Reorganization: Move the Spiller out of VirtRegMap.cpp into its own files.  No (intended) functionality change.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66720 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/CodeGen/Spiller.cpp b/lib/CodeGen/Spiller.cpp
new file mode 100644
index 0000000..7c7a1dd
--- /dev/null
+++ b/lib/CodeGen/Spiller.cpp
@@ -0,0 +1,1655 @@
+//===-- llvm/CodeGen/Spiller.cpp -  Spiller -------------------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "spiller"
+#include "Spiller.h"
+
+#include <algorithm>
+using namespace llvm;
+
+STATISTIC(NumDSE     , "Number of dead stores elided");
+STATISTIC(NumDSS     , "Number of dead spill slots removed");
+STATISTIC(NumCommutes, "Number of instructions commuted");
+STATISTIC(NumDRM     , "Number of re-materializable defs elided");
+STATISTIC(NumStores  , "Number of stores added");
+STATISTIC(NumPSpills , "Number of physical register spills");
+STATISTIC(NumOmitted , "Number of reloads omited");
+STATISTIC(NumCopified, "Number of available reloads turned into copies");
+STATISTIC(NumReMats  , "Number of re-materialization");
+STATISTIC(NumLoads   , "Number of loads added");
+STATISTIC(NumReused  , "Number of values reused");
+STATISTIC(NumDCE     , "Number of copies elided");
+
+namespace {
+  enum SpillerName { simple, local };
+}
+
+static cl::opt<SpillerName>
+SpillerOpt("spiller",
+           cl::desc("Spiller to use: (default: local)"),
+           cl::Prefix,
+           cl::values(clEnumVal(simple, "simple spiller"),
+                      clEnumVal(local,  "local spiller"),
+                      clEnumValEnd),
+           cl::init(local));
+
+// ****************************** //
+// Simple Spiller Implementation  //
+// ****************************** //
+
+Spiller::~Spiller() {}
+
+bool SimpleSpiller::runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
+  DOUT << "********** REWRITE MACHINE CODE **********\n";
+  DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
+  const TargetMachine &TM = MF.getTarget();
+  const TargetInstrInfo &TII = *TM.getInstrInfo();
+  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
+
+
+  // LoadedRegs - Keep track of which vregs are loaded, so that we only load
+  // each vreg once (in the case where a spilled vreg is used by multiple
+  // operands).  This is always smaller than the number of operands to the
+  // current machine instr, so it should be small.
+  std::vector<unsigned> LoadedRegs;
+
+  for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
+       MBBI != E; ++MBBI) {
+    DOUT << MBBI->getBasicBlock()->getName() << ":\n";
+    MachineBasicBlock &MBB = *MBBI;
+    for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
+         MII != E; ++MII) {
+      MachineInstr &MI = *MII;
+      for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+        MachineOperand &MO = MI.getOperand(i);
+        if (MO.isReg() && MO.getReg()) {
+          if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
+            unsigned VirtReg = MO.getReg();
+            unsigned SubIdx = MO.getSubReg();
+            unsigned PhysReg = VRM.getPhys(VirtReg);
+            unsigned RReg = SubIdx ? TRI.getSubReg(PhysReg, SubIdx) : PhysReg;
+            if (!VRM.isAssignedReg(VirtReg)) {
+              int StackSlot = VRM.getStackSlot(VirtReg);
+              const TargetRegisterClass* RC = 
+                                           MF.getRegInfo().getRegClass(VirtReg);
+              
+              if (MO.isUse() &&
+                  std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg)
+                           == LoadedRegs.end()) {
+                TII.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
+                MachineInstr *LoadMI = prior(MII);
+                VRM.addSpillSlotUse(StackSlot, LoadMI);
+                LoadedRegs.push_back(VirtReg);
+                ++NumLoads;
+                DOUT << '\t' << *LoadMI;
+              }
+
+              if (MO.isDef()) {
+                TII.storeRegToStackSlot(MBB, next(MII), PhysReg, true,   
+                                        StackSlot, RC);
+                MachineInstr *StoreMI = next(MII);
+                VRM.addSpillSlotUse(StackSlot, StoreMI);
+                ++NumStores;
+              }
+            }
+            MF.getRegInfo().setPhysRegUsed(RReg);
+            MI.getOperand(i).setReg(RReg);
+          } else {
+            MF.getRegInfo().setPhysRegUsed(MO.getReg());
+          }
+        }
+      }
+
+      DOUT << '\t' << MI;
+      LoadedRegs.clear();
+    }
+  }
+  return true;
+}
+
+// ****************** //
+// Utility Functions  //
+// ****************** //
+
+/// InvalidateKill - A MI that defines the specified register is being deleted,
+/// invalidate the register kill information.
+static void InvalidateKill(unsigned Reg, BitVector &RegKills,
+                           std::vector<MachineOperand*> &KillOps) {
+  if (RegKills[Reg]) {
+    KillOps[Reg]->setIsKill(false);
+    KillOps[Reg] = NULL;
+    RegKills.reset(Reg);
+  }
+}
+
+/// findSinglePredSuccessor - Return via reference a vector of machine basic
+/// blocks each of which is a successor of the specified BB and has no other
+/// predecessor.
+static void findSinglePredSuccessor(MachineBasicBlock *MBB,
+                                   SmallVectorImpl<MachineBasicBlock *> &Succs) {
+  for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
+         SE = MBB->succ_end(); SI != SE; ++SI) {
+    MachineBasicBlock *SuccMBB = *SI;
+    if (SuccMBB->pred_size() == 1)
+      Succs.push_back(SuccMBB);
+  }
+}
+
+/// InvalidateKills - MI is going to be deleted. If any of its operands are
+/// marked kill, then invalidate the information.
+static void InvalidateKills(MachineInstr &MI, BitVector &RegKills,
+                            std::vector<MachineOperand*> &KillOps,
+                            SmallVector<unsigned, 2> *KillRegs = NULL) {
+  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+    MachineOperand &MO = MI.getOperand(i);
+    if (!MO.isReg() || !MO.isUse() || !MO.isKill())
+      continue;
+    unsigned Reg = MO.getReg();
+    if (TargetRegisterInfo::isVirtualRegister(Reg))
+      continue;
+    if (KillRegs)
+      KillRegs->push_back(Reg);
+    assert(Reg < KillOps.size());
+    if (KillOps[Reg] == &MO) {
+      RegKills.reset(Reg);
+      KillOps[Reg] = NULL;
+    }
+  }
+}
+
+/// InvalidateRegDef - If the def operand of the specified def MI is now dead
+/// (since it's spill instruction is removed), mark it isDead. Also checks if
+/// the def MI has other definition operands that are not dead. Returns it by
+/// reference.
+static bool InvalidateRegDef(MachineBasicBlock::iterator I,
+                             MachineInstr &NewDef, unsigned Reg,
+                             bool &HasLiveDef) {
+  // Due to remat, it's possible this reg isn't being reused. That is,
+  // the def of this reg (by prev MI) is now dead.
+  MachineInstr *DefMI = I;
+  MachineOperand *DefOp = NULL;
+  for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
+    MachineOperand &MO = DefMI->getOperand(i);
+    if (MO.isReg() && MO.isDef()) {
+      if (MO.getReg() == Reg)
+        DefOp = &MO;
+      else if (!MO.isDead())
+        HasLiveDef = true;
+    }
+  }
+  if (!DefOp)
+    return false;
+
+  bool FoundUse = false, Done = false;
+  MachineBasicBlock::iterator E = &NewDef;
+  ++I; ++E;
+  for (; !Done && I != E; ++I) {
+    MachineInstr *NMI = I;
+    for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
+      MachineOperand &MO = NMI->getOperand(j);
+      if (!MO.isReg() || MO.getReg() != Reg)
+        continue;
+      if (MO.isUse())
+        FoundUse = true;
+      Done = true; // Stop after scanning all the operands of this MI.
+    }
+  }
+  if (!FoundUse) {
+    // Def is dead!
+    DefOp->setIsDead();
+    return true;
+  }
+  return false;
+}
+
+/// UpdateKills - Track and update kill info. If a MI reads a register that is
+/// marked kill, then it must be due to register reuse. Transfer the kill info
+/// over.
+static void UpdateKills(MachineInstr &MI, BitVector &RegKills,
+                        std::vector<MachineOperand*> &KillOps,
+                        const TargetRegisterInfo* TRI) {
+  const TargetInstrDesc &TID = MI.getDesc();
+  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+    MachineOperand &MO = MI.getOperand(i);
+    if (!MO.isReg() || !MO.isUse())
+      continue;
+    unsigned Reg = MO.getReg();
+    if (Reg == 0)
+      continue;
+    
+    if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) {
+      // That can't be right. Register is killed but not re-defined and it's
+      // being reused. Let's fix that.
+      KillOps[Reg]->setIsKill(false);
+      KillOps[Reg] = NULL;
+      RegKills.reset(Reg);
+      if (i < TID.getNumOperands() &&
+          TID.getOperandConstraint(i, TOI::TIED_TO) == -1)
+        // Unless it's a two-address operand, this is the new kill.
+        MO.setIsKill();
+    }
+    if (MO.isKill()) {
+      RegKills.set(Reg);
+      KillOps[Reg] = &MO;
+    }
+  }
+
+  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+    const MachineOperand &MO = MI.getOperand(i);
+    if (!MO.isReg() || !MO.isDef())
+      continue;
+    unsigned Reg = MO.getReg();
+    RegKills.reset(Reg);
+    KillOps[Reg] = NULL;
+    // It also defines (or partially define) aliases.
+    for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) {
+      RegKills.reset(*AS);
+      KillOps[*AS] = NULL;
+    }
+  }
+}
+
+/// ReMaterialize - Re-materialize definition for Reg targetting DestReg.
+///
+static void ReMaterialize(MachineBasicBlock &MBB,
+                          MachineBasicBlock::iterator &MII,
+                          unsigned DestReg, unsigned Reg,
+                          const TargetInstrInfo *TII,
+                          const TargetRegisterInfo *TRI,
+                          VirtRegMap &VRM) {
+  TII->reMaterialize(MBB, MII, DestReg, VRM.getReMaterializedMI(Reg));
+  MachineInstr *NewMI = prior(MII);
+  for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
+    MachineOperand &MO = NewMI->getOperand(i);
+    if (!MO.isReg() || MO.getReg() == 0)
+      continue;
+    unsigned VirtReg = MO.getReg();
+    if (TargetRegisterInfo::isPhysicalRegister(VirtReg))
+      continue;
+    assert(MO.isUse());
+    unsigned SubIdx = MO.getSubReg();
+    unsigned Phys = VRM.getPhys(VirtReg);
+    assert(Phys);
+    unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
+    MO.setReg(RReg);
+  }
+  ++NumReMats;
+}
+
+/// findSuperReg - Find the SubReg's super-register of given register class
+/// where its SubIdx sub-register is SubReg.
+static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
+                             unsigned SubIdx, const TargetRegisterInfo *TRI) {
+  for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
+       I != E; ++I) {
+    unsigned Reg = *I;
+    if (TRI->getSubReg(Reg, SubIdx) == SubReg)
+      return Reg;
+  }
+  return 0;
+}
+
+// ******************************** //
+// Available Spills Implementation  //
+// ******************************** //
+
+/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
+/// stackslot register. The register is still available but is no longer
+/// allowed to be modifed.
+void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
+  std::multimap<unsigned, int>::iterator I =
+    PhysRegsAvailable.lower_bound(PhysReg);
+  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
+    int SlotOrReMat = I->second;
+    I++;
+    assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
+           "Bidirectional map mismatch!");
+    SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
+    DOUT << "PhysReg " << TRI->getName(PhysReg)
+         << " copied, it is available for use but can no longer be modified\n";
+  }
+}
+
+/// disallowClobberPhysReg - Unset the CanClobber bit of the specified
+/// stackslot register and its aliases. The register and its aliases may
+/// still available but is no longer allowed to be modifed.
+void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
+  for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
+    disallowClobberPhysRegOnly(*AS);
+  disallowClobberPhysRegOnly(PhysReg);
+}
+
+/// ClobberPhysRegOnly - This is called when the specified physreg changes
+/// value.  We use this to invalidate any info about stuff we thing lives in it.
+void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
+  std::multimap<unsigned, int>::iterator I =
+    PhysRegsAvailable.lower_bound(PhysReg);
+  while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
+    int SlotOrReMat = I->second;
+    PhysRegsAvailable.erase(I++);
+    assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
+           "Bidirectional map mismatch!");
+    SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
+    DOUT << "PhysReg " << TRI->getName(PhysReg)
+         << " clobbered, invalidating ";
+    if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
+      DOUT << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 << "\n";
+    else
+      DOUT << "SS#" << SlotOrReMat << "\n";
+  }
+}
+
+/// ClobberPhysReg - This is called when the specified physreg changes
+/// value.  We use this to invalidate any info about stuff we thing lives in
+/// it and any of its aliases.
+void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
+  for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
+    ClobberPhysRegOnly(*AS);
+  ClobberPhysRegOnly(PhysReg);
+}
+
+/// AddAvailableRegsToLiveIn - Availability information is being kept coming
+/// into the specified MBB. Add available physical registers as potential
+/// live-in's. If they are reused in the MBB, they will be added to the
+/// live-in set to make register scavenger and post-allocation scheduler.
+void AvailableSpills::AddAvailableRegsToLiveIn(MachineBasicBlock &MBB,
+                                        BitVector &RegKills,
+                                        std::vector<MachineOperand*> &KillOps) {
+  std::set<unsigned> NotAvailable;
+  for (std::multimap<unsigned, int>::iterator
+         I = PhysRegsAvailable.begin(), E = PhysRegsAvailable.end();
+       I != E; ++I) {
+    unsigned Reg = I->first;
+    const TargetRegisterClass* RC = TRI->getPhysicalRegisterRegClass(Reg);
+    // FIXME: A temporary workaround. We can't reuse available value if it's
+    // not safe to move the def of the virtual register's class. e.g.
+    // X86::RFP* register classes. Do not add it as a live-in.
+    if (!TII->isSafeToMoveRegClassDefs(RC))
+      // This is no longer available.
+      NotAvailable.insert(Reg);
+    else {
+      MBB.addLiveIn(Reg);
+      InvalidateKill(Reg, RegKills, KillOps);
+    }
+
+    // Skip over the same register.
+    std::multimap<unsigned, int>::iterator NI = next(I);
+    while (NI != E && NI->first == Reg) {
+      ++I;
+      ++NI;
+    }
+  }
+
+  for (std::set<unsigned>::iterator I = NotAvailable.begin(),
+         E = NotAvailable.end(); I != E; ++I) {
+    ClobberPhysReg(*I);
+    for (const unsigned *SubRegs = TRI->getSubRegisters(*I);
+       *SubRegs; ++SubRegs)
+      ClobberPhysReg(*SubRegs);
+  }
+}
+
+/// ModifyStackSlotOrReMat - This method is called when the value in a stack
+/// slot changes.  This removes information about which register the previous
+/// value for this slot lives in (as the previous value is dead now).
+void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
+  std::map<int, unsigned>::iterator It =
+    SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
+  if (It == SpillSlotsOrReMatsAvailable.end()) return;
+  unsigned Reg = It->second >> 1;
+  SpillSlotsOrReMatsAvailable.erase(It);
+  
+  // This register may hold the value of multiple stack slots, only remove this
+  // stack slot from the set of values the register contains.
+  std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
+  for (; ; ++I) {
+    assert(I != PhysRegsAvailable.end() && I->first == Reg &&
+           "Map inverse broken!");
+    if (I->second == SlotOrReMat) break;
+  }
+  PhysRegsAvailable.erase(I);
+}
+
+// ************************** //
+// Reuse Info Implementation  //
+// ************************** //
+
+/// GetRegForReload - We are about to emit a reload into PhysReg.  If there
+/// is some other operand that is using the specified register, either pick
+/// a new register to use, or evict the previous reload and use this reg.
+unsigned ReuseInfo::GetRegForReload(unsigned PhysReg, MachineInstr *MI,
+                         AvailableSpills &Spills,
+                         std::vector<MachineInstr*> &MaybeDeadStores,
+                         SmallSet<unsigned, 8> &Rejected,
+                         BitVector &RegKills,
+                         std::vector<MachineOperand*> &KillOps,
+                         VirtRegMap &VRM) {
+  const TargetInstrInfo* TII = MI->getParent()->getParent()->getTarget()
+                               .getInstrInfo();
+  
+  if (Reuses.empty()) return PhysReg;  // This is most often empty.
+
+  for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
+    ReusedOp &Op = Reuses[ro];
+    // If we find some other reuse that was supposed to use this register
+    // exactly for its reload, we can change this reload to use ITS reload
+    // register. That is, unless its reload register has already been
+    // considered and subsequently rejected because it has also been reused
+    // by another operand.
+    if (Op.PhysRegReused == PhysReg &&
+        Rejected.count(Op.AssignedPhysReg) == 0) {
+      // Yup, use the reload register that we didn't use before.
+      unsigned NewReg = Op.AssignedPhysReg;
+      Rejected.insert(PhysReg);
+      return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores, Rejected,
+                             RegKills, KillOps, VRM);
+    } else {
+      // Otherwise, we might also have a problem if a previously reused
+      // value aliases the new register.  If so, codegen the previous reload
+      // and use this one.          
+      unsigned PRRU = Op.PhysRegReused;
+      const TargetRegisterInfo *TRI = Spills.getRegInfo();
+      if (TRI->areAliases(PRRU, PhysReg)) {
+        // Okay, we found out that an alias of a reused register
+        // was used.  This isn't good because it means we have
+        // to undo a previous reuse.
+        MachineBasicBlock *MBB = MI->getParent();
+        const TargetRegisterClass *AliasRC =
+          MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg);
+
+        // Copy Op out of the vector and remove it, we're going to insert an
+        // explicit load for it.
+        ReusedOp NewOp = Op;
+        Reuses.erase(Reuses.begin()+ro);
+
+        // Ok, we're going to try to reload the assigned physreg into the
+        // slot that we were supposed to in the first place.  However, that
+        // register could hold a reuse.  Check to see if it conflicts or
+        // would prefer us to use a different register.
+        unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg,
+                                              MI, Spills, MaybeDeadStores,
+                                          Rejected, RegKills, KillOps, VRM);
+        
+        MachineBasicBlock::iterator MII = MI;
+        if (NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT) {
+          ReMaterialize(*MBB, MII, NewPhysReg, NewOp.VirtReg, TII, TRI,VRM);
+        } else {
+          TII->loadRegFromStackSlot(*MBB, MII, NewPhysReg,
+                                    NewOp.StackSlotOrReMat, AliasRC);
+          MachineInstr *LoadMI = prior(MII);
+          VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI);
+          // Any stores to this stack slot are not dead anymore.
+          MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;            
+          ++NumLoads;
+        }
+        Spills.ClobberPhysReg(NewPhysReg);
+        Spills.ClobberPhysReg(NewOp.PhysRegReused);
+
+        unsigned SubIdx = MI->getOperand(NewOp.Operand).getSubReg();
+        unsigned RReg = SubIdx ? TRI->getSubReg(NewPhysReg, SubIdx) : NewPhysReg;
+        MI->getOperand(NewOp.Operand).setReg(RReg);
+        
+        Spills.addAvailable(NewOp.StackSlotOrReMat, NewPhysReg);
+        --MII;
+        UpdateKills(*MII, RegKills, KillOps, TRI);
+        DOUT << '\t' << *MII;
+        
+        DOUT << "Reuse undone!\n";
+        --NumReused;
+        
+        // Finally, PhysReg is now available, go ahead and use it.
+        return PhysReg;
+      }
+    }
+  }
+  return PhysReg;
+}
+
+// ***************************** //
+// Local Spiller Implementation  //
+// ***************************** //
+
+bool LocalSpiller::runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
+  RegInfo = &MF.getRegInfo(); 
+  TRI = MF.getTarget().getRegisterInfo();
+  TII = MF.getTarget().getInstrInfo();
+  DOUT << "\n**** Local spiller rewriting function '"
+       << MF.getFunction()->getName() << "':\n";
+  DOUT << "**** Machine Instrs (NOTE! Does not include spills and reloads!)"
+          " ****\n";
+  DEBUG(MF.dump());
+
+  // Spills - Keep track of which spilled values are available in physregs
+  // so that we can choose to reuse the physregs instead of emitting
+  // reloads. This is usually refreshed per basic block.
+  AvailableSpills Spills(TRI, TII);
+
+  // Keep track of kill information.
+  BitVector RegKills(TRI->getNumRegs());
+  std::vector<MachineOperand*> KillOps;
+  KillOps.resize(TRI->getNumRegs(), NULL);
+
+  // SingleEntrySuccs - Successor blocks which have a single predecessor.
+  SmallVector<MachineBasicBlock*, 4> SinglePredSuccs;
+  SmallPtrSet<MachineBasicBlock*,16> EarlyVisited;
+
+  // Traverse the basic blocks depth first.
+  MachineBasicBlock *Entry = MF.begin();
+  SmallPtrSet<MachineBasicBlock*,16> Visited;
+  for (df_ext_iterator<MachineBasicBlock*,
+         SmallPtrSet<MachineBasicBlock*,16> >
+         DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
+       DFI != E; ++DFI) {
+    MachineBasicBlock *MBB = *DFI;
+    if (!EarlyVisited.count(MBB))
+      RewriteMBB(*MBB, VRM, Spills, RegKills, KillOps);
+
+    // If this MBB is the only predecessor of a successor. Keep the
+    // availability information and visit it next.
+    do {
+      // Keep visiting single predecessor successor as long as possible.
+      SinglePredSuccs.clear();
+      findSinglePredSuccessor(MBB, SinglePredSuccs);
+      if (SinglePredSuccs.empty())
+        MBB = 0;
+      else {
+        // FIXME: More than one successors, each of which has MBB has
+        // the only predecessor.
+        MBB = SinglePredSuccs[0];
+        if (!Visited.count(MBB) && EarlyVisited.insert(MBB)) {
+          Spills.AddAvailableRegsToLiveIn(*MBB, RegKills, KillOps);
+          RewriteMBB(*MBB, VRM, Spills, RegKills, KillOps);
+        }
+      }
+    } while (MBB);
+
+    // Clear the availability info.
+    Spills.clear();
+  }
+
+  DOUT << "**** Post Machine Instrs ****\n";
+  DEBUG(MF.dump());
+
+  // Mark unused spill slots.
+  MachineFrameInfo *MFI = MF.getFrameInfo();
+  int SS = VRM.getLowSpillSlot();
+  if (SS != VirtRegMap::NO_STACK_SLOT)
+    for (int e = VRM.getHighSpillSlot(); SS <= e; ++SS)
+      if (!VRM.isSpillSlotUsed(SS)) {
+        MFI->RemoveStackObject(SS);
+        ++NumDSS;
+      }
+
+  return true;
+}
+
+
+/// PrepForUnfoldOpti - Turn a store folding instruction into a load folding
+/// instruction. e.g.
+///     xorl  %edi, %eax
+///     movl  %eax, -32(%ebp)
+///     movl  -36(%ebp), %eax
+///     orl   %eax, -32(%ebp)
+/// ==>
+///     xorl  %edi, %eax
+///     orl   -36(%ebp), %eax
+///     mov   %eax, -32(%ebp)
+/// This enables unfolding optimization for a subsequent instruction which will
+/// also eliminate the newly introduced store instruction.
+bool LocalSpiller::PrepForUnfoldOpti(MachineBasicBlock &MBB,
+                                    MachineBasicBlock::iterator &MII,
+                                    std::vector<MachineInstr*> &MaybeDeadStores,
+                                    AvailableSpills &Spills,
+                                    BitVector &RegKills,
+                                    std::vector<MachineOperand*> &KillOps,
+                                    VirtRegMap &VRM) {
+  MachineFunction &MF = *MBB.getParent();
+  MachineInstr &MI = *MII;
+  unsigned UnfoldedOpc = 0;
+  unsigned UnfoldPR = 0;
+  unsigned UnfoldVR = 0;
+  int FoldedSS = VirtRegMap::NO_STACK_SLOT;
+  VirtRegMap::MI2VirtMapTy::const_iterator I, End;
+  for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
+    // Only transform a MI that folds a single register.
+    if (UnfoldedOpc)
+      return false;
+    UnfoldVR = I->second.first;
+    VirtRegMap::ModRef MR = I->second.second;
+    // MI2VirtMap be can updated which invalidate the iterator.
+    // Increment the iterator first.
+    ++I; 
+    if (VRM.isAssignedReg(UnfoldVR))
+      continue;
+    // If this reference is not a use, any previous store is now dead.
+    // Otherwise, the store to this stack slot is not dead anymore.
+    FoldedSS = VRM.getStackSlot(UnfoldVR);
+    MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
+    if (DeadStore && (MR & VirtRegMap::isModRef)) {
+      unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
+      if (!PhysReg || !DeadStore->readsRegister(PhysReg))
+        continue;
+      UnfoldPR = PhysReg;
+      UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
+                                                    false, true);
+    }
+  }
+
+  if (!UnfoldedOpc)
+    return false;
+
+  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+    MachineOperand &MO = MI.getOperand(i);
+    if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse())
+      continue;
+    unsigned VirtReg = MO.getReg();
+    if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
+      continue;
+    if (VRM.isAssignedReg(VirtReg)) {
+      unsigned PhysReg = VRM.getPhys(VirtReg);
+      if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR))
+        return false;
+    } else if (VRM.isReMaterialized(VirtReg))
+      continue;
+    int SS = VRM.getStackSlot(VirtReg);
+    unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
+    if (PhysReg) {
+      if (TRI->regsOverlap(PhysReg, UnfoldPR))
+        return false;
+      continue;
+    }
+    if (VRM.hasPhys(VirtReg)) {
+      PhysReg = VRM.getPhys(VirtReg);
+      if (!TRI->regsOverlap(PhysReg, UnfoldPR))
+        continue;
+    }
+
+    // Ok, we'll need to reload the value into a register which makes
+    // it impossible to perform the store unfolding optimization later.
+    // Let's see if it is possible to fold the load if the store is
+    // unfolded. This allows us to perform the store unfolding
+    // optimization.
+    SmallVector<MachineInstr*, 4> NewMIs;
+    if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
+      assert(NewMIs.size() == 1);
+      MachineInstr *NewMI = NewMIs.back();
+      NewMIs.clear();
+      int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false);
+      assert(Idx != -1);
+      SmallVector<unsigned, 1> Ops;
+      Ops.push_back(Idx);
+      MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, NewMI, Ops, SS);
+      if (FoldedMI) {
+        VRM.addSpillSlotUse(SS, FoldedMI);
+        if (!VRM.hasPhys(UnfoldVR))
+          VRM.assignVirt2Phys(UnfoldVR, UnfoldPR);
+        VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
+        MII = MBB.insert(MII, FoldedMI);
+        InvalidateKills(MI, RegKills, KillOps);
+        VRM.RemoveMachineInstrFromMaps(&MI);
+        MBB.erase(&MI);
+        MF.DeleteMachineInstr(NewMI);
+        return true;
+      }
+      MF.DeleteMachineInstr(NewMI);
+    }
+  }
+  return false;
+}
+
+/// CommuteToFoldReload -
+/// Look for
+/// r1 = load fi#1
+/// r1 = op r1, r2<kill>
+/// store r1, fi#1
+///
+/// If op is commutable and r2 is killed, then we can xform these to
+/// r2 = op r2, fi#1
+/// store r2, fi#1
+bool LocalSpiller::CommuteToFoldReload(MachineBasicBlock &MBB,
+                                    MachineBasicBlock::iterator &MII,
+                                    unsigned VirtReg, unsigned SrcReg, int SS,
+                                    AvailableSpills &Spills,
+                                    BitVector &RegKills,
+                                    std::vector<MachineOperand*> &KillOps,
+                                    const TargetRegisterInfo *TRI,
+                                    VirtRegMap &VRM) {
+  if (MII == MBB.begin() || !MII->killsRegister(SrcReg))
+    return false;
+
+  MachineFunction &MF = *MBB.getParent();
+  MachineInstr &MI = *MII;
+  MachineBasicBlock::iterator DefMII = prior(MII);
+  MachineInstr *DefMI = DefMII;
+  const TargetInstrDesc &TID = DefMI->getDesc();
+  unsigned NewDstIdx;
+  if (DefMII != MBB.begin() &&
+      TID.isCommutable() &&
+      TII->CommuteChangesDestination(DefMI, NewDstIdx)) {
+    MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
+    unsigned NewReg = NewDstMO.getReg();
+    if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg))
+      return false;
+    MachineInstr *ReloadMI = prior(DefMII);
+    int FrameIdx;
+    unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx);
+    if (DestReg != SrcReg || FrameIdx != SS)
+      return false;
+    int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false);
+    if (UseIdx == -1)
+      return false;
+    int DefIdx = TID.getOperandConstraint(UseIdx, TOI::TIED_TO);
+    if (DefIdx == -1)
+      return false;
+    assert(DefMI->getOperand(DefIdx).isReg() &&
+           DefMI->getOperand(DefIdx).getReg() == SrcReg);
+
+    // Now commute def instruction.
+    MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true);
+    if (!CommutedMI)
+      return false;
+    SmallVector<unsigned, 1> Ops;
+    Ops.push_back(NewDstIdx);
+    MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, CommutedMI, Ops, SS);
+    // Not needed since foldMemoryOperand returns new MI.
+    MF.DeleteMachineInstr(CommutedMI);
+    if (!FoldedMI)
+      return false;
+
+    VRM.addSpillSlotUse(SS, FoldedMI);
+    VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
+    // Insert new def MI and spill MI.
+    const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(VirtReg);
+    TII->storeRegToStackSlot(MBB, &MI, NewReg, true, SS, RC);
+    MII = prior(MII);
+    MachineInstr *StoreMI = MII;
+    VRM.addSpillSlotUse(SS, StoreMI);
+    VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
+    MII = MBB.insert(MII, FoldedMI);  // Update MII to backtrack.
+
+    // Delete all 3 old instructions.
+    InvalidateKills(*ReloadMI, RegKills, KillOps);
+    VRM.RemoveMachineInstrFromMaps(ReloadMI);
+    MBB.erase(ReloadMI);
+    InvalidateKills(*DefMI, RegKills, KillOps);
+    VRM.RemoveMachineInstrFromMaps(DefMI);
+    MBB.erase(DefMI);
+    InvalidateKills(MI, RegKills, KillOps);
+    VRM.RemoveMachineInstrFromMaps(&MI);
+    MBB.erase(&MI);
+
+    // If NewReg was previously holding value of some SS, it's now clobbered.
+    // This has to be done now because it's a physical register. When this
+    // instruction is re-visited, it's ignored.
+    Spills.ClobberPhysReg(NewReg);
+
+    ++NumCommutes;
+    return true;
+  }
+
+  return false;
+}
+
+/// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
+/// the last store to the same slot is now dead. If so, remove the last store.
+void LocalSpiller::SpillRegToStackSlot(MachineBasicBlock &MBB,
+                                  MachineBasicBlock::iterator &MII,
+                                  int Idx, unsigned PhysReg, int StackSlot,
+                                  const TargetRegisterClass *RC,
+                                  bool isAvailable, MachineInstr *&LastStore,
+                                  AvailableSpills &Spills,
+                                  SmallSet<MachineInstr*, 4> &ReMatDefs,
+                                  BitVector &RegKills,
+                                  std::vector<MachineOperand*> &KillOps,
+                                  VirtRegMap &VRM) {
+  TII->storeRegToStackSlot(MBB, next(MII), PhysReg, true, StackSlot, RC);
+  MachineInstr *StoreMI = next(MII);
+  VRM.addSpillSlotUse(StackSlot, StoreMI);
+  DOUT << "Store:\t" << *StoreMI;
+
+  // If there is a dead store to this stack slot, nuke it now.
+  if (LastStore) {
+    DOUT << "Removed dead store:\t" << *LastStore;
+    ++NumDSE;
+    SmallVector<unsigned, 2> KillRegs;
+    InvalidateKills(*LastStore, RegKills, KillOps, &KillRegs);
+    MachineBasicBlock::iterator PrevMII = LastStore;
+    bool CheckDef = PrevMII != MBB.begin();
+    if (CheckDef)
+      --PrevMII;
+    VRM.RemoveMachineInstrFromMaps(LastStore);
+    MBB.erase(LastStore);
+    if (CheckDef) {
+      // Look at defs of killed registers on the store. Mark the defs
+      // as dead since the store has been deleted and they aren't
+      // being reused.
+      for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
+        bool HasOtherDef = false;
+        if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef)) {
+          MachineInstr *DeadDef = PrevMII;
+          if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
+            // FIXME: This assumes a remat def does not have side
+            // effects.
+            VRM.RemoveMachineInstrFromMaps(DeadDef);
+            MBB.erase(DeadDef);
+            ++NumDRM;
+          }
+        }
+      }
+    }
+  }
+
+  LastStore = next(MII);
+
+  // If the stack slot value was previously available in some other
+  // register, change it now.  Otherwise, make the register available,
+  // in PhysReg.
+  Spills.ModifyStackSlotOrReMat(StackSlot);
+  Spills.ClobberPhysReg(PhysReg);
+  Spills.addAvailable(StackSlot, PhysReg, isAvailable);
+  ++NumStores;
+}
+
+/// TransferDeadness - A identity copy definition is dead and it's being
+/// removed. Find the last def or use and mark it as dead / kill.
+void LocalSpiller::TransferDeadness(MachineBasicBlock *MBB, unsigned CurDist,
+                                    unsigned Reg, BitVector &RegKills,
+                                    std::vector<MachineOperand*> &KillOps) {
+  int LastUDDist = -1;
+  MachineInstr *LastUDMI = NULL;
+  for (MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(Reg),
+         RE = RegInfo->reg_end(); RI != RE; ++RI) {
+    MachineInstr *UDMI = &*RI;
+    if (UDMI->getParent() != MBB)
+      continue;
+    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
+    if (DI == DistanceMap.end() || DI->second > CurDist)
+      continue;
+    if ((int)DI->second < LastUDDist)
+      continue;
+    LastUDDist = DI->second;
+    LastUDMI = UDMI;
+  }
+
+  if (LastUDMI) {
+    const TargetInstrDesc &TID = LastUDMI->getDesc();
+    MachineOperand *LastUD = NULL;
+    for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) {
+      MachineOperand &MO = LastUDMI->getOperand(i);
+      if (!MO.isReg() || MO.getReg() != Reg)
+        continue;
+      if (!LastUD || (LastUD->isUse() && MO.isDef()))
+        LastUD = &MO;
+      if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1)
+        return;
+    }
+    if (LastUD->isDef())
+      LastUD->setIsDead();
+    else {
+      LastUD->setIsKill();
+      RegKills.set(Reg);
+      KillOps[Reg] = LastUD;
+    }
+  }
+}
+
+/// rewriteMBB - Keep track of which spills are available even after the
+/// register allocator is done with them.  If possible, avid reloading vregs.
+void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM,
+                              AvailableSpills &Spills, BitVector &RegKills,
+                              std::vector<MachineOperand*> &KillOps) {
+  DOUT << "\n**** Local spiller rewriting MBB '"
+       << MBB.getBasicBlock()->getName() << ":\n";
+
+  MachineFunction &MF = *MBB.getParent();
+  
+  // MaybeDeadStores - When we need to write a value back into a stack slot,
+  // keep track of the inserted store.  If the stack slot value is never read
+  // (because the value was used from some available register, for example), and
+  // subsequently stored to, the original store is dead.  This map keeps track
+  // of inserted stores that are not used.  If we see a subsequent store to the
+  // same stack slot, the original store is deleted.
+  std::vector<MachineInstr*> MaybeDeadStores;
+  MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);
+
+  // ReMatDefs - These are rematerializable def MIs which are not deleted.
+  SmallSet<MachineInstr*, 4> ReMatDefs;
+
+  // Clear kill info.
+  SmallSet<unsigned, 2> KilledMIRegs;
+  RegKills.reset();
+  KillOps.clear();
+  KillOps.resize(TRI->getNumRegs(), NULL);
+
+  unsigned Dist = 0;
+  DistanceMap.clear();
+  for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
+       MII != E; ) {
+    MachineBasicBlock::iterator NextMII = MII; ++NextMII;
+
+    VirtRegMap::MI2VirtMapTy::const_iterator I, End;
+    bool Erased = false;
+    bool BackTracked = false;
+    if (PrepForUnfoldOpti(MBB, MII,
+                          MaybeDeadStores, Spills, RegKills, KillOps, VRM))
+      NextMII = next(MII);
+
+    MachineInstr &MI = *MII;
+    const TargetInstrDesc &TID = MI.getDesc();
+
+    if (VRM.hasEmergencySpills(&MI)) {
+      // Spill physical register(s) in the rare case the allocator has run out
+      // of registers to allocate.
+      SmallSet<int, 4> UsedSS;
+      std::vector<unsigned> &EmSpills = VRM.getEmergencySpills(&MI);
+      for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) {
+        unsigned PhysReg = EmSpills[i];
+        const TargetRegisterClass *RC =
+          TRI->getPhysicalRegisterRegClass(PhysReg);
+        assert(RC && "Unable to determine register class!");
+        int SS = VRM.getEmergencySpillSlot(RC);
+        if (UsedSS.count(SS))
+          assert(0 && "Need to spill more than one physical registers!");
+        UsedSS.insert(SS);
+        TII->storeRegToStackSlot(MBB, MII, PhysReg, true, SS, RC);
+        MachineInstr *StoreMI = prior(MII);
+        VRM.addSpillSlotUse(SS, StoreMI);
+        TII->loadRegFromStackSlot(MBB, next(MII), PhysReg, SS, RC);
+        MachineInstr *LoadMI = next(MII);
+        VRM.addSpillSlotUse(SS, LoadMI);
+        ++NumPSpills;
+      }
+      NextMII = next(MII);
+    }
+
+    // Insert restores here if asked to.
+    if (VRM.isRestorePt(&MI)) {
+      std::vector<unsigned> &RestoreRegs = VRM.getRestorePtRestores(&MI);
+      for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
+        unsigned VirtReg = RestoreRegs[e-i-1];  // Reverse order.
+        if (!VRM.getPreSplitReg(VirtReg))
+          continue; // Split interval spilled again.
+        unsigned Phys = VRM.getPhys(VirtReg);
+        RegInfo->setPhysRegUsed(Phys);
+
+        // Check if the value being restored if available. If so, it must be
+        // from a predecessor BB that fallthrough into this BB. We do not
+        // expect:
+        // BB1:
+        // r1 = load fi#1
+        // ...
+        //    = r1<kill>
+        // ... # r1 not clobbered
+        // ...
+        //    = load fi#1
+        bool DoReMat = VRM.isReMaterialized(VirtReg);
+        int SSorRMId = DoReMat
+          ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
+        const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
+        unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
+        if (InReg == Phys) {
+          // If the value is already available in the expected register, save
+          // a reload / remat.
+          if (SSorRMId)
+            DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1;
+          else
+            DOUT << "Reusing SS#" << SSorRMId;
+          DOUT << " from physreg "
+               << TRI->getName(InReg) << " for vreg"
+               << VirtReg <<" instead of reloading into physreg "
+               << TRI->getName(Phys) << "\n";
+          ++NumOmitted;
+          continue;
+        } else if (InReg && InReg != Phys) {
+          if (SSorRMId)
+            DOUT << "Reusing RM#" << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1;
+          else
+            DOUT << "Reusing SS#" << SSorRMId;
+          DOUT << " from physreg "
+               << TRI->getName(InReg) << " for vreg"
+               << VirtReg <<" by copying it into physreg "
+               << TRI->getName(Phys) << "\n";
+
+          // If the reloaded / remat value is available in another register,
+          // copy it to the desired register.
+          TII->copyRegToReg(MBB, &MI, Phys, InReg, RC, RC);
+
+          // This invalidates Phys.
+          Spills.ClobberPhysReg(Phys);
+          // Remember it's available.
+          Spills.addAvailable(SSorRMId, Phys);
+
+          // Mark is killed.
+          MachineInstr *CopyMI = prior(MII);
+          MachineOperand *KillOpnd = CopyMI->findRegisterUseOperand(InReg);
+          KillOpnd->setIsKill();
+          UpdateKills(*CopyMI, RegKills, KillOps, TRI);
+
+          DOUT << '\t' << *CopyMI;
+          ++NumCopified;
+          continue;
+        }
+
+        if (VRM.isReMaterialized(VirtReg)) {
+          ReMaterialize(MBB, MII, Phys, VirtReg, TII, TRI, VRM);
+        } else {
+          const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
+          TII->loadRegFromStackSlot(MBB, &MI, Phys, SSorRMId, RC);
+          MachineInstr *LoadMI = prior(MII);
+          VRM.addSpillSlotUse(SSorRMId, LoadMI);
+          ++NumLoads;
+        }
+
+        // This invalidates Phys.
+        Spills.ClobberPhysReg(Phys);
+        // Remember it's available.
+        Spills.addAvailable(SSorRMId, Phys);
+
+        UpdateKills(*prior(MII), RegKills, KillOps, TRI);
+        DOUT << '\t' << *prior(MII);
+      }
+    }
+
+    // Insert spills here if asked to.
+    if (VRM.isSpillPt(&MI)) {
+      std::vector<std::pair<unsigned,bool> > &SpillRegs =
+        VRM.getSpillPtSpills(&MI);
+      for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
+        unsigned VirtReg = SpillRegs[i].first;
+        bool isKill = SpillRegs[i].second;
+        if (!VRM.getPreSplitReg(VirtReg))
+          continue; // Split interval spilled again.
+        const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
+        unsigned Phys = VRM.getPhys(VirtReg);
+        int StackSlot = VRM.getStackSlot(VirtReg);
+        TII->storeRegToStackSlot(MBB, next(MII), Phys, isKill, StackSlot, RC);
+        MachineInstr *StoreMI = next(MII);
+        VRM.addSpillSlotUse(StackSlot, StoreMI);
+        DOUT << "Store:\t" << *StoreMI;
+        VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
+      }
+      NextMII = next(MII);
+    }
+
+    /// ReusedOperands - Keep track of operand reuse in case we need to undo
+    /// reuse.
+    ReuseInfo ReusedOperands(MI, TRI);
+    SmallVector<unsigned, 4> VirtUseOps;
+    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+      MachineOperand &MO = MI.getOperand(i);
+      if (!MO.isReg() || MO.getReg() == 0)
+        continue;   // Ignore non-register operands.
+      
+      unsigned VirtReg = MO.getReg();
+      if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) {
+        // Ignore physregs for spilling, but remember that it is used by this
+        // function.
+        RegInfo->setPhysRegUsed(VirtReg);
+        continue;
+      }
+
+      // We want to process implicit virtual register uses first.
+      if (MO.isImplicit())
+        // If the virtual register is implicitly defined, emit a implicit_def
+        // before so scavenger knows it's "defined".
+        VirtUseOps.insert(VirtUseOps.begin(), i);
+      else
+        VirtUseOps.push_back(i);
+    }
+
+    // Process all of the spilled uses and all non spilled reg references.
+    SmallVector<int, 2> PotentialDeadStoreSlots;
+    KilledMIRegs.clear();
+    for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) {
+      unsigned i = VirtUseOps[j];
+      MachineOperand &MO = MI.getOperand(i);
+      unsigned VirtReg = MO.getReg();
+      assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
+             "Not a virtual register?");
+
+      unsigned SubIdx = MO.getSubReg();
+      if (VRM.isAssignedReg(VirtReg)) {
+        // This virtual register was assigned a physreg!
+        unsigned Phys = VRM.getPhys(VirtReg);
+        RegInfo->setPhysRegUsed(Phys);
+        if (MO.isDef())
+          ReusedOperands.markClobbered(Phys);
+        unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
+        MI.getOperand(i).setReg(RReg);
+        if (VRM.isImplicitlyDefined(VirtReg))
+          BuildMI(MBB, &MI, MI.getDebugLoc(),
+                  TII->get(TargetInstrInfo::IMPLICIT_DEF), RReg);
+        continue;
+      }
+      
+      // This virtual register is now known to be a spilled value.
+      if (!MO.isUse())
+        continue;  // Handle defs in the loop below (handle use&def here though)
+
+      bool DoReMat = VRM.isReMaterialized(VirtReg);
+      int SSorRMId = DoReMat
+        ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
+      int ReuseSlot = SSorRMId;
+
+      // Check to see if this stack slot is available.
+      unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
+
+      // If this is a sub-register use, make sure the reuse register is in the
+      // right register class. For example, for x86 not all of the 32-bit
+      // registers have accessible sub-registers.
+      // Similarly so for EXTRACT_SUBREG. Consider this:
+      // EDI = op
+      // MOV32_mr fi#1, EDI
+      // ...
+      //       = EXTRACT_SUBREG fi#1
+      // fi#1 is available in EDI, but it cannot be reused because it's not in
+      // the right register file.
+      if (PhysReg &&
+          (SubIdx || MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)) {
+        const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
+        if (!RC->contains(PhysReg))
+          PhysReg = 0;
+      }
+
+      if (PhysReg) {
+        // This spilled operand might be part of a two-address operand.  If this
+        // is the case, then changing it will necessarily require changing the 
+        // def part of the instruction as well.  However, in some cases, we
+        // aren't allowed to modify the reused register.  If none of these cases
+        // apply, reuse it.
+        bool CanReuse = true;
+        int ti = TID.getOperandConstraint(i, TOI::TIED_TO);
+        if (ti != -1) {
+          // Okay, we have a two address operand.  We can reuse this physreg as
+          // long as we are allowed to clobber the value and there isn't an
+          // earlier def that has already clobbered the physreg.
+          CanReuse = Spills.canClobberPhysReg(ReuseSlot) &&
+            !ReusedOperands.isClobbered(PhysReg);
+        }
+        
+        if (CanReuse) {
+          // If this stack slot value is already available, reuse it!
+          if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
+            DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
+          else
+            DOUT << "Reusing SS#" << ReuseSlot;
+          DOUT << " from physreg "
+               << TRI->getName(PhysReg) << " for vreg"
+               << VirtReg <<" instead of reloading into physreg "
+               << TRI->getName(VRM.getPhys(VirtReg)) << "\n";
+          unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
+          MI.getOperand(i).setReg(RReg);
+
+          // The only technical detail we have is that we don't know that
+          // PhysReg won't be clobbered by a reloaded stack slot that occurs
+          // later in the instruction.  In particular, consider 'op V1, V2'.
+          // If V1 is available in physreg R0, we would choose to reuse it
+          // here, instead of reloading it into the register the allocator
+          // indicated (say R1).  However, V2 might have to be reloaded
+          // later, and it might indicate that it needs to live in R0.  When
+          // this occurs, we need to have information available that
+          // indicates it is safe to use R1 for the reload instead of R0.
+          //
+          // To further complicate matters, we might conflict with an alias,
+          // or R0 and R1 might not be compatible with each other.  In this
+          // case, we actually insert a reload for V1 in R1, ensuring that
+          // we can get at R0 or its alias.
+          ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
+                                  VRM.getPhys(VirtReg), VirtReg);
+          if (ti != -1)
+            // Only mark it clobbered if this is a use&def operand.
+            ReusedOperands.markClobbered(PhysReg);
+          ++NumReused;
+
+          if (MI.getOperand(i).isKill() &&
+              ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
+
+            // The store of this spilled value is potentially dead, but we
+            // won't know for certain until we've confirmed that the re-use
+            // above is valid, which means waiting until the other operands
+            // are processed. For now we just track the spill slot, we'll
+            // remove it after the other operands are processed if valid.
+
+            PotentialDeadStoreSlots.push_back(ReuseSlot);
+          }
+
+          // Mark is isKill if it's there no other uses of the same virtual
+          // register and it's not a two-address operand. IsKill will be
+          // unset if reg is reused.
+          if (ti == -1 && KilledMIRegs.count(VirtReg) == 0) {
+            MI.getOperand(i).setIsKill();
+            KilledMIRegs.insert(VirtReg);
+          }
+
+          continue;
+        }  // CanReuse
+        
+        // Otherwise we have a situation where we have a two-address instruction
+        // whose mod/ref operand needs to be reloaded.  This reload is already
+        // available in some register "PhysReg", but if we used PhysReg as the
+        // operand to our 2-addr instruction, the instruction would modify
+        // PhysReg.  This isn't cool if something later uses PhysReg and expects
+        // to get its initial value.
+        //
+        // To avoid this problem, and to avoid doing a load right after a store,
+        // we emit a copy from PhysReg into the designated register for this
+        // operand.
+        unsigned DesignatedReg = VRM.getPhys(VirtReg);
+        assert(DesignatedReg && "Must map virtreg to physreg!");
+
+        // Note that, if we reused a register for a previous operand, the
+        // register we want to reload into might not actually be
+        // available.  If this occurs, use the register indicated by the
+        // reuser.
+        if (ReusedOperands.hasReuses())
+          DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI, 
+                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
+        
+        // If the mapped designated register is actually the physreg we have
+        // incoming, we don't need to inserted a dead copy.
+        if (DesignatedReg == PhysReg) {
+          // If this stack slot value is already available, reuse it!
+          if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
+            DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
+          else
+            DOUT << "Reusing SS#" << ReuseSlot;
+          DOUT << " from physreg " << TRI->getName(PhysReg)
+               << " for vreg" << VirtReg
+               << " instead of reloading into same physreg.\n";
+          unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
+          MI.getOperand(i).setReg(RReg);
+          ReusedOperands.markClobbered(RReg);
+          ++NumReused;
+          continue;
+        }
+        
+        const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
+        RegInfo->setPhysRegUsed(DesignatedReg);
+        ReusedOperands.markClobbered(DesignatedReg);
+        TII->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC, RC);
+
+        MachineInstr *CopyMI = prior(MII);
+        UpdateKills(*CopyMI, RegKills, KillOps, TRI);
+
+        // This invalidates DesignatedReg.
+        Spills.ClobberPhysReg(DesignatedReg);
+        
+        Spills.addAvailable(ReuseSlot, DesignatedReg);
+        unsigned RReg =
+          SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
+        MI.getOperand(i).setReg(RReg);
+        DOUT << '\t' << *prior(MII);
+        ++NumReused;
+        continue;
+      } // if (PhysReg)
+      
+      // Otherwise, reload it and remember that we have it.
+      PhysReg = VRM.getPhys(VirtReg);
+      assert(PhysReg && "Must map virtreg to physreg!");
+
+      // Note that, if we reused a register for a previous operand, the
+      // register we want to reload into might not actually be
+      // available.  If this occurs, use the register indicated by the
+      // reuser.
+      if (ReusedOperands.hasReuses())
+        PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI, 
+                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
+      
+      RegInfo->setPhysRegUsed(PhysReg);
+      ReusedOperands.markClobbered(PhysReg);
+      if (DoReMat) {
+        ReMaterialize(MBB, MII, PhysReg, VirtReg, TII, TRI, VRM);
+      } else {
+        const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
+        TII->loadRegFromStackSlot(MBB, &MI, PhysReg, SSorRMId, RC);
+        MachineInstr *LoadMI = prior(MII);
+        VRM.addSpillSlotUse(SSorRMId, LoadMI);
+        ++NumLoads;
+      }
+      // This invalidates PhysReg.
+      Spills.ClobberPhysReg(PhysReg);
+
+      // Any stores to this stack slot are not dead anymore.
+      if (!DoReMat)
+        MaybeDeadStores[SSorRMId] = NULL;
+      Spills.addAvailable(SSorRMId, PhysReg);
+      // Assumes this is the last use. IsKill will be unset if reg is reused
+      // unless it's a two-address operand.
+      if (TID.getOperandConstraint(i, TOI::TIED_TO) == -1 &&
+          KilledMIRegs.count(VirtReg) == 0) {
+        MI.getOperand(i).setIsKill();
+        KilledMIRegs.insert(VirtReg);
+      }
+      unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
+      MI.getOperand(i).setReg(RReg);
+      UpdateKills(*prior(MII), RegKills, KillOps, TRI);
+      DOUT << '\t' << *prior(MII);
+    }
+
+    // Ok - now we can remove stores that have been confirmed dead.
+    for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) {
+      // This was the last use and the spilled value is still available
+      // for reuse. That means the spill was unnecessary!
+      int PDSSlot = PotentialDeadStoreSlots[j];
+      MachineInstr* DeadStore = MaybeDeadStores[PDSSlot];
+      if (DeadStore) {
+        DOUT << "Removed dead store:\t" << *DeadStore;
+        InvalidateKills(*DeadStore, RegKills, KillOps);
+        VRM.RemoveMachineInstrFromMaps(DeadStore);
+        MBB.erase(DeadStore);
+        MaybeDeadStores[PDSSlot] = NULL;
+        ++NumDSE;
+      }
+    }
+
+
+    DOUT << '\t' << MI;
+
+
+    // If we have folded references to memory operands, make sure we clear all
+    // physical registers that may contain the value of the spilled virtual
+    // register
+    SmallSet<int, 2> FoldedSS;
+    for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
+      unsigned VirtReg = I->second.first;
+      VirtRegMap::ModRef MR = I->second.second;
+      DOUT << "Folded vreg: " << VirtReg << "  MR: " << MR;
+
+      // MI2VirtMap be can updated which invalidate the iterator.
+      // Increment the iterator first.
+      ++I;
+      int SS = VRM.getStackSlot(VirtReg);
+      if (SS == VirtRegMap::NO_STACK_SLOT)
+        continue;
+      FoldedSS.insert(SS);
+      DOUT << " - StackSlot: " << SS << "\n";
+      
+      // If this folded instruction is just a use, check to see if it's a
+      // straight load from the virt reg slot.
+      if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
+        int FrameIdx;
+        unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
+        if (DestReg && FrameIdx == SS) {
+          // If this spill slot is available, turn it into a copy (or nothing)
+          // instead of leaving it as a load!
+          if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
+            DOUT << "Promoted Load To Copy: " << MI;
+            if (DestReg != InReg) {
+              const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
+              TII->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC);
+              MachineOperand *DefMO = MI.findRegisterDefOperand(DestReg);
+              unsigned SubIdx = DefMO->getSubReg();
+              // Revisit the copy so we make sure to notice the effects of the
+              // operation on the destreg (either needing to RA it if it's 
+              // virtual or needing to clobber any values if it's physical).
+              NextMII = &MI;
+              --NextMII;  // backtrack to the copy.
+              // Propagate the sub-register index over.
+              if (SubIdx) {
+                DefMO = NextMII->findRegisterDefOperand(DestReg);
+                DefMO->setSubReg(SubIdx);
+              }
+
+              // Mark is killed.
+              MachineOperand *KillOpnd = NextMII->findRegisterUseOperand(InReg);
+              KillOpnd->setIsKill();
+
+              BackTracked = true;
+            } else {
+              DOUT << "Removing now-noop copy: " << MI;
+              // Unset last kill since it's being reused.
+              InvalidateKill(InReg, RegKills, KillOps);
+            }
+
+            InvalidateKills(MI, RegKills, KillOps);
+            VRM.RemoveMachineInstrFromMaps(&MI);
+            MBB.erase(&MI);
+            Erased = true;
+            goto ProcessNextInst;
+          }
+        } else {
+          unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
+          SmallVector<MachineInstr*, 4> NewMIs;
+          if (PhysReg &&
+              TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) {
+            MBB.insert(MII, NewMIs[0]);
+            InvalidateKills(MI, RegKills, KillOps);
+            VRM.RemoveMachineInstrFromMaps(&MI);
+            MBB.erase(&MI);
+            Erased = true;
+            --NextMII;  // backtrack to the unfolded instruction.
+            BackTracked = true;
+            goto ProcessNextInst;
+          }
+        }
+      }
+
+      // If this reference is not a use, any previous store is now dead.
+      // Otherwise, the store to this stack slot is not dead anymore.
+      MachineInstr* DeadStore = MaybeDeadStores[SS];
+      if (DeadStore) {
+        bool isDead = !(MR & VirtRegMap::isRef);
+        MachineInstr *NewStore = NULL;
+        if (MR & VirtRegMap::isModRef) {
+          unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
+          SmallVector<MachineInstr*, 4> NewMIs;
+          // We can reuse this physreg as long as we are allowed to clobber
+          // the value and there isn't an earlier def that has already clobbered
+          // the physreg.
+          if (PhysReg &&
+              !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable!
+            MachineOperand *KillOpnd =
+              DeadStore->findRegisterUseOperand(PhysReg, true);
+            // Note, if the store is storing a sub-register, it's possible the
+            // super-register is needed below.
+            if (KillOpnd && !KillOpnd->getSubReg() &&
+                TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){
+             MBB.insert(MII, NewMIs[0]);
+              NewStore = NewMIs[1];
+              MBB.insert(MII, NewStore);
+              VRM.addSpillSlotUse(SS, NewStore);
+              InvalidateKills(MI, RegKills, KillOps);
+              VRM.RemoveMachineInstrFromMaps(&MI);
+              MBB.erase(&MI);
+              Erased = true;
+              --NextMII;
+              --NextMII;  // backtrack to the unfolded instruction.
+              BackTracked = true;
+              isDead = true;
+            }
+          }
+        }
+
+        if (isDead) {  // Previous store is dead.
+          // If we get here, the store is dead, nuke it now.
+          DOUT << "Removed dead store:\t" << *DeadStore;
+          InvalidateKills(*DeadStore, RegKills, KillOps);
+          VRM.RemoveMachineInstrFromMaps(DeadStore);
+          MBB.erase(DeadStore);
+          if (!NewStore)
+            ++NumDSE;
+        }
+
+        MaybeDeadStores[SS] = NULL;
+        if (NewStore) {
+          // Treat this store as a spill merged into a copy. That makes the
+          // stack slot value available.
+          VRM.virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
+          goto ProcessNextInst;
+        }
+      }
+
+      // If the spill slot value is available, and this is a new definition of
+      // the value, the value is not available anymore.
+      if (MR & VirtRegMap::isMod) {
+        // Notice that the value in this stack slot has been modified.
+        Spills.ModifyStackSlotOrReMat(SS);
+        
+        // If this is *just* a mod of the value, check to see if this is just a
+        // store to the spill slot (i.e. the spill got merged into the copy). If
+        // so, realize that the vreg is available now, and add the store to the
+        // MaybeDeadStore info.
+        int StackSlot;
+        if (!(MR & VirtRegMap::isRef)) {
+          if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
+            assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
+                   "Src hasn't been allocated yet?");
+
+            if (CommuteToFoldReload(MBB, MII, VirtReg, SrcReg, StackSlot,
+                                    Spills, RegKills, KillOps, TRI, VRM)) {
+              NextMII = next(MII);
+              BackTracked = true;
+              goto ProcessNextInst;
+            }
+
+            // Okay, this is certainly a store of SrcReg to [StackSlot].  Mark
+            // this as a potentially dead store in case there is a subsequent
+            // store into the stack slot without a read from it.
+            MaybeDeadStores[StackSlot] = &MI;
+
+            // If the stack slot value was previously available in some other
+            // register, change it now.  Otherwise, make the register
+            // available in PhysReg.
+            Spills.addAvailable(StackSlot, SrcReg, false/*!clobber*/);
+          }
+        }
+      }
+    }
+
+    // Process all of the spilled defs.
+    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+      MachineOperand &MO = MI.getOperand(i);
+      if (!(MO.isReg() && MO.getReg() && MO.isDef()))
+        continue;
+
+      unsigned VirtReg = MO.getReg();
+      if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) {
+        // Check to see if this is a noop copy.  If so, eliminate the
+        // instruction before considering the dest reg to be changed.
+        unsigned Src, Dst, SrcSR, DstSR;
+        if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst) {
+          ++NumDCE;
+          DOUT << "Removing now-noop copy: " << MI;
+          SmallVector<unsigned, 2> KillRegs;
+          InvalidateKills(MI, RegKills, KillOps, &KillRegs);
+          if (MO.isDead() && !KillRegs.empty()) {
+            // Source register or an implicit super/sub-register use is killed.
+            assert(KillRegs[0] == Dst ||
+                   TRI->isSubRegister(KillRegs[0], Dst) ||
+                   TRI->isSuperRegister(KillRegs[0], Dst));
+            // Last def is now dead.
+            TransferDeadness(&MBB, Dist, Src, RegKills, KillOps);
+          }
+          VRM.RemoveMachineInstrFromMaps(&MI);
+          MBB.erase(&MI);
+          Erased = true;
+          Spills.disallowClobberPhysReg(VirtReg);
+          goto ProcessNextInst;
+        }
+          
+        // If it's not a no-op copy, it clobbers the value in the destreg.
+        Spills.ClobberPhysReg(VirtReg);
+        ReusedOperands.markClobbered(VirtReg);
+ 
+        // Check to see if this instruction is a load from a stack slot into
+        // a register.  If so, this provides the stack slot value in the reg.
+        int FrameIdx;
+        if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
+          assert(DestReg == VirtReg && "Unknown load situation!");
+
+          // If it is a folded reference, then it's not safe to clobber.
+          bool Folded = FoldedSS.count(FrameIdx);
+          // Otherwise, if it wasn't available, remember that it is now!
+          Spills.addAvailable(FrameIdx, DestReg, !Folded);
+          goto ProcessNextInst;
+        }
+            
+        continue;
+      }
+
+      unsigned SubIdx = MO.getSubReg();
+      bool DoReMat = VRM.isReMaterialized(VirtReg);
+      if (DoReMat)
+        ReMatDefs.insert(&MI);
+
+      // The only vregs left are stack slot definitions.
+      int StackSlot = VRM.getStackSlot(VirtReg);
+      const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
+
+      // If this def is part of a two-address operand, make sure to execute
+      // the store from the correct physical register.
+      unsigned PhysReg;
+      int TiedOp = MI.getDesc().findTiedToSrcOperand(i);
+      if (TiedOp != -1) {
+        PhysReg = MI.getOperand(TiedOp).getReg();
+        if (SubIdx) {
+          unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI);
+          assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
+                 "Can't find corresponding super-register!");
+          PhysReg = SuperReg;
+        }
+      } else {
+        PhysReg = VRM.getPhys(VirtReg);
+        if (ReusedOperands.isClobbered(PhysReg)) {
+          // Another def has taken the assigned physreg. It must have been a
+          // use&def which got it due to reuse. Undo the reuse!
+          PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI, 
+                               Spills, MaybeDeadStores, RegKills, KillOps, VRM);
+        }
+      }
+
+      assert(PhysReg && "VR not assigned a physical register?");
+      RegInfo->setPhysRegUsed(PhysReg);
+      unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
+      ReusedOperands.markClobbered(RReg);
+      MI.getOperand(i).setReg(RReg);
+
+      if (!MO.isDead()) {
+        MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
+        SpillRegToStackSlot(MBB, MII, -1, PhysReg, StackSlot, RC, true,
+                          LastStore, Spills, ReMatDefs, RegKills, KillOps, VRM);
+        NextMII = next(MII);
+
+        // Check to see if this is a noop copy.  If so, eliminate the
+        // instruction before considering the dest reg to be changed.
+        {
+          unsigned Src, Dst, SrcSR, DstSR;
+          if (TII->isMoveInstr(MI, Src, Dst, SrcSR, DstSR) && Src == Dst) {
+            ++NumDCE;
+            DOUT << "Removing now-noop copy: " << MI;
+            InvalidateKills(MI, RegKills, KillOps);
+            VRM.RemoveMachineInstrFromMaps(&MI);
+            MBB.erase(&MI);
+            Erased = true;
+            UpdateKills(*LastStore, RegKills, KillOps, TRI);
+            goto ProcessNextInst;
+          }
+        }
+      }    
+    }
+  ProcessNextInst:
+    DistanceMap.insert(std::make_pair(&MI, Dist++));
+    if (!Erased && !BackTracked) {
+      for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II)
+        UpdateKills(*II, RegKills, KillOps, TRI);
+    }
+    MII = NextMII;
+  }
+
+}
+
+llvm::Spiller* llvm::createSpiller() {
+  switch (SpillerOpt) {
+  default: assert(0 && "Unreachable!");
+  case local:
+    return new LocalSpiller();
+  case simple:
+    return new SimpleSpiller();
+  }
+}
\ No newline at end of file