = InputArgv[i].size()+1; |
| char *Dest = new char[Size]; |
| DEBUG(std::cerr << "ARGV[" << i << "] = " << (void*)Dest << "\n"); |
| |
| std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); |
| Dest[Size-1] = 0; |
| |
| // Endian safe: Result[i] = (PointerTy)Dest; |
| EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize), |
| SBytePtr); |
| } |
| |
| // Null terminate it |
| EE->StoreValueToMemory(PTOGV(0), |
| (GenericValue*)(Result+InputArgv.size()*PtrSize), |
| SBytePtr); |
| return Result; |
| } |
| |
| |
| /// runStaticConstructorsDestructors - This method is used to execute all of |
| /// the static constructors or destructors for a module, depending on the |
| /// value of isDtors. |
| void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { |
| const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; |
| GlobalVariable *GV = CurMod.getNamedGlobal(Name); |
| |
| // If this global has internal linkage, or if it has a use, then it must be |
| // an old-style (llvmgcc3) static ctor with __main linked in and in use. If |
| // this is the case, don't execute any of the global ctors, __main will do it. |
| if (!GV || GV->isExternal() || GV->hasInternalLinkage()) return; |
| |
| // Should be an array of '{ int, void ()* }' structs. The first value is the |
| // init priority, which we ignore. |
| ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); |
| if (!InitList) return; |
| for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) |
| if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){ |
| if (CS->getNumOperands() != 2) return; // Not array of 2-element structs. |
| |
| Constant *FP = CS->getOperand(1); |
| if (FP->isNullValue()) |
| return; // Found a null terminator, exit. |
| |
| if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) |
| if (CE->getOpcode() == Instruction::Cast) |
| FP = CE->getOperand(0); |
| if (Function *F = dyn_cast<Function>(FP)) { |
| // Execute the ctor/dtor function! |
| runFunction(F, std::vector<GenericValue>()); |
| } |
| } |
| } |
| |
| /// runFunctionAsMain - This is a helper function which wraps runFunction to |
| /// handle the common task of starting up main with the specified argc, argv, |
| /// and envp parameters. |
| int ExecutionEngine::runFunctionAsMain(Function *Fn, |
| const std::vector<std::string> &argv, |
| const char * const * envp) { |
| std::vector<GenericValue> GVArgs; |
| GenericValue GVArgc; |
| GVArgc.IntVal = argv.size(); |
| unsigned NumArgs = Fn->getFunctionType()->getNumParams(); |
| if (NumArgs) { |
| GVArgs.push_back(GVArgc); // Arg #0 = argc. |
| if (NumArgs > 1) { |
| GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv. |
| assert(((char **)GVTOP(GVArgs[1]))[0] && |
| "argv[0] was null after CreateArgv"); |
| if (NumArgs > 2) { |
| std::vector<std::string> EnvVars; |
| for (unsigned i = 0; envp[i]; ++i) |
| EnvVars.push_back(envp[i]); |
| GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp. |
| } |
| } |
| } |
| return runFunction(Fn, GVArgs).IntVal; |
| } |
| |
| /// If possible, create a JIT, unless the caller specifically requests an |
| /// Interpreter or there's an error. If even an Interpreter cannot be created, |
| /// NULL is returned. |
| /// |
| ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP, |
| bool ForceInterpreter) { |
| ExecutionEngine *EE = 0; |
| |
| // Unless the interpreter was explicitly selected, try making a JIT. |
| if (!ForceInterpreter && JITCtor) |
| EE = JITCtor(MP); |
| |
| // If we can't make a JIT, make an interpreter instead. |
| if (EE == 0 && InterpCtor) |
| EE = InterpCtor(MP); |
| |
| if (EE) { |
| // Make sure we can resolve symbols in the program as well. The zero arg |
| // to the function tells DynamicLibrary to load the program, not a library. |
| try { |
| sys::DynamicLibrary::LoadLibraryPermanently(0); |
| } catch (...) { |
| } |
| } |
| |
| return EE; |
| } |
| |
| /// getPointerToGlobal - This returns the address of the specified global |
| /// value. This may involve code generation if it's a function. |
| /// |
| void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { |
| if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) |
| return getPointerToFunction(F); |
| |
| MutexGuard locked(lock); |
| void *p = state.getGlobalAddressMap(locked)[GV]; |
| if (p) |
| return p; |
| |
| // Global variable might have been added since interpreter started. |
| if (GlobalVariable *GVar = |
| const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) |
| EmitGlobalVariable(GVar); |
| else |
| assert("Global hasn't had an address allocated yet!"); |
| return state.getGlobalAddressMap(locked)[GV]; |
| } |
| |
| /// FIXME: document |
| /// |
| GenericValue ExecutionEngine::getConstantValue(const Constant *C) { |
| GenericValue Result; |
| if (isa<UndefValue>(C)) return Result; |
| |
| if (ConstantExpr *CE = const_cast<ConstantExpr*>(dyn_cast<ConstantExpr>(C))) { |
| switch (CE->getOpcode()) { |
| case Instruction::GetElementPtr: { |
| Result = getConstantValue(CE->getOperand(0)); |
| std::vector<Value*> Indexes(CE->op_begin()+1, CE->op_end()); |
| uint64_t Offset = |
| TD->getIndexedOffset(CE->getOperand(0)->getType(), Indexes); |
| |
| if (getTargetData()->getPointerSize() == 4) |
| Result.IntVal += Offset; |
| else |
| Result.LongVal += Offset; |
| return Result; |
| } |
| case Instruction::Cast: { |
| // We only need to handle a few cases here. Almost all casts will |
| // automatically fold, just the ones involving pointers won't. |
| // |
| Constant *Op = CE->getOperand(0); |
| GenericValue GV = getConstantValue(Op); |
| |
| // Handle cast of pointer to pointer... |
| if (Op->getType()->getTypeID() == C->getType()->getTypeID()) |
| return GV; |
| |
| // Handle a cast of pointer to any integral type... |
| if (isa<PointerType>(Op->getType()) && C->getType()->isIntegral()) |
| return GV; |
| |
| // Handle cast of integer to a pointer... |
| if (isa<PointerType>(C->getType()) && Op->getType()->isIntegral()) |
| switch (Op->getType()->getTypeID()) { |
| case Type::BoolTyID: return PTOGV((void*)(uintptr_t)GV.BoolVal); |
| case Type::SByteTyID: return PTOGV((void*)( intptr_t)GV.SByteVal); |
| case Type::UByteTyID: return PTOGV((void*)(uintptr_t)GV.UByteVal); |
| case Type::ShortTyID: return PTOGV((void*)( intptr_t)GV.ShortVal); |
| case Type::UShortTyID: return PTOGV((void*)(uintptr_t)GV.UShortVal); |
| case Type::IntTyID: return PTOGV((void*)( intptr_t)GV.IntVal); |
| case Type::UIntTyID: return PTOGV((void*)(uintptr_t)GV.UIntVal); |
| case Type::LongTyID: return PTOGV((void*)( intptr_t)GV.LongVal); |
| case Type::ULongTyID: return PTOGV((void*)(uintptr_t)GV.ULongVal); |
| default: assert(0 && "Unknown integral type!"); |
| } |
| break; |
| } |
| |
| case Instruction::Add: |
| switch (CE->getOperand(0)->getType()->getTypeID()) { |
| default: assert(0 && "Bad add type!"); abort(); |
| case Type::LongTyID: |
| case Type::ULongTyID: |
| Result.LongVal = getConstantValue(CE->getOperand(0)).LongVal + |
| getConstantValue(CE->getOperand(1)).LongVal; |
| break; |
| case Type::IntTyID: |
| case Type::UIntTyID: |
| Result.IntVal = getConstantValue(CE->getOperand(0)).IntVal + |
| getConstantValue(CE->getOperand(1)).IntVal; |
| break; |
| case Type::ShortTyID: |
| case Type::UShortTyID: |
| Result.ShortVal = getConstantValue(CE->getOperand(0)).ShortVal + |
| getConstantValue(CE->getOperand(1)).ShortVal; |
| break; |
| case Type::SByteTyID: |
| case Type::UByteTyID: |
| Result.SByteVal = getConstantValue(CE->getOperand(0)).SByteVal + |
| getConstantValue(CE->getOperand(1)).SByteVal; |
| break; |
| case Type::FloatTyID: |
| Result.FloatVal = getConstantValue(CE->getOperand(0)).FloatVal + |
| getConstantValue(CE->getOperand(1)).FloatVal; |
| break; |
| case Type::DoubleTyID: |
| Result.DoubleVal = getConstantValue(CE->getOperand(0)).DoubleVal + |
| getConstantValue(CE->getOperand(1)).DoubleVal; |
| break; |
| } |
| return Result; |
| default: |
| break; |
| } |
| std::cerr << "ConstantExpr not handled as global var init: " << *CE << "\n"; |
| abort(); |
| } |
| |
| switch (C->getType()->getTypeID()) { |
| #define GET_CONST_VAL(TY, CTY, CLASS) \ |
| case Type::TY##TyID: Result.TY##Val = (CTY)cast<CLASS>(C)->getValue(); break |
| GET_CONST_VAL(Bool , bool , ConstantBool); |
| GET_CONST_VAL(UByte , unsigned char , ConstantUInt); |
| GET_CONST_VAL(SByte , signed char , ConstantSInt); |
| GET_CONST_VAL(UShort , unsigned short, ConstantUInt); |
| GET_CONST_VAL(Short , signed short , ConstantSInt); |
| GET_CONST_VAL(UInt , unsigned int , ConstantUInt); |
| GET_CONST_VAL(Int , signed int , ConstantSInt); |
| GET_CONST_VAL(ULong , uint64_t , ConstantUInt); |
| GET_CONST_VAL(Long , int64_t , ConstantSInt); |
| GET_CONST_VAL(Float , float , ConstantFP); |
| GET_CONST_VAL(Double , double , ConstantFP); |
| #undef GET_CONST_VAL |
| case Type::PointerTyID: |
| if (isa<ConstantPointerNull>(C)) |
| Result.PointerVal = 0; |
| else if (const Function *F = dyn_cast<Function>(C)) |
| Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); |
| else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C)) |
| Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); |
| else |
| assert(0 && "Unknown constant pointer type!"); |
| break; |
| default: |
| std::cout << "ERROR: Constant unimp for type: " << *C->getType() << "\n"; |
| abort(); |
| } |
| return Result; |
| } |
| |
| /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr |
| /// is the address of the memory at which to store Val, cast to GenericValue *. |
| /// It is not a pointer to a GenericValue containing the address at which to |
| /// store Val. |
| /// |
| void ExecutionEngine::StoreValueToMemory(GenericValue Val, GenericValue *Ptr, |
| const Type *Ty) { |
| if (getTargetData()->isLittleEndian()) { |
| switch (Ty->getTypeID()) { |
| case Type::BoolTyID: |
| case Type::UByteTyID: |
| case Type::SByteTyID: Ptr->Untyped[0] = Val.UByteVal; break; |
| case Type::UShortTyID: |
| case Type::ShortTyID: Ptr->Untyped[0] = Val.UShortVal & 255; |
| Ptr->Untyped[1] = (Val.UShortVal >> 8) & 255; |
| break; |
| Store4BytesLittleEndian: |
| case Type::FloatTyID: |
| case Type::UIntTyID: |
| case Type::IntTyID: Ptr->Untyped[0] = Val.UIntVal & 255; |
| Ptr->Untyped[1] = (Val.UIntVal >> 8) & 255; |
| Ptr->Untyped[2] = (Val.UIntVal >> 16) & 255; |
| Ptr->Untyped[3] = (Val.UIntVal >> 24) & 255; |
| break; |
| case Type::PointerTyID: if (getTargetData()->getPointerSize() == 4) |
| goto Store4BytesLittleEndian; |
| case Type::DoubleTyID: |
| case Type::ULongTyID: |
| case Type::LongTyID: |
| Ptr->Untyped[0] = (unsigned char)(Val.ULongVal ); |
| Ptr->Untyped[1] = (unsigned char)(Val.ULongVal >> 8); |
| Ptr->Untyped[2] = (unsigned char)(Val.ULongVal >> 16); |
| Ptr->Untyped[3] = (unsigned char)(Val.ULongVal >> 24); |
| Ptr->Untyped[4] = (unsigned char)(Val.ULongVal >> 32); |
| Ptr->Untyped[5] = (unsigned char)(Val.ULongVal >> 40); |
| Ptr->Untyped[6] = (unsigned char)(Val.ULongVal >> 48); |
| Ptr->Untyped[7] = (unsigned char)(Val.ULongVal >> 56); |
| break; |
| default: |
| std::cout << "Cannot store value of type " << *Ty << "!\n"; |
| } |
| } else { |
| switch (Ty->getTypeID()) { |
| case Type::BoolTyID: |
| case Type::UByteTyID: |
| case Type::SByteTyID: Ptr->Untyped[0] = Val.UByteVal; break; |
| case Type::UShortTyID: |
| case Type::ShortTyID: Ptr->Untyped[1] = Val.UShortVal & 255; |
| Ptr->Untyped[0] = (Val.UShortVal >> 8) & 255; |
| break; |
| Store4BytesBigEndian: |
| case Type::FloatTyID: |
| case Type::UIntTyID: |
| case Type::IntTyID: Ptr->Untyped[3] = Val.UIntVal & 255; |
| Ptr->Untyped[2] = (Val.UIntVal >> 8) & 255; |
| Ptr->Untyped[1] = (Val.UIntVal >> 16) & 255; |
| Ptr->Untyped[0] = (Val.UIntVal >> 24) & 255; |
| break; |
| case Type::PointerTyID: if (getTargetData()->getPointerSize() == 4) |
| goto Store4BytesBigEndian; |
| case Type::DoubleTyID: |
| case Type::ULongTyID: |
| case Type::LongTyID: |
| Ptr->Untyped[7] = (unsigned char)(Val.ULongVal ); |
| Ptr->Untyped[6] = (unsigned char)(Val.ULongVal >> 8); |
| Ptr->Untyped[5] = (unsigned char)(Val.ULongVal >> 16); |
| Ptr->Untyped[4] = (unsigned char)(Val.ULongVal >> 24); |
| Ptr->Untyped[3] = (unsigned char)(Val.ULongVal >> 32); |
| Ptr->Untyped[2] = (unsigned char)(Val.ULongVal >> 40); |
| Ptr->Untyped[1] = (unsigned char)(Val.ULongVal >> 48); |
| Ptr->Untyped[0] = (unsigned char)(Val.ULongVal >> 56); |
| break; |
| default: |
| std::cout << "Cannot store value of type " << *Ty << "!\n"; |
| } |
| } |
| } |
| |
| /// FIXME: document |
| /// |
| GenericValue ExecutionEngine::LoadValueFromMemory(GenericValue *Ptr, |
| const Type *Ty) { |
| GenericValue Result; |
| if (getTargetData()->isLittleEndian()) { |
| switch (Ty->getTypeID()) { |
| case Type::BoolTyID: |
| case Type::UByteTyID: |
| case Type::SByteTyID: Result.UByteVal = Ptr->Untyped[0]; break; |
| case Type::UShortTyID: |
| case Type::ShortTyID: Result.UShortVal = (unsigned)Ptr->Untyped[0] | |
| ((unsigned)Ptr->Untyped[1] << 8); |
| break; |
| Load4BytesLittleEndian: |
| case Type::FloatTyID: |
| case Type::UIntTyID: |
| case Type::IntTyID: Result.UIntVal = (unsigned)Ptr->Untyped[0] | |
| ((unsigned)Ptr->Untyped[1] << 8) | |
| ((unsigned)Ptr->Untyped[2] << 16) | |
| ((unsigned)Ptr->Untyped[3] << 24); |
| break; |
| case Type::PointerTyID: if (getTargetData()->getPointerSize() == 4) |
| goto Load4BytesLittleEndian; |
| case Type::DoubleTyID: |
| case Type::ULongTyID: |
| case Type::LongTyID: Result.ULongVal = (uint64_t)Ptr->Untyped[0] | |
| ((uint64_t)Ptr->Untyped[1] << 8) | |
| ((uint64_t)Ptr->Untyped[2] << 16) | |
| ((uint64_t)Ptr->Untyped[3] << 24) | |
| ((uint64_t)Ptr->Untyped[4] << 32) | |
| ((uint64_t)Ptr->Untyped[5] << 40) | |
| ((uint64_t)Ptr->Untyped[6] << 48) | |
| ((uint64_t)Ptr->Untyped[7] << 56); |
| break; |
| default: |
| std::cout << "Cannot load value of type " << *Ty << "!\n"; |
| abort(); |
| } |
| } else { |
| switch (Ty->getTypeID()) { |
| case Type::BoolTyID: |
| case Type::UByteTyID: |
| case Type::SByteTyID: Result.UByteVal = Ptr->Untyped[0]; break; |
| case Type::UShortTyID: |
| case Type::ShortTyID: Result.UShortVal = (unsigned)Ptr->Untyped[1] | |
| ((unsigned)Ptr->Untyped[0] << 8); |
| break; |
| Load4BytesBigEndian: |
| case Type::FloatTyID: |
| case Type::UIntTyID: |
| case Type::IntTyID: Result.UIntVal = (unsigned)Ptr->Untyped[3] | |
| ((unsigned)Ptr->Untyped[2] << 8) | |
| ((unsigned)Ptr->Untyped[1] << 16) | |
| ((unsigned)Ptr->Untyped[0] << 24); |
| break; |
| case Type::PointerTyID: if (getTargetData()->getPointerSize() == 4) |
| goto Load4BytesBigEndian; |
| case Type::DoubleTyID: |
| case Type::ULongTyID: |
| case Type::LongTyID: Result.ULongVal = (uint64_t)Ptr->Untyped[7] | |
| ((uint64_t)Ptr->Untyped[6] << 8) | |
| ((uint64_t)Ptr->Untyped[5] << 16) | |
| ((uint64_t)Ptr->Untyped[4] << 24) | |
| ((uint64_t)Ptr->Untyped[3] << 32) | |
| ((uint64_t)Ptr->Untyped[2] << 40) | |
| ((uint64_t)Ptr->Untyped[1] << 48) | |
| ((uint64_t)Ptr->Untyped[0] << 56); |
| break; |
| default: |
| std::cout << "Cannot load value of type " << *Ty << "!\n"; |
| abort(); |
| } |
| } |
| return Result; |
| } |
| |
| // InitializeMemory - Recursive function to apply a Constant value into the |
| // specified memory location... |
| // |
| void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { |
| if (isa<UndefValue>(Init)) { |
| return; |
| } else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(Init)) { |
| unsigned ElementSize = |
| getTargetData()->getTypeSize(CP->getType()->getElementType()); |
| for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) |
| InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); |
| return; |
| } else if (Init->getType()->isFirstClassType()) { |
| GenericValue Val = getConstantValue(Init); |
| StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); |
| return; |
| } else if (isa<ConstantAggregateZero>(Init)) { |
| memset(Addr, 0, (size_t)getTargetData()->getTypeSize(Init->getType())); |
| return; |
| } |
| |
| switch (Init->getType()->getTypeID()) { |
| case Type::ArrayTyID: { |
| const ConstantArray *CPA = cast<ConstantArray>(Init); |
| unsigned ElementSize = |
| getTargetData()->getTypeSize(CPA->getType()->getElementType()); |
| for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) |
| InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); |
| return; |
| } |
| |
| case Type::StructTyID: { |
| const ConstantStruct *CPS = cast<ConstantStruct>(Init); |
| const StructLayout *SL = |
| getTargetData()->getStructLayout(cast<StructType>(CPS->getType())); |
| for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) |
| InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->MemberOffsets[i]); |
| return; |
| } |
| |
| default: |
| std::cerr << "Bad Type: " << *Init->getType() << "\n"; |
| assert(0 && "Unknown constant type to initialize memory with!"); |
| } |
| } |
| |
| /// EmitGlobals - Emit all of the global variables to memory, storing their |
| /// addresses into GlobalAddress. This must make sure to copy the contents of |
| /// their initializers into the memory. |
| /// |
| void ExecutionEngine::emitGlobals() { |
| const TargetData *TD = getTargetData(); |
| |
| // Loop over all of the global variables in the program, allocating the memory |
| // to hold them. |
| Module &M = getModule(); |
| for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); |
| I != E; ++I) |
| if (!I->isExternal()) { |
| // Get the type of the global... |
| const Type *Ty = I->getType()->getElementType(); |
| |
| // Allocate some memory for it! |
| unsigned Size = TD->getTypeSize(Ty); |
| addGlobalMapping(I, new char[Size]); |
| } else { |
| // External variable reference. Try to use the dynamic loader to |
| // get a pointer to it. |
| if (void *SymAddr = sys::DynamicLibrary::SearchForAddressOfSymbol( |
| I->getName().c_str())) |
| addGlobalMapping(I, SymAddr); |
| else { |
| std::cerr << "Could not resolve external global address: " |
| << I->getName() << "\n"; |
| abort(); |
| } |
| } |
| |
| // Now that all of the globals are set up in memory, loop through them all and |
| // initialize their contents. |
| for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); |
| I != E; ++I) |
| if (!I->isExternal()) |
| EmitGlobalVariable(I); |
| } |
| |
| // EmitGlobalVariable - This method emits the specified global variable to the |
| // address specified in GlobalAddresses, or allocates new memory if it's not |
| // already in the map. |
| void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { |
| void *GA = getPointerToGlobalIfAvailable(GV); |
| DEBUG(std::cerr << "Global '" << GV->getName() << "' -> " << GA << "\n"); |
| |
| const Type *ElTy = GV->getType()->getElementType(); |
| size_t GVSize = (size_t)getTargetData()->getTypeSize(ElTy); |
| if (GA == 0) { |
| // If it's not already specified, allocate memory for the global. |
| GA = new char[GVSize]; |
| addGlobalMapping(GV, GA); |
| } |
| |
| InitializeMemory(GV->getInitializer(), GA); |
| NumInitBytes += (unsigned)GVSize; |
| ++NumGlobals; |
| } |