Rename SelectionDAGLowering to SelectionDAGBuilder, and rename
SelectionDAGBuild.cpp to SelectionDAGBuilder.cpp.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@89681 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp b/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
new file mode 100644
index 0000000..57d8903
--- /dev/null
+++ b/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
@@ -0,0 +1,5821 @@
+//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This implements routines for translating from LLVM IR into SelectionDAG IR.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "isel"
+#include "SelectionDAGBuilder.h"
+#include "FunctionLoweringInfo.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Constants.h"
+#include "llvm/CallingConv.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Function.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/InlineAsm.h"
+#include "llvm/Instructions.h"
+#include "llvm/Intrinsics.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/LLVMContext.h"
+#include "llvm/Module.h"
+#include "llvm/CodeGen/FastISel.h"
+#include "llvm/CodeGen/GCStrategy.h"
+#include "llvm/CodeGen/GCMetadata.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/CodeGen/DwarfWriter.h"
+#include "llvm/Analysis/DebugInfo.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Target/TargetFrameInfo.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetIntrinsicInfo.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+using namespace llvm;
+
+/// LimitFloatPrecision - Generate low-precision inline sequences for
+/// some float libcalls (6, 8 or 12 bits).
+static unsigned LimitFloatPrecision;
+
+static cl::opt<unsigned, true>
+LimitFPPrecision("limit-float-precision",
+                 cl::desc("Generate low-precision inline sequences "
+                          "for some float libcalls"),
+                 cl::location(LimitFloatPrecision),
+                 cl::init(0));
+
+namespace {
+  /// RegsForValue - This struct represents the registers (physical or virtual)
+  /// that a particular set of values is assigned, and the type information about
+  /// the value. The most common situation is to represent one value at a time,
+  /// but struct or array values are handled element-wise as multiple values.
+  /// The splitting of aggregates is performed recursively, so that we never
+  /// have aggregate-typed registers. The values at this point do not necessarily
+  /// have legal types, so each value may require one or more registers of some
+  /// legal type.
+  ///
+  struct RegsForValue {
+    /// TLI - The TargetLowering object.
+    ///
+    const TargetLowering *TLI;
+
+    /// ValueVTs - The value types of the values, which may not be legal, and
+    /// may need be promoted or synthesized from one or more registers.
+    ///
+    SmallVector<EVT, 4> ValueVTs;
+
+    /// RegVTs - The value types of the registers. This is the same size as
+    /// ValueVTs and it records, for each value, what the type of the assigned
+    /// register or registers are. (Individual values are never synthesized
+    /// from more than one type of register.)
+    ///
+    /// With virtual registers, the contents of RegVTs is redundant with TLI's
+    /// getRegisterType member function, however when with physical registers
+    /// it is necessary to have a separate record of the types.
+    ///
+    SmallVector<EVT, 4> RegVTs;
+
+    /// Regs - This list holds the registers assigned to the values.
+    /// Each legal or promoted value requires one register, and each
+    /// expanded value requires multiple registers.
+    ///
+    SmallVector<unsigned, 4> Regs;
+
+    RegsForValue() : TLI(0) {}
+
+    RegsForValue(const TargetLowering &tli,
+                 const SmallVector<unsigned, 4> &regs,
+                 EVT regvt, EVT valuevt)
+      : TLI(&tli),  ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
+    RegsForValue(const TargetLowering &tli,
+                 const SmallVector<unsigned, 4> &regs,
+                 const SmallVector<EVT, 4> &regvts,
+                 const SmallVector<EVT, 4> &valuevts)
+      : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
+    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
+                 unsigned Reg, const Type *Ty) : TLI(&tli) {
+      ComputeValueVTs(tli, Ty, ValueVTs);
+
+      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
+        EVT ValueVT = ValueVTs[Value];
+        unsigned NumRegs = TLI->getNumRegisters(Context, ValueVT);
+        EVT RegisterVT = TLI->getRegisterType(Context, ValueVT);
+        for (unsigned i = 0; i != NumRegs; ++i)
+          Regs.push_back(Reg + i);
+        RegVTs.push_back(RegisterVT);
+        Reg += NumRegs;
+      }
+    }
+
+    /// append - Add the specified values to this one.
+    void append(const RegsForValue &RHS) {
+      TLI = RHS.TLI;
+      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
+      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
+      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
+    }
+
+
+    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
+    /// this value and returns the result as a ValueVTs value.  This uses
+    /// Chain/Flag as the input and updates them for the output Chain/Flag.
+    /// If the Flag pointer is NULL, no flag is used.
+    SDValue getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl,
+                              SDValue &Chain, SDValue *Flag) const;
+
+    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
+    /// specified value into the registers specified by this object.  This uses
+    /// Chain/Flag as the input and updates them for the output Chain/Flag.
+    /// If the Flag pointer is NULL, no flag is used.
+    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
+                       SDValue &Chain, SDValue *Flag) const;
+
+    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
+    /// operand list.  This adds the code marker, matching input operand index
+    /// (if applicable), and includes the number of values added into it.
+    void AddInlineAsmOperands(unsigned Code,
+                              bool HasMatching, unsigned MatchingIdx,
+                              SelectionDAG &DAG, std::vector<SDValue> &Ops) const;
+  };
+}
+
+/// getCopyFromParts - Create a value that contains the specified legal parts
+/// combined into the value they represent.  If the parts combine to a type
+/// larger then ValueVT then AssertOp can be used to specify whether the extra
+/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
+/// (ISD::AssertSext).
+static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl,
+                                const SDValue *Parts,
+                                unsigned NumParts, EVT PartVT, EVT ValueVT,
+                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
+  assert(NumParts > 0 && "No parts to assemble!");
+  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+  SDValue Val = Parts[0];
+
+  if (NumParts > 1) {
+    // Assemble the value from multiple parts.
+    if (!ValueVT.isVector() && ValueVT.isInteger()) {
+      unsigned PartBits = PartVT.getSizeInBits();
+      unsigned ValueBits = ValueVT.getSizeInBits();
+
+      // Assemble the power of 2 part.
+      unsigned RoundParts = NumParts & (NumParts - 1) ?
+        1 << Log2_32(NumParts) : NumParts;
+      unsigned RoundBits = PartBits * RoundParts;
+      EVT RoundVT = RoundBits == ValueBits ?
+        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
+      SDValue Lo, Hi;
+
+      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
+
+      if (RoundParts > 2) {
+        Lo = getCopyFromParts(DAG, dl, Parts, RoundParts/2, PartVT, HalfVT);
+        Hi = getCopyFromParts(DAG, dl, Parts+RoundParts/2, RoundParts/2,
+                              PartVT, HalfVT);
+      } else {
+        Lo = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[0]);
+        Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[1]);
+      }
+      if (TLI.isBigEndian())
+        std::swap(Lo, Hi);
+      Val = DAG.getNode(ISD::BUILD_PAIR, dl, RoundVT, Lo, Hi);
+
+      if (RoundParts < NumParts) {
+        // Assemble the trailing non-power-of-2 part.
+        unsigned OddParts = NumParts - RoundParts;
+        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
+        Hi = getCopyFromParts(DAG, dl,
+                              Parts+RoundParts, OddParts, PartVT, OddVT);
+
+        // Combine the round and odd parts.
+        Lo = Val;
+        if (TLI.isBigEndian())
+          std::swap(Lo, Hi);
+        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
+        Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi);
+        Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi,
+                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
+                                         TLI.getPointerTy()));
+        Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, TotalVT, Lo);
+        Val = DAG.getNode(ISD::OR, dl, TotalVT, Lo, Hi);
+      }
+    } else if (ValueVT.isVector()) {
+      // Handle a multi-element vector.
+      EVT IntermediateVT, RegisterVT;
+      unsigned NumIntermediates;
+      unsigned NumRegs =
+        TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 
+                                   NumIntermediates, RegisterVT);
+      assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
+      NumParts = NumRegs; // Silence a compiler warning.
+      assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
+      assert(RegisterVT == Parts[0].getValueType() &&
+             "Part type doesn't match part!");
+
+      // Assemble the parts into intermediate operands.
+      SmallVector<SDValue, 8> Ops(NumIntermediates);
+      if (NumIntermediates == NumParts) {
+        // If the register was not expanded, truncate or copy the value,
+        // as appropriate.
+        for (unsigned i = 0; i != NumParts; ++i)
+          Ops[i] = getCopyFromParts(DAG, dl, &Parts[i], 1,
+                                    PartVT, IntermediateVT);
+      } else if (NumParts > 0) {
+        // If the intermediate type was expanded, build the intermediate operands
+        // from the parts.
+        assert(NumParts % NumIntermediates == 0 &&
+               "Must expand into a divisible number of parts!");
+        unsigned Factor = NumParts / NumIntermediates;
+        for (unsigned i = 0; i != NumIntermediates; ++i)
+          Ops[i] = getCopyFromParts(DAG, dl, &Parts[i * Factor], Factor,
+                                    PartVT, IntermediateVT);
+      }
+
+      // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
+      // operands.
+      Val = DAG.getNode(IntermediateVT.isVector() ?
+                        ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, dl,
+                        ValueVT, &Ops[0], NumIntermediates);
+    } else if (PartVT.isFloatingPoint()) {
+      // FP split into multiple FP parts (for ppcf128)
+      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
+             "Unexpected split");
+      SDValue Lo, Hi;
+      Lo = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[0]);
+      Hi = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[1]);
+      if (TLI.isBigEndian())
+        std::swap(Lo, Hi);
+      Val = DAG.getNode(ISD::BUILD_PAIR, dl, ValueVT, Lo, Hi);
+    } else {
+      // FP split into integer parts (soft fp)
+      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
+             !PartVT.isVector() && "Unexpected split");
+      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
+      Val = getCopyFromParts(DAG, dl, Parts, NumParts, PartVT, IntVT);
+    }
+  }
+
+  // There is now one part, held in Val.  Correct it to match ValueVT.
+  PartVT = Val.getValueType();
+
+  if (PartVT == ValueVT)
+    return Val;
+
+  if (PartVT.isVector()) {
+    assert(ValueVT.isVector() && "Unknown vector conversion!");
+    return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
+  }
+
+  if (ValueVT.isVector()) {
+    assert(ValueVT.getVectorElementType() == PartVT &&
+           ValueVT.getVectorNumElements() == 1 &&
+           "Only trivial scalar-to-vector conversions should get here!");
+    return DAG.getNode(ISD::BUILD_VECTOR, dl, ValueVT, Val);
+  }
+
+  if (PartVT.isInteger() &&
+      ValueVT.isInteger()) {
+    if (ValueVT.bitsLT(PartVT)) {
+      // For a truncate, see if we have any information to
+      // indicate whether the truncated bits will always be
+      // zero or sign-extension.
+      if (AssertOp != ISD::DELETED_NODE)
+        Val = DAG.getNode(AssertOp, dl, PartVT, Val,
+                          DAG.getValueType(ValueVT));
+      return DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
+    } else {
+      return DAG.getNode(ISD::ANY_EXTEND, dl, ValueVT, Val);
+    }
+  }
+
+  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
+    if (ValueVT.bitsLT(Val.getValueType()))
+      // FP_ROUND's are always exact here.
+      return DAG.getNode(ISD::FP_ROUND, dl, ValueVT, Val,
+                         DAG.getIntPtrConstant(1));
+    return DAG.getNode(ISD::FP_EXTEND, dl, ValueVT, Val);
+  }
+
+  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
+    return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
+
+  llvm_unreachable("Unknown mismatch!");
+  return SDValue();
+}
+
+/// getCopyToParts - Create a series of nodes that contain the specified value
+/// split into legal parts.  If the parts contain more bits than Val, then, for
+/// integers, ExtendKind can be used to specify how to generate the extra bits.
+static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl, SDValue Val,
+                           SDValue *Parts, unsigned NumParts, EVT PartVT,
+                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
+  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+  EVT PtrVT = TLI.getPointerTy();
+  EVT ValueVT = Val.getValueType();
+  unsigned PartBits = PartVT.getSizeInBits();
+  unsigned OrigNumParts = NumParts;
+  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
+
+  if (!NumParts)
+    return;
+
+  if (!ValueVT.isVector()) {
+    if (PartVT == ValueVT) {
+      assert(NumParts == 1 && "No-op copy with multiple parts!");
+      Parts[0] = Val;
+      return;
+    }
+
+    if (NumParts * PartBits > ValueVT.getSizeInBits()) {
+      // If the parts cover more bits than the value has, promote the value.
+      if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
+        assert(NumParts == 1 && "Do not know what to promote to!");
+        Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val);
+      } else if (PartVT.isInteger() && ValueVT.isInteger()) {
+        ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
+        Val = DAG.getNode(ExtendKind, dl, ValueVT, Val);
+      } else {
+        llvm_unreachable("Unknown mismatch!");
+      }
+    } else if (PartBits == ValueVT.getSizeInBits()) {
+      // Different types of the same size.
+      assert(NumParts == 1 && PartVT != ValueVT);
+      Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
+    } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
+      // If the parts cover less bits than value has, truncate the value.
+      if (PartVT.isInteger() && ValueVT.isInteger()) {
+        ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
+        Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
+      } else {
+        llvm_unreachable("Unknown mismatch!");
+      }
+    }
+
+    // The value may have changed - recompute ValueVT.
+    ValueVT = Val.getValueType();
+    assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
+           "Failed to tile the value with PartVT!");
+
+    if (NumParts == 1) {
+      assert(PartVT == ValueVT && "Type conversion failed!");
+      Parts[0] = Val;
+      return;
+    }
+
+    // Expand the value into multiple parts.
+    if (NumParts & (NumParts - 1)) {
+      // The number of parts is not a power of 2.  Split off and copy the tail.
+      assert(PartVT.isInteger() && ValueVT.isInteger() &&
+             "Do not know what to expand to!");
+      unsigned RoundParts = 1 << Log2_32(NumParts);
+      unsigned RoundBits = RoundParts * PartBits;
+      unsigned OddParts = NumParts - RoundParts;
+      SDValue OddVal = DAG.getNode(ISD::SRL, dl, ValueVT, Val,
+                                   DAG.getConstant(RoundBits,
+                                                   TLI.getPointerTy()));
+      getCopyToParts(DAG, dl, OddVal, Parts + RoundParts, OddParts, PartVT);
+      if (TLI.isBigEndian())
+        // The odd parts were reversed by getCopyToParts - unreverse them.
+        std::reverse(Parts + RoundParts, Parts + NumParts);
+      NumParts = RoundParts;
+      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
+      Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
+    }
+
+    // The number of parts is a power of 2.  Repeatedly bisect the value using
+    // EXTRACT_ELEMENT.
+    Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl,
+                           EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()),
+                           Val);
+    for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
+      for (unsigned i = 0; i < NumParts; i += StepSize) {
+        unsigned ThisBits = StepSize * PartBits / 2;
+        EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
+        SDValue &Part0 = Parts[i];
+        SDValue &Part1 = Parts[i+StepSize/2];
+
+        Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
+                            ThisVT, Part0,
+                            DAG.getConstant(1, PtrVT));
+        Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
+                            ThisVT, Part0,
+                            DAG.getConstant(0, PtrVT));
+
+        if (ThisBits == PartBits && ThisVT != PartVT) {
+          Part0 = DAG.getNode(ISD::BIT_CONVERT, dl,
+                                                PartVT, Part0);
+          Part1 = DAG.getNode(ISD::BIT_CONVERT, dl,
+                                                PartVT, Part1);
+        }
+      }
+    }
+
+    if (TLI.isBigEndian())
+      std::reverse(Parts, Parts + OrigNumParts);
+
+    return;
+  }
+
+  // Vector ValueVT.
+  if (NumParts == 1) {
+    if (PartVT != ValueVT) {
+      if (PartVT.isVector()) {
+        Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
+      } else {
+        assert(ValueVT.getVectorElementType() == PartVT &&
+               ValueVT.getVectorNumElements() == 1 &&
+               "Only trivial vector-to-scalar conversions should get here!");
+        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
+                          PartVT, Val,
+                          DAG.getConstant(0, PtrVT));
+      }
+    }
+
+    Parts[0] = Val;
+    return;
+  }
+
+  // Handle a multi-element vector.
+  EVT IntermediateVT, RegisterVT;
+  unsigned NumIntermediates;
+  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
+                              IntermediateVT, NumIntermediates, RegisterVT);
+  unsigned NumElements = ValueVT.getVectorNumElements();
+
+  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
+  NumParts = NumRegs; // Silence a compiler warning.
+  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
+
+  // Split the vector into intermediate operands.
+  SmallVector<SDValue, 8> Ops(NumIntermediates);
+  for (unsigned i = 0; i != NumIntermediates; ++i)
+    if (IntermediateVT.isVector())
+      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl,
+                           IntermediateVT, Val,
+                           DAG.getConstant(i * (NumElements / NumIntermediates),
+                                           PtrVT));
+    else
+      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
+                           IntermediateVT, Val,
+                           DAG.getConstant(i, PtrVT));
+
+  // Split the intermediate operands into legal parts.
+  if (NumParts == NumIntermediates) {
+    // If the register was not expanded, promote or copy the value,
+    // as appropriate.
+    for (unsigned i = 0; i != NumParts; ++i)
+      getCopyToParts(DAG, dl, Ops[i], &Parts[i], 1, PartVT);
+  } else if (NumParts > 0) {
+    // If the intermediate type was expanded, split each the value into
+    // legal parts.
+    assert(NumParts % NumIntermediates == 0 &&
+           "Must expand into a divisible number of parts!");
+    unsigned Factor = NumParts / NumIntermediates;
+    for (unsigned i = 0; i != NumIntermediates; ++i)
+      getCopyToParts(DAG, dl, Ops[i], &Parts[i * Factor], Factor, PartVT);
+  }
+}
+
+
+void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
+  AA = &aa;
+  GFI = gfi;
+  TD = DAG.getTarget().getTargetData();
+}
+
+/// clear - Clear out the curret SelectionDAG and the associated
+/// state and prepare this SelectionDAGBuilder object to be used
+/// for a new block. This doesn't clear out information about
+/// additional blocks that are needed to complete switch lowering
+/// or PHI node updating; that information is cleared out as it is
+/// consumed.
+void SelectionDAGBuilder::clear() {
+  NodeMap.clear();
+  PendingLoads.clear();
+  PendingExports.clear();
+  EdgeMapping.clear();
+  DAG.clear();
+  CurDebugLoc = DebugLoc::getUnknownLoc();
+  HasTailCall = false;
+}
+
+/// getRoot - Return the current virtual root of the Selection DAG,
+/// flushing any PendingLoad items. This must be done before emitting
+/// a store or any other node that may need to be ordered after any
+/// prior load instructions.
+///
+SDValue SelectionDAGBuilder::getRoot() {
+  if (PendingLoads.empty())
+    return DAG.getRoot();
+
+  if (PendingLoads.size() == 1) {
+    SDValue Root = PendingLoads[0];
+    DAG.setRoot(Root);
+    PendingLoads.clear();
+    return Root;
+  }
+
+  // Otherwise, we have to make a token factor node.
+  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
+                               &PendingLoads[0], PendingLoads.size());
+  PendingLoads.clear();
+  DAG.setRoot(Root);
+  return Root;
+}
+
+/// getControlRoot - Similar to getRoot, but instead of flushing all the
+/// PendingLoad items, flush all the PendingExports items. It is necessary
+/// to do this before emitting a terminator instruction.
+///
+SDValue SelectionDAGBuilder::getControlRoot() {
+  SDValue Root = DAG.getRoot();
+
+  if (PendingExports.empty())
+    return Root;
+
+  // Turn all of the CopyToReg chains into one factored node.
+  if (Root.getOpcode() != ISD::EntryToken) {
+    unsigned i = 0, e = PendingExports.size();
+    for (; i != e; ++i) {
+      assert(PendingExports[i].getNode()->getNumOperands() > 1);
+      if (PendingExports[i].getNode()->getOperand(0) == Root)
+        break;  // Don't add the root if we already indirectly depend on it.
+    }
+
+    if (i == e)
+      PendingExports.push_back(Root);
+  }
+
+  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
+                     &PendingExports[0],
+                     PendingExports.size());
+  PendingExports.clear();
+  DAG.setRoot(Root);
+  return Root;
+}
+
+void SelectionDAGBuilder::visit(Instruction &I) {
+  visit(I.getOpcode(), I);
+}
+
+void SelectionDAGBuilder::visit(unsigned Opcode, User &I) {
+  // Note: this doesn't use InstVisitor, because it has to work with
+  // ConstantExpr's in addition to instructions.
+  switch (Opcode) {
+  default: llvm_unreachable("Unknown instruction type encountered!");
+    // Build the switch statement using the Instruction.def file.
+#define HANDLE_INST(NUM, OPCODE, CLASS) \
+  case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
+#include "llvm/Instruction.def"
+  }
+}
+
+SDValue SelectionDAGBuilder::getValue(const Value *V) {
+  SDValue &N = NodeMap[V];
+  if (N.getNode()) return N;
+
+  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
+    EVT VT = TLI.getValueType(V->getType(), true);
+
+    if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
+      return N = DAG.getConstant(*CI, VT);
+
+    if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
+      return N = DAG.getGlobalAddress(GV, VT);
+
+    if (isa<ConstantPointerNull>(C))
+      return N = DAG.getConstant(0, TLI.getPointerTy());
+
+    if (ConstantFP *CFP = dyn_cast<ConstantFP>(C))
+      return N = DAG.getConstantFP(*CFP, VT);
+
+    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
+      return N = DAG.getUNDEF(VT);
+
+    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
+      visit(CE->getOpcode(), *CE);
+      SDValue N1 = NodeMap[V];
+      assert(N1.getNode() && "visit didn't populate the ValueMap!");
+      return N1;
+    }
+
+    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
+      SmallVector<SDValue, 4> Constants;
+      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
+           OI != OE; ++OI) {
+        SDNode *Val = getValue(*OI).getNode();
+        // If the operand is an empty aggregate, there are no values.
+        if (!Val) continue;
+        // Add each leaf value from the operand to the Constants list
+        // to form a flattened list of all the values.
+        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
+          Constants.push_back(SDValue(Val, i));
+      }
+      return DAG.getMergeValues(&Constants[0], Constants.size(),
+                                getCurDebugLoc());
+    }
+
+    if (isa<StructType>(C->getType()) || isa<ArrayType>(C->getType())) {
+      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
+             "Unknown struct or array constant!");
+
+      SmallVector<EVT, 4> ValueVTs;
+      ComputeValueVTs(TLI, C->getType(), ValueVTs);
+      unsigned NumElts = ValueVTs.size();
+      if (NumElts == 0)
+        return SDValue(); // empty struct
+      SmallVector<SDValue, 4> Constants(NumElts);
+      for (unsigned i = 0; i != NumElts; ++i) {
+        EVT EltVT = ValueVTs[i];
+        if (isa<UndefValue>(C))
+          Constants[i] = DAG.getUNDEF(EltVT);
+        else if (EltVT.isFloatingPoint())
+          Constants[i] = DAG.getConstantFP(0, EltVT);
+        else
+          Constants[i] = DAG.getConstant(0, EltVT);
+      }
+      return DAG.getMergeValues(&Constants[0], NumElts, getCurDebugLoc());
+    }
+
+    if (BlockAddress *BA = dyn_cast<BlockAddress>(C))
+      return DAG.getBlockAddress(BA, VT);
+
+    const VectorType *VecTy = cast<VectorType>(V->getType());
+    unsigned NumElements = VecTy->getNumElements();
+
+    // Now that we know the number and type of the elements, get that number of
+    // elements into the Ops array based on what kind of constant it is.
+    SmallVector<SDValue, 16> Ops;
+    if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
+      for (unsigned i = 0; i != NumElements; ++i)
+        Ops.push_back(getValue(CP->getOperand(i)));
+    } else {
+      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
+      EVT EltVT = TLI.getValueType(VecTy->getElementType());
+
+      SDValue Op;
+      if (EltVT.isFloatingPoint())
+        Op = DAG.getConstantFP(0, EltVT);
+      else
+        Op = DAG.getConstant(0, EltVT);
+      Ops.assign(NumElements, Op);
+    }
+
+    // Create a BUILD_VECTOR node.
+    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
+                                    VT, &Ops[0], Ops.size());
+  }
+
+  // If this is a static alloca, generate it as the frameindex instead of
+  // computation.
+  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
+    DenseMap<const AllocaInst*, int>::iterator SI =
+      FuncInfo.StaticAllocaMap.find(AI);
+    if (SI != FuncInfo.StaticAllocaMap.end())
+      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
+  }
+
+  unsigned InReg = FuncInfo.ValueMap[V];
+  assert(InReg && "Value not in map!");
+
+  RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
+  SDValue Chain = DAG.getEntryNode();
+  return RFV.getCopyFromRegs(DAG, getCurDebugLoc(), Chain, NULL);
+}
+
+/// Get the EVTs and ArgFlags collections that represent the return type
+/// of the given function.  This does not require a DAG or a return value, and
+/// is suitable for use before any DAGs for the function are constructed.
+static void getReturnInfo(const Type* ReturnType,
+                   Attributes attr, SmallVectorImpl<EVT> &OutVTs,
+                   SmallVectorImpl<ISD::ArgFlagsTy> &OutFlags,
+                   TargetLowering &TLI,
+                   SmallVectorImpl<uint64_t> *Offsets = 0) {
+  SmallVector<EVT, 4> ValueVTs;
+  ComputeValueVTs(TLI, ReturnType, ValueVTs, Offsets);
+  unsigned NumValues = ValueVTs.size();
+  if ( NumValues == 0 ) return;
+
+  for (unsigned j = 0, f = NumValues; j != f; ++j) {
+    EVT VT = ValueVTs[j];
+    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
+
+    if (attr & Attribute::SExt)
+      ExtendKind = ISD::SIGN_EXTEND;
+    else if (attr & Attribute::ZExt)
+      ExtendKind = ISD::ZERO_EXTEND;
+
+    // FIXME: C calling convention requires the return type to be promoted to
+    // at least 32-bit. But this is not necessary for non-C calling
+    // conventions. The frontend should mark functions whose return values
+    // require promoting with signext or zeroext attributes.
+    if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
+      EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
+      if (VT.bitsLT(MinVT))
+        VT = MinVT;
+    }
+
+    unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
+    EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
+    // 'inreg' on function refers to return value
+    ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
+    if (attr & Attribute::InReg)
+      Flags.setInReg();
+
+    // Propagate extension type if any
+    if (attr & Attribute::SExt)
+      Flags.setSExt();
+    else if (attr & Attribute::ZExt)
+      Flags.setZExt();
+
+    for (unsigned i = 0; i < NumParts; ++i) {
+      OutVTs.push_back(PartVT);
+      OutFlags.push_back(Flags);
+    }
+  }
+}
+
+void SelectionDAGBuilder::visitRet(ReturnInst &I) {
+  SDValue Chain = getControlRoot();
+  SmallVector<ISD::OutputArg, 8> Outs;
+  FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
+  
+  if (!FLI.CanLowerReturn) {
+    unsigned DemoteReg = FLI.DemoteRegister;
+    const Function *F = I.getParent()->getParent();
+
+    // Emit a store of the return value through the virtual register.
+    // Leave Outs empty so that LowerReturn won't try to load return
+    // registers the usual way.
+    SmallVector<EVT, 1> PtrValueVTs;
+    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 
+                    PtrValueVTs);
+
+    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
+    SDValue RetOp = getValue(I.getOperand(0));
+  
+    SmallVector<EVT, 4> ValueVTs;
+    SmallVector<uint64_t, 4> Offsets;
+    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
+    unsigned NumValues = ValueVTs.size();
+
+    SmallVector<SDValue, 4> Chains(NumValues);
+    EVT PtrVT = PtrValueVTs[0];
+    for (unsigned i = 0; i != NumValues; ++i)
+      Chains[i] = DAG.getStore(Chain, getCurDebugLoc(),
+                  SDValue(RetOp.getNode(), RetOp.getResNo() + i),
+                  DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, RetPtr,
+                  DAG.getConstant(Offsets[i], PtrVT)),
+                  NULL, Offsets[i], false, 0);
+    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
+                        MVT::Other, &Chains[0], NumValues);
+  }
+  else {
+    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
+      SmallVector<EVT, 4> ValueVTs;
+      ComputeValueVTs(TLI, I.getOperand(i)->getType(), ValueVTs);
+      unsigned NumValues = ValueVTs.size();
+      if (NumValues == 0) continue;
+  
+      SDValue RetOp = getValue(I.getOperand(i));
+      for (unsigned j = 0, f = NumValues; j != f; ++j) {
+        EVT VT = ValueVTs[j];
+
+        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
+
+        const Function *F = I.getParent()->getParent();
+        if (F->paramHasAttr(0, Attribute::SExt))
+          ExtendKind = ISD::SIGN_EXTEND;
+        else if (F->paramHasAttr(0, Attribute::ZExt))
+          ExtendKind = ISD::ZERO_EXTEND;
+
+        // FIXME: C calling convention requires the return type to be promoted to
+        // at least 32-bit. But this is not necessary for non-C calling
+        // conventions. The frontend should mark functions whose return values
+        // require promoting with signext or zeroext attributes.
+        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
+          EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32);
+          if (VT.bitsLT(MinVT))
+            VT = MinVT;
+        }
+
+        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
+        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
+        SmallVector<SDValue, 4> Parts(NumParts);
+        getCopyToParts(DAG, getCurDebugLoc(),
+                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
+                       &Parts[0], NumParts, PartVT, ExtendKind);
+
+        // 'inreg' on function refers to return value
+        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
+        if (F->paramHasAttr(0, Attribute::InReg))
+          Flags.setInReg();
+
+        // Propagate extension type if any
+        if (F->paramHasAttr(0, Attribute::SExt))
+          Flags.setSExt();
+        else if (F->paramHasAttr(0, Attribute::ZExt))
+          Flags.setZExt();
+
+        for (unsigned i = 0; i < NumParts; ++i)
+          Outs.push_back(ISD::OutputArg(Flags, Parts[i], /*isfixed=*/true));
+      }
+    }
+  }
+
+  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
+  CallingConv::ID CallConv =
+    DAG.getMachineFunction().getFunction()->getCallingConv();
+  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
+                          Outs, getCurDebugLoc(), DAG);
+
+  // Verify that the target's LowerReturn behaved as expected.
+  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
+         "LowerReturn didn't return a valid chain!");
+
+  // Update the DAG with the new chain value resulting from return lowering.
+  DAG.setRoot(Chain);
+}
+
+/// CopyToExportRegsIfNeeded - If the given value has virtual registers
+/// created for it, emit nodes to copy the value into the virtual
+/// registers.
+void SelectionDAGBuilder::CopyToExportRegsIfNeeded(Value *V) {
+  if (!V->use_empty()) {
+    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
+    if (VMI != FuncInfo.ValueMap.end())
+      CopyValueToVirtualRegister(V, VMI->second);
+  }
+}
+
+/// ExportFromCurrentBlock - If this condition isn't known to be exported from
+/// the current basic block, add it to ValueMap now so that we'll get a
+/// CopyTo/FromReg.
+void SelectionDAGBuilder::ExportFromCurrentBlock(Value *V) {
+  // No need to export constants.
+  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
+
+  // Already exported?
+  if (FuncInfo.isExportedInst(V)) return;
+
+  unsigned Reg = FuncInfo.InitializeRegForValue(V);
+  CopyValueToVirtualRegister(V, Reg);
+}
+
+bool SelectionDAGBuilder::isExportableFromCurrentBlock(Value *V,
+                                                     const BasicBlock *FromBB) {
+  // The operands of the setcc have to be in this block.  We don't know
+  // how to export them from some other block.
+  if (Instruction *VI = dyn_cast<Instruction>(V)) {
+    // Can export from current BB.
+    if (VI->getParent() == FromBB)
+      return true;
+
+    // Is already exported, noop.
+    return FuncInfo.isExportedInst(V);
+  }
+
+  // If this is an argument, we can export it if the BB is the entry block or
+  // if it is already exported.
+  if (isa<Argument>(V)) {
+    if (FromBB == &FromBB->getParent()->getEntryBlock())
+      return true;
+
+    // Otherwise, can only export this if it is already exported.
+    return FuncInfo.isExportedInst(V);
+  }
+
+  // Otherwise, constants can always be exported.
+  return true;
+}
+
+static bool InBlock(const Value *V, const BasicBlock *BB) {
+  if (const Instruction *I = dyn_cast<Instruction>(V))
+    return I->getParent() == BB;
+  return true;
+}
+
+/// getFCmpCondCode - Return the ISD condition code corresponding to
+/// the given LLVM IR floating-point condition code.  This includes
+/// consideration of global floating-point math flags.
+///
+static ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred) {
+  ISD::CondCode FPC, FOC;
+  switch (Pred) {
+  case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
+  case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
+  case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
+  case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
+  case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
+  case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
+  case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
+  case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
+  case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
+  case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
+  case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
+  case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
+  case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
+  case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
+  case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
+  case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
+  default:
+    llvm_unreachable("Invalid FCmp predicate opcode!");
+    FOC = FPC = ISD::SETFALSE;
+    break;
+  }
+  if (FiniteOnlyFPMath())
+    return FOC;
+  else
+    return FPC;
+}
+
+/// getICmpCondCode - Return the ISD condition code corresponding to
+/// the given LLVM IR integer condition code.
+///
+static ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred) {
+  switch (Pred) {
+  case ICmpInst::ICMP_EQ:  return ISD::SETEQ;
+  case ICmpInst::ICMP_NE:  return ISD::SETNE;
+  case ICmpInst::ICMP_SLE: return ISD::SETLE;
+  case ICmpInst::ICMP_ULE: return ISD::SETULE;
+  case ICmpInst::ICMP_SGE: return ISD::SETGE;
+  case ICmpInst::ICMP_UGE: return ISD::SETUGE;
+  case ICmpInst::ICMP_SLT: return ISD::SETLT;
+  case ICmpInst::ICMP_ULT: return ISD::SETULT;
+  case ICmpInst::ICMP_SGT: return ISD::SETGT;
+  case ICmpInst::ICMP_UGT: return ISD::SETUGT;
+  default:
+    llvm_unreachable("Invalid ICmp predicate opcode!");
+    return ISD::SETNE;
+  }
+}
+
+/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
+/// This function emits a branch and is used at the leaves of an OR or an
+/// AND operator tree.
+///
+void
+SelectionDAGBuilder::EmitBranchForMergedCondition(Value *Cond,
+                                                  MachineBasicBlock *TBB,
+                                                  MachineBasicBlock *FBB,
+                                                  MachineBasicBlock *CurBB) {
+  const BasicBlock *BB = CurBB->getBasicBlock();
+
+  // If the leaf of the tree is a comparison, merge the condition into
+  // the caseblock.
+  if (CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
+    // The operands of the cmp have to be in this block.  We don't know
+    // how to export them from some other block.  If this is the first block
+    // of the sequence, no exporting is needed.
+    if (CurBB == CurMBB ||
+        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
+         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
+      ISD::CondCode Condition;
+      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
+        Condition = getICmpCondCode(IC->getPredicate());
+      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
+        Condition = getFCmpCondCode(FC->getPredicate());
+      } else {
+        Condition = ISD::SETEQ; // silence warning.
+        llvm_unreachable("Unknown compare instruction");
+      }
+
+      CaseBlock CB(Condition, BOp->getOperand(0),
+                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
+      SwitchCases.push_back(CB);
+      return;
+    }
+  }
+
+  // Create a CaseBlock record representing this branch.
+  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
+               NULL, TBB, FBB, CurBB);
+  SwitchCases.push_back(CB);
+}
+
+/// FindMergedConditions - If Cond is an expression like
+void SelectionDAGBuilder::FindMergedConditions(Value *Cond,
+                                               MachineBasicBlock *TBB,
+                                               MachineBasicBlock *FBB,
+                                               MachineBasicBlock *CurBB,
+                                               unsigned Opc) {
+  // If this node is not part of the or/and tree, emit it as a branch.
+  Instruction *BOp = dyn_cast<Instruction>(Cond);
+  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
+      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
+      BOp->getParent() != CurBB->getBasicBlock() ||
+      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
+      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
+    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB);
+    return;
+  }
+
+  //  Create TmpBB after CurBB.
+  MachineFunction::iterator BBI = CurBB;
+  MachineFunction &MF = DAG.getMachineFunction();
+  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
+  CurBB->getParent()->insert(++BBI, TmpBB);
+
+  if (Opc == Instruction::Or) {
+    // Codegen X | Y as:
+    //   jmp_if_X TBB
+    //   jmp TmpBB
+    // TmpBB:
+    //   jmp_if_Y TBB
+    //   jmp FBB
+    //
+
+    // Emit the LHS condition.
+    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
+
+    // Emit the RHS condition into TmpBB.
+    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
+  } else {
+    assert(Opc == Instruction::And && "Unknown merge op!");
+    // Codegen X & Y as:
+    //   jmp_if_X TmpBB
+    //   jmp FBB
+    // TmpBB:
+    //   jmp_if_Y TBB
+    //   jmp FBB
+    //
+    //  This requires creation of TmpBB after CurBB.
+
+    // Emit the LHS condition.
+    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
+
+    // Emit the RHS condition into TmpBB.
+    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
+  }
+}
+
+/// If the set of cases should be emitted as a series of branches, return true.
+/// If we should emit this as a bunch of and/or'd together conditions, return
+/// false.
+bool
+SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
+  if (Cases.size() != 2) return true;
+
+  // If this is two comparisons of the same values or'd or and'd together, they
+  // will get folded into a single comparison, so don't emit two blocks.
+  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
+       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
+      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
+       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
+    return false;
+  }
+
+  return true;
+}
+
+void SelectionDAGBuilder::visitBr(BranchInst &I) {
+  // Update machine-CFG edges.
+  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
+
+  // Figure out which block is immediately after the current one.
+  MachineBasicBlock *NextBlock = 0;
+  MachineFunction::iterator BBI = CurMBB;
+  if (++BBI != FuncInfo.MF->end())
+    NextBlock = BBI;
+
+  if (I.isUnconditional()) {
+    // Update machine-CFG edges.
+    CurMBB->addSuccessor(Succ0MBB);
+
+    // If this is not a fall-through branch, emit the branch.
+    if (Succ0MBB != NextBlock)
+      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
+                              MVT::Other, getControlRoot(),
+                              DAG.getBasicBlock(Succ0MBB)));
+    return;
+  }
+
+  // If this condition is one of the special cases we handle, do special stuff
+  // now.
+  Value *CondVal = I.getCondition();
+  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
+
+  // If this is a series of conditions that are or'd or and'd together, emit
+  // this as a sequence of branches instead of setcc's with and/or operations.
+  // For example, instead of something like:
+  //     cmp A, B
+  //     C = seteq
+  //     cmp D, E
+  //     F = setle
+  //     or C, F
+  //     jnz foo
+  // Emit:
+  //     cmp A, B
+  //     je foo
+  //     cmp D, E
+  //     jle foo
+  //
+  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
+    if (BOp->hasOneUse() &&
+        (BOp->getOpcode() == Instruction::And ||
+         BOp->getOpcode() == Instruction::Or)) {
+      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
+      // If the compares in later blocks need to use values not currently
+      // exported from this block, export them now.  This block should always
+      // be the first entry.
+      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
+
+      // Allow some cases to be rejected.
+      if (ShouldEmitAsBranches(SwitchCases)) {
+        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
+          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
+          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
+        }
+
+        // Emit the branch for this block.
+        visitSwitchCase(SwitchCases[0]);
+        SwitchCases.erase(SwitchCases.begin());
+        return;
+      }
+
+      // Okay, we decided not to do this, remove any inserted MBB's and clear
+      // SwitchCases.
+      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
+        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
+
+      SwitchCases.clear();
+    }
+  }
+
+  // Create a CaseBlock record representing this branch.
+  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
+               NULL, Succ0MBB, Succ1MBB, CurMBB);
+  // Use visitSwitchCase to actually insert the fast branch sequence for this
+  // cond branch.
+  visitSwitchCase(CB);
+}
+
+/// visitSwitchCase - Emits the necessary code to represent a single node in
+/// the binary search tree resulting from lowering a switch instruction.
+void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB) {
+  SDValue Cond;
+  SDValue CondLHS = getValue(CB.CmpLHS);
+  DebugLoc dl = getCurDebugLoc();
+
+  // Build the setcc now.
+  if (CB.CmpMHS == NULL) {
+    // Fold "(X == true)" to X and "(X == false)" to !X to
+    // handle common cases produced by branch lowering.
+    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
+        CB.CC == ISD::SETEQ)
+      Cond = CondLHS;
+    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
+             CB.CC == ISD::SETEQ) {
+      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
+      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
+    } else
+      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
+  } else {
+    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
+
+    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
+    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
+
+    SDValue CmpOp = getValue(CB.CmpMHS);
+    EVT VT = CmpOp.getValueType();
+
+    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
+      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
+                          ISD::SETLE);
+    } else {
+      SDValue SUB = DAG.getNode(ISD::SUB, dl,
+                                VT, CmpOp, DAG.getConstant(Low, VT));
+      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
+                          DAG.getConstant(High-Low, VT), ISD::SETULE);
+    }
+  }
+
+  // Update successor info
+  CurMBB->addSuccessor(CB.TrueBB);
+  CurMBB->addSuccessor(CB.FalseBB);
+
+  // Set NextBlock to be the MBB immediately after the current one, if any.
+  // This is used to avoid emitting unnecessary branches to the next block.
+  MachineBasicBlock *NextBlock = 0;
+  MachineFunction::iterator BBI = CurMBB;
+  if (++BBI != FuncInfo.MF->end())
+    NextBlock = BBI;
+
+  // If the lhs block is the next block, invert the condition so that we can
+  // fall through to the lhs instead of the rhs block.
+  if (CB.TrueBB == NextBlock) {
+    std::swap(CB.TrueBB, CB.FalseBB);
+    SDValue True = DAG.getConstant(1, Cond.getValueType());
+    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
+  }
+  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
+                               MVT::Other, getControlRoot(), Cond,
+                               DAG.getBasicBlock(CB.TrueBB));
+
+  // If the branch was constant folded, fix up the CFG.
+  if (BrCond.getOpcode() == ISD::BR) {
+    CurMBB->removeSuccessor(CB.FalseBB);
+    DAG.setRoot(BrCond);
+  } else {
+    // Otherwise, go ahead and insert the false branch.
+    if (BrCond == getControlRoot())
+      CurMBB->removeSuccessor(CB.TrueBB);
+
+    if (CB.FalseBB == NextBlock)
+      DAG.setRoot(BrCond);
+    else
+      DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
+                              DAG.getBasicBlock(CB.FalseBB)));
+  }
+}
+
+/// visitJumpTable - Emit JumpTable node in the current MBB
+void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
+  // Emit the code for the jump table
+  assert(JT.Reg != -1U && "Should lower JT Header first!");
+  EVT PTy = TLI.getPointerTy();
+  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
+                                     JT.Reg, PTy);
+  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
+  DAG.setRoot(DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
+                          MVT::Other, Index.getValue(1),
+                          Table, Index));
+}
+
+/// visitJumpTableHeader - This function emits necessary code to produce index
+/// in the JumpTable from switch case.
+void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
+                                               JumpTableHeader &JTH) {
+  // Subtract the lowest switch case value from the value being switched on and
+  // conditional branch to default mbb if the result is greater than the
+  // difference between smallest and largest cases.
+  SDValue SwitchOp = getValue(JTH.SValue);
+  EVT VT = SwitchOp.getValueType();
+  SDValue SUB = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
+                            DAG.getConstant(JTH.First, VT));
+
+  // The SDNode we just created, which holds the value being switched on minus
+  // the the smallest case value, needs to be copied to a virtual register so it
+  // can be used as an index into the jump table in a subsequent basic block.
+  // This value may be smaller or larger than the target's pointer type, and
+  // therefore require extension or truncating.
+  SwitchOp = DAG.getZExtOrTrunc(SUB, getCurDebugLoc(), TLI.getPointerTy());
+
+  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
+  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
+                                    JumpTableReg, SwitchOp);
+  JT.Reg = JumpTableReg;
+
+  // Emit the range check for the jump table, and branch to the default block
+  // for the switch statement if the value being switched on exceeds the largest
+  // case in the switch.
+  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
+                             TLI.getSetCCResultType(SUB.getValueType()), SUB,
+                             DAG.getConstant(JTH.Last-JTH.First,VT),
+                             ISD::SETUGT);
+
+  // Set NextBlock to be the MBB immediately after the current one, if any.
+  // This is used to avoid emitting unnecessary branches to the next block.
+  MachineBasicBlock *NextBlock = 0;
+  MachineFunction::iterator BBI = CurMBB;
+  if (++BBI != FuncInfo.MF->end())
+    NextBlock = BBI;
+
+  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
+                               MVT::Other, CopyTo, CMP,
+                               DAG.getBasicBlock(JT.Default));
+
+  if (JT.MBB == NextBlock)
+    DAG.setRoot(BrCond);
+  else
+    DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
+                            DAG.getBasicBlock(JT.MBB)));
+}
+
+/// visitBitTestHeader - This function emits necessary code to produce value
+/// suitable for "bit tests"
+void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B) {
+  // Subtract the minimum value
+  SDValue SwitchOp = getValue(B.SValue);
+  EVT VT = SwitchOp.getValueType();
+  SDValue SUB = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
+                            DAG.getConstant(B.First, VT));
+
+  // Check range
+  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
+                                  TLI.getSetCCResultType(SUB.getValueType()),
+                                  SUB, DAG.getConstant(B.Range, VT),
+                                  ISD::SETUGT);
+
+  SDValue ShiftOp = DAG.getZExtOrTrunc(SUB, getCurDebugLoc(), TLI.getPointerTy());
+
+  B.Reg = FuncInfo.MakeReg(TLI.getPointerTy());
+  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
+                                    B.Reg, ShiftOp);
+
+  // Set NextBlock to be the MBB immediately after the current one, if any.
+  // This is used to avoid emitting unnecessary branches to the next block.
+  MachineBasicBlock *NextBlock = 0;
+  MachineFunction::iterator BBI = CurMBB;
+  if (++BBI != FuncInfo.MF->end())
+    NextBlock = BBI;
+
+  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
+
+  CurMBB->addSuccessor(B.Default);
+  CurMBB->addSuccessor(MBB);
+
+  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
+                                MVT::Other, CopyTo, RangeCmp,
+                                DAG.getBasicBlock(B.Default));
+
+  if (MBB == NextBlock)
+    DAG.setRoot(BrRange);
+  else
+    DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
+                            DAG.getBasicBlock(MBB)));
+}
+
+/// visitBitTestCase - this function produces one "bit test"
+void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB,
+                                           unsigned Reg,
+                                           BitTestCase &B) {
+  // Make desired shift
+  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg,
+                                       TLI.getPointerTy());
+  SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(),
+                                  TLI.getPointerTy(),
+                                  DAG.getConstant(1, TLI.getPointerTy()),
+                                  ShiftOp);
+
+  // Emit bit tests and jumps
+  SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
+                              TLI.getPointerTy(), SwitchVal,
+                              DAG.getConstant(B.Mask, TLI.getPointerTy()));
+  SDValue AndCmp = DAG.getSetCC(getCurDebugLoc(),
+                                TLI.getSetCCResultType(AndOp.getValueType()),
+                                AndOp, DAG.getConstant(0, TLI.getPointerTy()),
+                                ISD::SETNE);
+
+  CurMBB->addSuccessor(B.TargetBB);
+  CurMBB->addSuccessor(NextMBB);
+
+  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
+                              MVT::Other, getControlRoot(),
+                              AndCmp, DAG.getBasicBlock(B.TargetBB));
+
+  // Set NextBlock to be the MBB immediately after the current one, if any.
+  // This is used to avoid emitting unnecessary branches to the next block.
+  MachineBasicBlock *NextBlock = 0;
+  MachineFunction::iterator BBI = CurMBB;
+  if (++BBI != FuncInfo.MF->end())
+    NextBlock = BBI;
+
+  if (NextMBB == NextBlock)
+    DAG.setRoot(BrAnd);
+  else
+    DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
+                            DAG.getBasicBlock(NextMBB)));
+}
+
+void SelectionDAGBuilder::visitInvoke(InvokeInst &I) {
+  // Retrieve successors.
+  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
+  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
+
+  const Value *Callee(I.getCalledValue());
+  if (isa<InlineAsm>(Callee))
+    visitInlineAsm(&I);
+  else
+    LowerCallTo(&I, getValue(Callee), false, LandingPad);
+
+  // If the value of the invoke is used outside of its defining block, make it
+  // available as a virtual register.
+  CopyToExportRegsIfNeeded(&I);
+
+  // Update successor info
+  CurMBB->addSuccessor(Return);
+  CurMBB->addSuccessor(LandingPad);
+
+  // Drop into normal successor.
+  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
+                          MVT::Other, getControlRoot(),
+                          DAG.getBasicBlock(Return)));
+}
+
+void SelectionDAGBuilder::visitUnwind(UnwindInst &I) {
+}
+
+/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
+/// small case ranges).
+bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
+                                                 CaseRecVector& WorkList,
+                                                 Value* SV,
+                                                 MachineBasicBlock* Default) {
+  Case& BackCase  = *(CR.Range.second-1);
+
+  // Size is the number of Cases represented by this range.
+  size_t Size = CR.Range.second - CR.Range.first;
+  if (Size > 3)
+    return false;
+
+  // Get the MachineFunction which holds the current MBB.  This is used when
+  // inserting any additional MBBs necessary to represent the switch.
+  MachineFunction *CurMF = FuncInfo.MF;
+
+  // Figure out which block is immediately after the current one.
+  MachineBasicBlock *NextBlock = 0;
+  MachineFunction::iterator BBI = CR.CaseBB;
+
+  if (++BBI != FuncInfo.MF->end())
+    NextBlock = BBI;
+
+  // TODO: If any two of the cases has the same destination, and if one value
+  // is the same as the other, but has one bit unset that the other has set,
+  // use bit manipulation to do two compares at once.  For example:
+  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
+
+  // Rearrange the case blocks so that the last one falls through if possible.
+  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
+    // The last case block won't fall through into 'NextBlock' if we emit the
+    // branches in this order.  See if rearranging a case value would help.
+    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
+      if (I->BB == NextBlock) {
+        std::swap(*I, BackCase);
+        break;
+      }
+    }
+  }
+
+  // Create a CaseBlock record representing a conditional branch to
+  // the Case's target mbb if the value being switched on SV is equal
+  // to C.
+  MachineBasicBlock *CurBlock = CR.CaseBB;
+  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
+    MachineBasicBlock *FallThrough;
+    if (I != E-1) {
+      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
+      CurMF->insert(BBI, FallThrough);
+
+      // Put SV in a virtual register to make it available from the new blocks.
+      ExportFromCurrentBlock(SV);
+    } else {
+      // If the last case doesn't match, go to the default block.
+      FallThrough = Default;
+    }
+
+    Value *RHS, *LHS, *MHS;
+    ISD::CondCode CC;
+    if (I->High == I->Low) {
+      // This is just small small case range :) containing exactly 1 case
+      CC = ISD::SETEQ;
+      LHS = SV; RHS = I->High; MHS = NULL;
+    } else {
+      CC = ISD::SETLE;
+      LHS = I->Low; MHS = SV; RHS = I->High;
+    }
+    CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
+
+    // If emitting the first comparison, just call visitSwitchCase to emit the
+    // code into the current block.  Otherwise, push the CaseBlock onto the
+    // vector to be later processed by SDISel, and insert the node's MBB
+    // before the next MBB.
+    if (CurBlock == CurMBB)
+      visitSwitchCase(CB);
+    else
+      SwitchCases.push_back(CB);
+
+    CurBlock = FallThrough;
+  }
+
+  return true;
+}
+
+static inline bool areJTsAllowed(const TargetLowering &TLI) {
+  return !DisableJumpTables &&
+          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
+           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
+}
+
+static APInt ComputeRange(const APInt &First, const APInt &Last) {
+  APInt LastExt(Last), FirstExt(First);
+  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
+  LastExt.sext(BitWidth); FirstExt.sext(BitWidth);
+  return (LastExt - FirstExt + 1ULL);
+}
+
+/// handleJTSwitchCase - Emit jumptable for current switch case range
+bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
+                                             CaseRecVector& WorkList,
+                                             Value* SV,
+                                             MachineBasicBlock* Default) {
+  Case& FrontCase = *CR.Range.first;
+  Case& BackCase  = *(CR.Range.second-1);
+
+  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
+  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
+
+  APInt TSize(First.getBitWidth(), 0);
+  for (CaseItr I = CR.Range.first, E = CR.Range.second;
+       I!=E; ++I)
+    TSize += I->size();
+
+  if (!areJTsAllowed(TLI) || TSize.ult(APInt(First.getBitWidth(), 4)))
+    return false;
+
+  APInt Range = ComputeRange(First, Last);
+  double Density = TSize.roundToDouble() / Range.roundToDouble();
+  if (Density < 0.4)
+    return false;
+
+  DEBUG(errs() << "Lowering jump table\n"
+               << "First entry: " << First << ". Last entry: " << Last << '\n'
+               << "Range: " << Range
+               << "Size: " << TSize << ". Density: " << Density << "\n\n");
+
+  // Get the MachineFunction which holds the current MBB.  This is used when
+  // inserting any additional MBBs necessary to represent the switch.
+  MachineFunction *CurMF = FuncInfo.MF;
+
+  // Figure out which block is immediately after the current one.
+  MachineFunction::iterator BBI = CR.CaseBB;
+  ++BBI;
+
+  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
+
+  // Create a new basic block to hold the code for loading the address
+  // of the jump table, and jumping to it.  Update successor information;
+  // we will either branch to the default case for the switch, or the jump
+  // table.
+  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
+  CurMF->insert(BBI, JumpTableBB);
+  CR.CaseBB->addSuccessor(Default);
+  CR.CaseBB->addSuccessor(JumpTableBB);
+
+  // Build a vector of destination BBs, corresponding to each target
+  // of the jump table. If the value of the jump table slot corresponds to
+  // a case statement, push the case's BB onto the vector, otherwise, push
+  // the default BB.
+  std::vector<MachineBasicBlock*> DestBBs;
+  APInt TEI = First;
+  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
+    const APInt& Low = cast<ConstantInt>(I->Low)->getValue();
+    const APInt& High = cast<ConstantInt>(I->High)->getValue();
+
+    if (Low.sle(TEI) && TEI.sle(High)) {
+      DestBBs.push_back(I->BB);
+      if (TEI==High)
+        ++I;
+    } else {
+      DestBBs.push_back(Default);
+    }
+  }
+
+  // Update successor info. Add one edge to each unique successor.
+  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
+  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
+         E = DestBBs.end(); I != E; ++I) {
+    if (!SuccsHandled[(*I)->getNumber()]) {
+      SuccsHandled[(*I)->getNumber()] = true;
+      JumpTableBB->addSuccessor(*I);
+    }
+  }
+
+  // Create a jump table index for this jump table, or return an existing
+  // one.
+  unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
+
+  // Set the jump table information so that we can codegen it as a second
+  // MachineBasicBlock
+  JumpTable JT(-1U, JTI, JumpTableBB, Default);
+  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == CurMBB));
+  if (CR.CaseBB == CurMBB)
+    visitJumpTableHeader(JT, JTH);
+
+  JTCases.push_back(JumpTableBlock(JTH, JT));
+
+  return true;
+}
+
+/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
+/// 2 subtrees.
+bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
+                                                  CaseRecVector& WorkList,
+                                                  Value* SV,
+                                                  MachineBasicBlock* Default) {
+  // Get the MachineFunction which holds the current MBB.  This is used when
+  // inserting any additional MBBs necessary to represent the switch.
+  MachineFunction *CurMF = FuncInfo.MF;
+
+  // Figure out which block is immediately after the current one.
+  MachineFunction::iterator BBI = CR.CaseBB;
+  ++BBI;
+
+  Case& FrontCase = *CR.Range.first;
+  Case& BackCase  = *(CR.Range.second-1);
+  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
+
+  // Size is the number of Cases represented by this range.
+  unsigned Size = CR.Range.second - CR.Range.first;
+
+  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
+  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
+  double FMetric = 0;
+  CaseItr Pivot = CR.Range.first + Size/2;
+
+  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
+  // (heuristically) allow us to emit JumpTable's later.
+  APInt TSize(First.getBitWidth(), 0);
+  for (CaseItr I = CR.Range.first, E = CR.Range.second;
+       I!=E; ++I)
+    TSize += I->size();
+
+  APInt LSize = FrontCase.size();
+  APInt RSize = TSize-LSize;
+  DEBUG(errs() << "Selecting best pivot: \n"
+               << "First: " << First << ", Last: " << Last <<'\n'
+               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
+  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
+       J!=E; ++I, ++J) {
+    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
+    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
+    APInt Range = ComputeRange(LEnd, RBegin);
+    assert((Range - 2ULL).isNonNegative() &&
+           "Invalid case distance");
+    double LDensity = (double)LSize.roundToDouble() / 
+                           (LEnd - First + 1ULL).roundToDouble();
+    double RDensity = (double)RSize.roundToDouble() /
+                           (Last - RBegin + 1ULL).roundToDouble();
+    double Metric = Range.logBase2()*(LDensity+RDensity);
+    // Should always split in some non-trivial place
+    DEBUG(errs() <<"=>Step\n"
+                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
+                 << "LDensity: " << LDensity
+                 << ", RDensity: " << RDensity << '\n'
+                 << "Metric: " << Metric << '\n');
+    if (FMetric < Metric) {
+      Pivot = J;
+      FMetric = Metric;
+      DEBUG(errs() << "Current metric set to: " << FMetric << '\n');
+    }
+
+    LSize += J->size();
+    RSize -= J->size();
+  }
+  if (areJTsAllowed(TLI)) {
+    // If our case is dense we *really* should handle it earlier!
+    assert((FMetric > 0) && "Should handle dense range earlier!");
+  } else {
+    Pivot = CR.Range.first + Size/2;
+  }
+
+  CaseRange LHSR(CR.Range.first, Pivot);
+  CaseRange RHSR(Pivot, CR.Range.second);
+  Constant *C = Pivot->Low;
+  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
+
+  // We know that we branch to the LHS if the Value being switched on is
+  // less than the Pivot value, C.  We use this to optimize our binary
+  // tree a bit, by recognizing that if SV is greater than or equal to the
+  // LHS's Case Value, and that Case Value is exactly one less than the
+  // Pivot's Value, then we can branch directly to the LHS's Target,
+  // rather than creating a leaf node for it.
+  if ((LHSR.second - LHSR.first) == 1 &&
+      LHSR.first->High == CR.GE &&
+      cast<ConstantInt>(C)->getValue() ==
+      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
+    TrueBB = LHSR.first->BB;
+  } else {
+    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
+    CurMF->insert(BBI, TrueBB);
+    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
+
+    // Put SV in a virtual register to make it available from the new blocks.
+    ExportFromCurrentBlock(SV);
+  }
+
+  // Similar to the optimization above, if the Value being switched on is
+  // known to be less than the Constant CR.LT, and the current Case Value
+  // is CR.LT - 1, then we can branch directly to the target block for
+  // the current Case Value, rather than emitting a RHS leaf node for it.
+  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
+      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
+      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
+    FalseBB = RHSR.first->BB;
+  } else {
+    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
+    CurMF->insert(BBI, FalseBB);
+    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
+
+    // Put SV in a virtual register to make it available from the new blocks.
+    ExportFromCurrentBlock(SV);
+  }
+
+  // Create a CaseBlock record representing a conditional branch to
+  // the LHS node if the value being switched on SV is less than C.
+  // Otherwise, branch to LHS.
+  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
+
+  if (CR.CaseBB == CurMBB)
+    visitSwitchCase(CB);
+  else
+    SwitchCases.push_back(CB);
+
+  return true;
+}
+
+/// handleBitTestsSwitchCase - if current case range has few destination and
+/// range span less, than machine word bitwidth, encode case range into series
+/// of masks and emit bit tests with these masks.
+bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
+                                                   CaseRecVector& WorkList,
+                                                   Value* SV,
+                                                   MachineBasicBlock* Default){
+  EVT PTy = TLI.getPointerTy();
+  unsigned IntPtrBits = PTy.getSizeInBits();
+
+  Case& FrontCase = *CR.Range.first;
+  Case& BackCase  = *(CR.Range.second-1);
+
+  // Get the MachineFunction which holds the current MBB.  This is used when
+  // inserting any additional MBBs necessary to represent the switch.
+  MachineFunction *CurMF = FuncInfo.MF;
+
+  // If target does not have legal shift left, do not emit bit tests at all.
+  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
+    return false;
+
+  size_t numCmps = 0;
+  for (CaseItr I = CR.Range.first, E = CR.Range.second;
+       I!=E; ++I) {
+    // Single case counts one, case range - two.
+    numCmps += (I->Low == I->High ? 1 : 2);
+  }
+
+  // Count unique destinations
+  SmallSet<MachineBasicBlock*, 4> Dests;
+  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
+    Dests.insert(I->BB);
+    if (Dests.size() > 3)
+      // Don't bother the code below, if there are too much unique destinations
+      return false;
+  }
+  DEBUG(errs() << "Total number of unique destinations: " << Dests.size() << '\n'
+               << "Total number of comparisons: " << numCmps << '\n');
+
+  // Compute span of values.
+  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
+  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
+  APInt cmpRange = maxValue - minValue;
+
+  DEBUG(errs() << "Compare range: " << cmpRange << '\n'
+               << "Low bound: " << minValue << '\n'
+               << "High bound: " << maxValue << '\n');
+
+  if (cmpRange.uge(APInt(cmpRange.getBitWidth(), IntPtrBits)) ||
+      (!(Dests.size() == 1 && numCmps >= 3) &&
+       !(Dests.size() == 2 && numCmps >= 5) &&
+       !(Dests.size() >= 3 && numCmps >= 6)))
+    return false;
+
+  DEBUG(errs() << "Emitting bit tests\n");
+  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
+
+  // Optimize the case where all the case values fit in a
+  // word without having to subtract minValue. In this case,
+  // we can optimize away the subtraction.
+  if (minValue.isNonNegative() &&
+      maxValue.slt(APInt(maxValue.getBitWidth(), IntPtrBits))) {
+    cmpRange = maxValue;
+  } else {
+    lowBound = minValue;
+  }
+
+  CaseBitsVector CasesBits;
+  unsigned i, count = 0;
+
+  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
+    MachineBasicBlock* Dest = I->BB;
+    for (i = 0; i < count; ++i)
+      if (Dest == CasesBits[i].BB)
+        break;
+
+    if (i == count) {
+      assert((count < 3) && "Too much destinations to test!");
+      CasesBits.push_back(CaseBits(0, Dest, 0));
+      count++;
+    }
+
+    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
+    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
+
+    uint64_t lo = (lowValue - lowBound).getZExtValue();
+    uint64_t hi = (highValue - lowBound).getZExtValue();
+
+    for (uint64_t j = lo; j <= hi; j++) {
+      CasesBits[i].Mask |=  1ULL << j;
+      CasesBits[i].Bits++;
+    }
+
+  }
+  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
+
+  BitTestInfo BTC;
+
+  // Figure out which block is immediately after the current one.
+  MachineFunction::iterator BBI = CR.CaseBB;
+  ++BBI;
+
+  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
+
+  DEBUG(errs() << "Cases:\n");
+  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
+    DEBUG(errs() << "Mask: " << CasesBits[i].Mask
+                 << ", Bits: " << CasesBits[i].Bits
+                 << ", BB: " << CasesBits[i].BB << '\n');
+
+    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
+    CurMF->insert(BBI, CaseBB);
+    BTC.push_back(BitTestCase(CasesBits[i].Mask,
+                              CaseBB,
+                              CasesBits[i].BB));
+
+    // Put SV in a virtual register to make it available from the new blocks.
+    ExportFromCurrentBlock(SV);
+  }
+
+  BitTestBlock BTB(lowBound, cmpRange, SV,
+                   -1U, (CR.CaseBB == CurMBB),
+                   CR.CaseBB, Default, BTC);
+
+  if (CR.CaseBB == CurMBB)
+    visitBitTestHeader(BTB);
+
+  BitTestCases.push_back(BTB);
+
+  return true;
+}
+
+
+/// Clusterify - Transform simple list of Cases into list of CaseRange's
+size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
+                                       const SwitchInst& SI) {
+  size_t numCmps = 0;
+
+  // Start with "simple" cases
+  for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
+    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
+    Cases.push_back(Case(SI.getSuccessorValue(i),
+                         SI.getSuccessorValue(i),
+                         SMBB));
+  }
+  std::sort(Cases.begin(), Cases.end(), CaseCmp());
+
+  // Merge case into clusters
+  if (Cases.size() >= 2)
+    // Must recompute end() each iteration because it may be
+    // invalidated by erase if we hold on to it
+    for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) {
+      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
+      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
+      MachineBasicBlock* nextBB = J->BB;
+      MachineBasicBlock* currentBB = I->BB;
+
+      // If the two neighboring cases go to the same destination, merge them
+      // into a single case.
+      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
+        I->High = J->High;
+        J = Cases.erase(J);
+      } else {
+        I = J++;
+      }
+    }
+
+  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
+    if (I->Low != I->High)
+      // A range counts double, since it requires two compares.
+      ++numCmps;
+  }
+
+  return numCmps;
+}
+
+void SelectionDAGBuilder::visitSwitch(SwitchInst &SI) {
+  // Figure out which block is immediately after the current one.
+  MachineBasicBlock *NextBlock = 0;
+
+  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
+
+  // If there is only the default destination, branch to it if it is not the
+  // next basic block.  Otherwise, just fall through.
+  if (SI.getNumOperands() == 2) {
+    // Update machine-CFG edges.
+
+    // If this is not a fall-through branch, emit the branch.
+    CurMBB->addSuccessor(Default);
+    if (Default != NextBlock)
+      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
+                              MVT::Other, getControlRoot(),
+                              DAG.getBasicBlock(Default)));
+    return;
+  }
+
+  // If there are any non-default case statements, create a vector of Cases
+  // representing each one, and sort the vector so that we can efficiently
+  // create a binary search tree from them.
+  CaseVector Cases;
+  size_t numCmps = Clusterify(Cases, SI);
+  DEBUG(errs() << "Clusterify finished. Total clusters: " << Cases.size()
+               << ". Total compares: " << numCmps << '\n');
+  numCmps = 0;
+
+  // Get the Value to be switched on and default basic blocks, which will be
+  // inserted into CaseBlock records, representing basic blocks in the binary
+  // search tree.
+  Value *SV = SI.getOperand(0);
+
+  // Push the initial CaseRec onto the worklist
+  CaseRecVector WorkList;
+  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
+
+  while (!WorkList.empty()) {
+    // Grab a record representing a case range to process off the worklist
+    CaseRec CR = WorkList.back();
+    WorkList.pop_back();
+
+    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
+      continue;
+
+    // If the range has few cases (two or less) emit a series of specific
+    // tests.
+    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
+      continue;
+
+    // If the switch has more than 5 blocks, and at least 40% dense, and the
+    // target supports indirect branches, then emit a jump table rather than
+    // lowering the switch to a binary tree of conditional branches.
+    if (handleJTSwitchCase(CR, WorkList, SV, Default))
+      continue;
+
+    // Emit binary tree. We need to pick a pivot, and push left and right ranges
+    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
+    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
+  }
+}
+
+void SelectionDAGBuilder::visitIndirectBr(IndirectBrInst &I) {
+  // Update machine-CFG edges.
+  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
+    CurMBB->addSuccessor(FuncInfo.MBBMap[I.getSuccessor(i)]);
+
+  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
+                          MVT::Other, getControlRoot(),
+                          getValue(I.getAddress())));
+}
+
+
+void SelectionDAGBuilder::visitFSub(User &I) {
+  // -0.0 - X --> fneg
+  const Type *Ty = I.getType();
+  if (isa<VectorType>(Ty)) {
+    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
+      const VectorType *DestTy = cast<VectorType>(I.getType());
+      const Type *ElTy = DestTy->getElementType();
+      unsigned VL = DestTy->getNumElements();
+      std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
+      Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
+      if (CV == CNZ) {
+        SDValue Op2 = getValue(I.getOperand(1));
+        setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
+                                 Op2.getValueType(), Op2));
+        return;
+      }
+    }
+  }
+  if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
+    if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
+      SDValue Op2 = getValue(I.getOperand(1));
+      setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
+                               Op2.getValueType(), Op2));
+      return;
+    }
+
+  visitBinary(I, ISD::FSUB);
+}
+
+void SelectionDAGBuilder::visitBinary(User &I, unsigned OpCode) {
+  SDValue Op1 = getValue(I.getOperand(0));
+  SDValue Op2 = getValue(I.getOperand(1));
+
+  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
+                           Op1.getValueType(), Op1, Op2));
+}
+
+void SelectionDAGBuilder::visitShift(User &I, unsigned Opcode) {
+  SDValue Op1 = getValue(I.getOperand(0));
+  SDValue Op2 = getValue(I.getOperand(1));
+  if (!isa<VectorType>(I.getType()) &&
+      Op2.getValueType() != TLI.getShiftAmountTy()) {
+    // If the operand is smaller than the shift count type, promote it.
+    EVT PTy = TLI.getPointerTy();
+    EVT STy = TLI.getShiftAmountTy();
+    if (STy.bitsGT(Op2.getValueType()))
+      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
+                        TLI.getShiftAmountTy(), Op2);
+    // If the operand is larger than the shift count type but the shift
+    // count type has enough bits to represent any shift value, truncate
+    // it now. This is a common case and it exposes the truncate to
+    // optimization early.
+    else if (STy.getSizeInBits() >=
+             Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
+      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
+                        TLI.getShiftAmountTy(), Op2);
+    // Otherwise we'll need to temporarily settle for some other
+    // convenient type; type legalization will make adjustments as
+    // needed.
+    else if (PTy.bitsLT(Op2.getValueType()))
+      Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
+                        TLI.getPointerTy(), Op2);
+    else if (PTy.bitsGT(Op2.getValueType()))
+      Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
+                        TLI.getPointerTy(), Op2);
+  }
+
+  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
+                           Op1.getValueType(), Op1, Op2));
+}
+
+void SelectionDAGBuilder::visitICmp(User &I) {
+  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
+  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
+    predicate = IC->getPredicate();
+  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
+    predicate = ICmpInst::Predicate(IC->getPredicate());
+  SDValue Op1 = getValue(I.getOperand(0));
+  SDValue Op2 = getValue(I.getOperand(1));
+  ISD::CondCode Opcode = getICmpCondCode(predicate);
+  
+  EVT DestVT = TLI.getValueType(I.getType());
+  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
+}
+
+void SelectionDAGBuilder::visitFCmp(User &I) {
+  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
+  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
+    predicate = FC->getPredicate();
+  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
+    predicate = FCmpInst::Predicate(FC->getPredicate());
+  SDValue Op1 = getValue(I.getOperand(0));
+  SDValue Op2 = getValue(I.getOperand(1));
+  ISD::CondCode Condition = getFCmpCondCode(predicate);
+  EVT DestVT = TLI.getValueType(I.getType());
+  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
+}
+
+void SelectionDAGBuilder::visitSelect(User &I) {
+  SmallVector<EVT, 4> ValueVTs;
+  ComputeValueVTs(TLI, I.getType(), ValueVTs);
+  unsigned NumValues = ValueVTs.size();
+  if (NumValues != 0) {
+    SmallVector<SDValue, 4> Values(NumValues);
+    SDValue Cond     = getValue(I.getOperand(0));
+    SDValue TrueVal  = getValue(I.getOperand(1));
+    SDValue FalseVal = getValue(I.getOperand(2));
+
+    for (unsigned i = 0; i != NumValues; ++i)
+      Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
+                              TrueVal.getValueType(), Cond,
+                              SDValue(TrueVal.getNode(), TrueVal.getResNo() + i),
+                              SDValue(FalseVal.getNode(), FalseVal.getResNo() + i));
+
+    setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
+                             DAG.getVTList(&ValueVTs[0], NumValues),
+                             &Values[0], NumValues));
+  }
+}
+
+
+void SelectionDAGBuilder::visitTrunc(User &I) {
+  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
+  SDValue N = getValue(I.getOperand(0));
+  EVT DestVT = TLI.getValueType(I.getType());
+  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
+}
+
+void SelectionDAGBuilder::visitZExt(User &I) {
+  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
+  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
+  SDValue N = getValue(I.getOperand(0));
+  EVT DestVT = TLI.getValueType(I.getType());
+  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
+}
+
+void SelectionDAGBuilder::visitSExt(User &I) {
+  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
+  // SExt also can't be a cast to bool for same reason. So, nothing much to do
+  SDValue N = getValue(I.getOperand(0));
+  EVT DestVT = TLI.getValueType(I.getType());
+  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
+}
+
+void SelectionDAGBuilder::visitFPTrunc(User &I) {
+  // FPTrunc is never a no-op cast, no need to check
+  SDValue N = getValue(I.getOperand(0));
+  EVT DestVT = TLI.getValueType(I.getType());
+  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
+                           DestVT, N, DAG.getIntPtrConstant(0)));
+}
+
+void SelectionDAGBuilder::visitFPExt(User &I){
+  // FPTrunc is never a no-op cast, no need to check
+  SDValue N = getValue(I.getOperand(0));
+  EVT DestVT = TLI.getValueType(I.getType());
+  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
+}
+
+void SelectionDAGBuilder::visitFPToUI(User &I) {
+  // FPToUI is never a no-op cast, no need to check
+  SDValue N = getValue(I.getOperand(0));
+  EVT DestVT = TLI.getValueType(I.getType());
+  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
+}
+
+void SelectionDAGBuilder::visitFPToSI(User &I) {
+  // FPToSI is never a no-op cast, no need to check
+  SDValue N = getValue(I.getOperand(0));
+  EVT DestVT = TLI.getValueType(I.getType());
+  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
+}
+
+void SelectionDAGBuilder::visitUIToFP(User &I) {
+  // UIToFP is never a no-op cast, no need to check
+  SDValue N = getValue(I.getOperand(0));
+  EVT DestVT = TLI.getValueType(I.getType());
+  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
+}
+
+void SelectionDAGBuilder::visitSIToFP(User &I){
+  // SIToFP is never a no-op cast, no need to check
+  SDValue N = getValue(I.getOperand(0));
+  EVT DestVT = TLI.getValueType(I.getType());
+  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
+}
+
+void SelectionDAGBuilder::visitPtrToInt(User &I) {
+  // What to do depends on the size of the integer and the size of the pointer.
+  // We can either truncate, zero extend, or no-op, accordingly.
+  SDValue N = getValue(I.getOperand(0));
+  EVT SrcVT = N.getValueType();
+  EVT DestVT = TLI.getValueType(I.getType());
+  SDValue Result = DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT);
+  setValue(&I, Result);
+}
+
+void SelectionDAGBuilder::visitIntToPtr(User &I) {
+  // What to do depends on the size of the integer and the size of the pointer.
+  // We can either truncate, zero extend, or no-op, accordingly.
+  SDValue N = getValue(I.getOperand(0));
+  EVT SrcVT = N.getValueType();
+  EVT DestVT = TLI.getValueType(I.getType());
+  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
+}
+
+void SelectionDAGBuilder::visitBitCast(User &I) {
+  SDValue N = getValue(I.getOperand(0));
+  EVT DestVT = TLI.getValueType(I.getType());
+
+  // BitCast assures us that source and destination are the same size so this
+  // is either a BIT_CONVERT or a no-op.
+  if (DestVT != N.getValueType())
+    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
+                             DestVT, N)); // convert types
+  else
+    setValue(&I, N); // noop cast.
+}
+
+void SelectionDAGBuilder::visitInsertElement(User &I) {
+  SDValue InVec = getValue(I.getOperand(0));
+  SDValue InVal = getValue(I.getOperand(1));
+  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
+                                TLI.getPointerTy(),
+                                getValue(I.getOperand(2)));
+
+  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
+                           TLI.getValueType(I.getType()),
+                           InVec, InVal, InIdx));
+}
+
+void SelectionDAGBuilder::visitExtractElement(User &I) {
+  SDValue InVec = getValue(I.getOperand(0));
+  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
+                                TLI.getPointerTy(),
+                                getValue(I.getOperand(1)));
+  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
+                           TLI.getValueType(I.getType()), InVec, InIdx));
+}
+
+
+// Utility for visitShuffleVector - Returns true if the mask is mask starting
+// from SIndx and increasing to the element length (undefs are allowed).
+static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
+  unsigned MaskNumElts = Mask.size();
+  for (unsigned i = 0; i != MaskNumElts; ++i)
+    if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
+      return false;
+  return true;
+}
+
+void SelectionDAGBuilder::visitShuffleVector(User &I) {
+  SmallVector<int, 8> Mask;
+  SDValue Src1 = getValue(I.getOperand(0));
+  SDValue Src2 = getValue(I.getOperand(1));
+
+  // Convert the ConstantVector mask operand into an array of ints, with -1
+  // representing undef values.
+  SmallVector<Constant*, 8> MaskElts;
+  cast<Constant>(I.getOperand(2))->getVectorElements(*DAG.getContext(), 
+                                                     MaskElts);
+  unsigned MaskNumElts = MaskElts.size();
+  for (unsigned i = 0; i != MaskNumElts; ++i) {
+    if (isa<UndefValue>(MaskElts[i]))
+      Mask.push_back(-1);
+    else
+      Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
+  }
+  
+  EVT VT = TLI.getValueType(I.getType());
+  EVT SrcVT = Src1.getValueType();
+  unsigned SrcNumElts = SrcVT.getVectorNumElements();
+
+  if (SrcNumElts == MaskNumElts) {
+    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
+                                      &Mask[0]));
+    return;
+  }
+
+  // Normalize the shuffle vector since mask and vector length don't match.
+  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
+    // Mask is longer than the source vectors and is a multiple of the source
+    // vectors.  We can use concatenate vector to make the mask and vectors
+    // lengths match.
+    if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
+      // The shuffle is concatenating two vectors together.
+      setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
+                               VT, Src1, Src2));
+      return;
+    }
+
+    // Pad both vectors with undefs to make them the same length as the mask.
+    unsigned NumConcat = MaskNumElts / SrcNumElts;
+    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
+    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
+    SDValue UndefVal = DAG.getUNDEF(SrcVT);
+
+    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
+    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
+    MOps1[0] = Src1;
+    MOps2[0] = Src2;
+    
+    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 
+                                                  getCurDebugLoc(), VT, 
+                                                  &MOps1[0], NumConcat);
+    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
+                                                  getCurDebugLoc(), VT, 
+                                                  &MOps2[0], NumConcat);
+
+    // Readjust mask for new input vector length.
+    SmallVector<int, 8> MappedOps;
+    for (unsigned i = 0; i != MaskNumElts; ++i) {
+      int Idx = Mask[i];
+      if (Idx < (int)SrcNumElts)
+        MappedOps.push_back(Idx);
+      else
+        MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
+    }
+    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 
+                                      &MappedOps[0]));
+    return;
+  }
+
+  if (SrcNumElts > MaskNumElts) {
+    // Analyze the access pattern of the vector to see if we can extract
+    // two subvectors and do the shuffle. The analysis is done by calculating
+    // the range of elements the mask access on both vectors.
+    int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
+    int MaxRange[2] = {-1, -1};
+
+    for (unsigned i = 0; i != MaskNumElts; ++i) {
+      int Idx = Mask[i];
+      int Input = 0;
+      if (Idx < 0)
+        continue;
+      
+      if (Idx >= (int)SrcNumElts) {
+        Input = 1;
+        Idx -= SrcNumElts;
+      }
+      if (Idx > MaxRange[Input])
+        MaxRange[Input] = Idx;
+      if (Idx < MinRange[Input])
+        MinRange[Input] = Idx;
+    }
+
+    // Check if the access is smaller than the vector size and can we find
+    // a reasonable extract index.
+    int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not Extract.
+    int StartIdx[2];  // StartIdx to extract from
+    for (int Input=0; Input < 2; ++Input) {
+      if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
+        RangeUse[Input] = 0; // Unused
+        StartIdx[Input] = 0;
+      } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
+        // Fits within range but we should see if we can find a good
+        // start index that is a multiple of the mask length.
+        if (MaxRange[Input] < (int)MaskNumElts) {
+          RangeUse[Input] = 1; // Extract from beginning of the vector
+          StartIdx[Input] = 0;
+        } else {
+          StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
+          if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
+              StartIdx[Input] + MaskNumElts < SrcNumElts)
+            RangeUse[Input] = 1; // Extract from a multiple of the mask length.
+        }
+      }
+    }
+
+    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
+      setValue(&I, DAG.getUNDEF(VT));  // Vectors are not used.
+      return;
+    }
+    else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
+      // Extract appropriate subvector and generate a vector shuffle
+      for (int Input=0; Input < 2; ++Input) {
+        SDValue& Src = Input == 0 ? Src1 : Src2;
+        if (RangeUse[Input] == 0) {
+          Src = DAG.getUNDEF(VT);
+        } else {
+          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
+                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
+        }
+      }
+      // Calculate new mask.
+      SmallVector<int, 8> MappedOps;
+      for (unsigned i = 0; i != MaskNumElts; ++i) {
+        int Idx = Mask[i];
+        if (Idx < 0)
+          MappedOps.push_back(Idx);
+        else if (Idx < (int)SrcNumElts)
+          MappedOps.push_back(Idx - StartIdx[0]);
+        else
+          MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
+      }
+      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
+                                        &MappedOps[0]));
+      return;
+    }
+  }
+
+  // We can't use either concat vectors or extract subvectors so fall back to
+  // replacing the shuffle with extract and build vector.
+  // to insert and build vector.
+  EVT EltVT = VT.getVectorElementType();
+  EVT PtrVT = TLI.getPointerTy();
+  SmallVector<SDValue,8> Ops;
+  for (unsigned i = 0; i != MaskNumElts; ++i) {
+    if (Mask[i] < 0) {
+      Ops.push_back(DAG.getUNDEF(EltVT));
+    } else {
+      int Idx = Mask[i];
+      if (Idx < (int)SrcNumElts)
+        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
+                                  EltVT, Src1, DAG.getConstant(Idx, PtrVT)));
+      else
+        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
+                                  EltVT, Src2,
+                                  DAG.getConstant(Idx - SrcNumElts, PtrVT)));
+    }
+  }
+  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
+                           VT, &Ops[0], Ops.size()));
+}
+
+void SelectionDAGBuilder::visitInsertValue(InsertValueInst &I) {
+  const Value *Op0 = I.getOperand(0);
+  const Value *Op1 = I.getOperand(1);
+  const Type *AggTy = I.getType();
+  const Type *ValTy = Op1->getType();
+  bool IntoUndef = isa<UndefValue>(Op0);
+  bool FromUndef = isa<UndefValue>(Op1);
+
+  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
+                                            I.idx_begin(), I.idx_end());
+
+  SmallVector<EVT, 4> AggValueVTs;
+  ComputeValueVTs(TLI, AggTy, AggValueVTs);
+  SmallVector<EVT, 4> ValValueVTs;
+  ComputeValueVTs(TLI, ValTy, ValValueVTs);
+
+  unsigned NumAggValues = AggValueVTs.size();
+  unsigned NumValValues = ValValueVTs.size();
+  SmallVector<SDValue, 4> Values(NumAggValues);
+
+  SDValue Agg = getValue(Op0);
+  SDValue Val = getValue(Op1);
+  unsigned i = 0;
+  // Copy the beginning value(s) from the original aggregate.
+  for (; i != LinearIndex; ++i)
+    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
+                SDValue(Agg.getNode(), Agg.getResNo() + i);
+  // Copy values from the inserted value(s).
+  for (; i != LinearIndex + NumValValues; ++i)
+    Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
+                SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
+  // Copy remaining value(s) from the original aggregate.
+  for (; i != NumAggValues; ++i)
+    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
+                SDValue(Agg.getNode(), Agg.getResNo() + i);
+
+  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
+                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
+                           &Values[0], NumAggValues));
+}
+
+void SelectionDAGBuilder::visitExtractValue(ExtractValueInst &I) {
+  const Value *Op0 = I.getOperand(0);
+  const Type *AggTy = Op0->getType();
+  const Type *ValTy = I.getType();
+  bool OutOfUndef = isa<UndefValue>(Op0);
+
+  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
+                                            I.idx_begin(), I.idx_end());
+
+  SmallVector<EVT, 4> ValValueVTs;
+  ComputeValueVTs(TLI, ValTy, ValValueVTs);
+
+  unsigned NumValValues = ValValueVTs.size();
+  SmallVector<SDValue, 4> Values(NumValValues);
+
+  SDValue Agg = getValue(Op0);
+  // Copy out the selected value(s).
+  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
+    Values[i - LinearIndex] =
+      OutOfUndef ?
+        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
+        SDValue(Agg.getNode(), Agg.getResNo() + i);
+
+  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
+                           DAG.getVTList(&ValValueVTs[0], NumValValues),
+                           &Values[0], NumValValues));
+}
+
+
+void SelectionDAGBuilder::visitGetElementPtr(User &I) {
+  SDValue N = getValue(I.getOperand(0));
+  const Type *Ty = I.getOperand(0)->getType();
+
+  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
+       OI != E; ++OI) {
+    Value *Idx = *OI;
+    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
+      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
+      if (Field) {
+        // N = N + Offset
+        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
+        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
+                        DAG.getIntPtrConstant(Offset));
+      }
+      Ty = StTy->getElementType(Field);
+    } else {
+      Ty = cast<SequentialType>(Ty)->getElementType();
+
+      // If this is a constant subscript, handle it quickly.
+      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
+        if (CI->getZExtValue() == 0) continue;
+        uint64_t Offs =
+            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
+        SDValue OffsVal;
+        EVT PTy = TLI.getPointerTy();
+        unsigned PtrBits = PTy.getSizeInBits();
+        if (PtrBits < 64) {
+          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
+                                TLI.getPointerTy(),
+                                DAG.getConstant(Offs, MVT::i64));
+        } else
+          OffsVal = DAG.getIntPtrConstant(Offs);
+        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
+                        OffsVal);
+        continue;
+      }
+
+      // N = N + Idx * ElementSize;
+      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
+                                TD->getTypeAllocSize(Ty));
+      SDValue IdxN = getValue(Idx);
+
+      // If the index is smaller or larger than intptr_t, truncate or extend
+      // it.
+      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
+
+      // If this is a multiply by a power of two, turn it into a shl
+      // immediately.  This is a very common case.
+      if (ElementSize != 1) {
+        if (ElementSize.isPowerOf2()) {
+          unsigned Amt = ElementSize.logBase2();
+          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
+                             N.getValueType(), IdxN,
+                             DAG.getConstant(Amt, TLI.getPointerTy()));
+        } else {
+          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
+          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
+                             N.getValueType(), IdxN, Scale);
+        }
+      }
+
+      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
+                      N.getValueType(), N, IdxN);
+    }
+  }
+  setValue(&I, N);
+}
+
+void SelectionDAGBuilder::visitAlloca(AllocaInst &I) {
+  // If this is a fixed sized alloca in the entry block of the function,
+  // allocate it statically on the stack.
+  if (FuncInfo.StaticAllocaMap.count(&I))
+    return;   // getValue will auto-populate this.
+
+  const Type *Ty = I.getAllocatedType();
+  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
+  unsigned Align =
+    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
+             I.getAlignment());
+
+  SDValue AllocSize = getValue(I.getArraySize());
+  
+  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), AllocSize.getValueType(),
+                          AllocSize,
+                          DAG.getConstant(TySize, AllocSize.getValueType()));
+  
+  
+  
+  EVT IntPtr = TLI.getPointerTy();
+  AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
+
+  // Handle alignment.  If the requested alignment is less than or equal to
+  // the stack alignment, ignore it.  If the size is greater than or equal to
+  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
+  unsigned StackAlign =
+    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
+  if (Align <= StackAlign)
+    Align = 0;
+
+  // Round the size of the allocation up to the stack alignment size
+  // by add SA-1 to the size.
+  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
+                          AllocSize.getValueType(), AllocSize,
+                          DAG.getIntPtrConstant(StackAlign-1));
+  // Mask out the low bits for alignment purposes.
+  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
+                          AllocSize.getValueType(), AllocSize,
+                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
+
+  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
+  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
+  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
+                            VTs, Ops, 3);
+  setValue(&I, DSA);
+  DAG.setRoot(DSA.getValue(1));
+
+  // Inform the Frame Information that we have just allocated a variable-sized
+  // object.
+  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject();
+}
+
+void SelectionDAGBuilder::visitLoad(LoadInst &I) {
+  const Value *SV = I.getOperand(0);
+  SDValue Ptr = getValue(SV);
+
+  const Type *Ty = I.getType();
+  bool isVolatile = I.isVolatile();
+  unsigned Alignment = I.getAlignment();
+
+  SmallVector<EVT, 4> ValueVTs;
+  SmallVector<uint64_t, 4> Offsets;
+  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
+  unsigned NumValues = ValueVTs.size();
+  if (NumValues == 0)
+    return;
+
+  SDValue Root;
+  bool ConstantMemory = false;
+  if (I.isVolatile())
+    // Serialize volatile loads with other side effects.
+    Root = getRoot();
+  else if (AA->pointsToConstantMemory(SV)) {
+    // Do not serialize (non-volatile) loads of constant memory with anything.
+    Root = DAG.getEntryNode();
+    ConstantMemory = true;
+  } else {
+    // Do not serialize non-volatile loads against each other.
+    Root = DAG.getRoot();
+  }
+
+  SmallVector<SDValue, 4> Values(NumValues);
+  SmallVector<SDValue, 4> Chains(NumValues);
+  EVT PtrVT = Ptr.getValueType();
+  for (unsigned i = 0; i != NumValues; ++i) {
+    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
+                            DAG.getNode(ISD::ADD, getCurDebugLoc(),
+                                        PtrVT, Ptr,
+                                        DAG.getConstant(Offsets[i], PtrVT)),
+                            SV, Offsets[i], isVolatile, Alignment);
+    Values[i] = L;
+    Chains[i] = L.getValue(1);
+  }
+
+  if (!ConstantMemory) {
+    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
+                                  MVT::Other,
+                                  &Chains[0], NumValues);
+    if (isVolatile)
+      DAG.setRoot(Chain);
+    else
+      PendingLoads.push_back(Chain);
+  }
+
+  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
+                           DAG.getVTList(&ValueVTs[0], NumValues),
+                           &Values[0], NumValues));
+}
+
+
+void SelectionDAGBuilder::visitStore(StoreInst &I) {
+  Value *SrcV = I.getOperand(0);
+  Value *PtrV = I.getOperand(1);
+
+  SmallVector<EVT, 4> ValueVTs;
+  SmallVector<uint64_t, 4> Offsets;
+  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
+  unsigned NumValues = ValueVTs.size();
+  if (NumValues == 0)
+    return;
+
+  // Get the lowered operands. Note that we do this after
+  // checking if NumResults is zero, because with zero results
+  // the operands won't have values in the map.
+  SDValue Src = getValue(SrcV);
+  SDValue Ptr = getValue(PtrV);
+
+  SDValue Root = getRoot();
+  SmallVector<SDValue, 4> Chains(NumValues);
+  EVT PtrVT = Ptr.getValueType();
+  bool isVolatile = I.isVolatile();
+  unsigned Alignment = I.getAlignment();
+  for (unsigned i = 0; i != NumValues; ++i)
+    Chains[i] = DAG.getStore(Root, getCurDebugLoc(),
+                             SDValue(Src.getNode(), Src.getResNo() + i),
+                             DAG.getNode(ISD::ADD, getCurDebugLoc(),
+                                         PtrVT, Ptr,
+                                         DAG.getConstant(Offsets[i], PtrVT)),
+                             PtrV, Offsets[i], isVolatile, Alignment);
+
+  DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
+                          MVT::Other, &Chains[0], NumValues));
+}
+
+/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
+/// node.
+void SelectionDAGBuilder::visitTargetIntrinsic(CallInst &I,
+                                               unsigned Intrinsic) {
+  bool HasChain = !I.doesNotAccessMemory();
+  bool OnlyLoad = HasChain && I.onlyReadsMemory();
+
+  // Build the operand list.
+  SmallVector<SDValue, 8> Ops;
+  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
+    if (OnlyLoad) {
+      // We don't need to serialize loads against other loads.
+      Ops.push_back(DAG.getRoot());
+    } else {
+      Ops.push_back(getRoot());
+    }
+  }
+
+  // Info is set by getTgtMemInstrinsic
+  TargetLowering::IntrinsicInfo Info;
+  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
+
+  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
+  if (!IsTgtIntrinsic)
+    Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
+
+  // Add all operands of the call to the operand list.
+  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
+    SDValue Op = getValue(I.getOperand(i));
+    assert(TLI.isTypeLegal(Op.getValueType()) &&
+           "Intrinsic uses a non-legal type?");
+    Ops.push_back(Op);
+  }
+
+  SmallVector<EVT, 4> ValueVTs;
+  ComputeValueVTs(TLI, I.getType(), ValueVTs);
+#ifndef NDEBUG
+  for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
+    assert(TLI.isTypeLegal(ValueVTs[Val]) &&
+           "Intrinsic uses a non-legal type?");
+  }
+#endif // NDEBUG
+  if (HasChain)
+    ValueVTs.push_back(MVT::Other);
+
+  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
+
+  // Create the node.
+  SDValue Result;
+  if (IsTgtIntrinsic) {
+    // This is target intrinsic that touches memory
+    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
+                                     VTs, &Ops[0], Ops.size(),
+                                     Info.memVT, Info.ptrVal, Info.offset,
+                                     Info.align, Info.vol,
+                                     Info.readMem, Info.writeMem);
+  }
+  else if (!HasChain)
+    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
+                         VTs, &Ops[0], Ops.size());
+  else if (I.getType() != Type::getVoidTy(*DAG.getContext()))
+    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
+                         VTs, &Ops[0], Ops.size());
+  else
+    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
+                         VTs, &Ops[0], Ops.size());
+
+  if (HasChain) {
+    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
+    if (OnlyLoad)
+      PendingLoads.push_back(Chain);
+    else
+      DAG.setRoot(Chain);
+  }
+  if (I.getType() != Type::getVoidTy(*DAG.getContext())) {
+    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
+      EVT VT = TLI.getValueType(PTy);
+      Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result);
+    }
+    setValue(&I, Result);
+  }
+}
+
+/// GetSignificand - Get the significand and build it into a floating-point
+/// number with exponent of 1:
+///
+///   Op = (Op & 0x007fffff) | 0x3f800000;
+///
+/// where Op is the hexidecimal representation of floating point value.
+static SDValue
+GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
+  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
+                           DAG.getConstant(0x007fffff, MVT::i32));
+  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
+                           DAG.getConstant(0x3f800000, MVT::i32));
+  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2);
+}
+
+/// GetExponent - Get the exponent:
+///
+///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
+///
+/// where Op is the hexidecimal representation of floating point value.
+static SDValue
+GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
+            DebugLoc dl) {
+  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
+                           DAG.getConstant(0x7f800000, MVT::i32));
+  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
+                           DAG.getConstant(23, TLI.getPointerTy()));
+  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
+                           DAG.getConstant(127, MVT::i32));
+  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
+}
+
+/// getF32Constant - Get 32-bit floating point constant.
+static SDValue
+getF32Constant(SelectionDAG &DAG, unsigned Flt) {
+  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
+}
+
+/// Inlined utility function to implement binary input atomic intrinsics for
+/// visitIntrinsicCall: I is a call instruction
+///                     Op is the associated NodeType for I
+const char *
+SelectionDAGBuilder::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) {
+  SDValue Root = getRoot();
+  SDValue L =
+    DAG.getAtomic(Op, getCurDebugLoc(),
+                  getValue(I.getOperand(2)).getValueType().getSimpleVT(),
+                  Root,
+                  getValue(I.getOperand(1)),
+                  getValue(I.getOperand(2)),
+                  I.getOperand(1));
+  setValue(&I, L);
+  DAG.setRoot(L.getValue(1));
+  return 0;
+}
+
+// implVisitAluOverflow - Lower arithmetic overflow instrinsics.
+const char *
+SelectionDAGBuilder::implVisitAluOverflow(CallInst &I, ISD::NodeType Op) {
+  SDValue Op1 = getValue(I.getOperand(1));
+  SDValue Op2 = getValue(I.getOperand(2));
+
+  SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
+  SDValue Result = DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2);
+
+  setValue(&I, Result);
+  return 0;
+}
+
+/// visitExp - Lower an exp intrinsic. Handles the special sequences for
+/// limited-precision mode.
+void
+SelectionDAGBuilder::visitExp(CallInst &I) {
+  SDValue result;
+  DebugLoc dl = getCurDebugLoc();
+
+  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
+      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
+    SDValue Op = getValue(I.getOperand(1));
+
+    // Put the exponent in the right bit position for later addition to the
+    // final result:
+    //
+    //   #define LOG2OFe 1.4426950f
+    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
+    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
+                             getF32Constant(DAG, 0x3fb8aa3b));
+    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
+
+    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
+    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
+    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
+
+    //   IntegerPartOfX <<= 23;
+    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
+                                 DAG.getConstant(23, TLI.getPointerTy()));
+
+    if (LimitFloatPrecision <= 6) {
+      // For floating-point precision of 6:
+      //
+      //   TwoToFractionalPartOfX =
+      //     0.997535578f +
+      //       (0.735607626f + 0.252464424f * x) * x;
+      //
+      // error 0.0144103317, which is 6 bits
+      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+                               getF32Constant(DAG, 0x3e814304));
+      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
+                               getF32Constant(DAG, 0x3f3c50c8));
+      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
+      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
+                               getF32Constant(DAG, 0x3f7f5e7e));
+      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5);
+
+      // Add the exponent into the result in integer domain.
+      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
+                               TwoToFracPartOfX, IntegerPartOfX);
+
+      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6);
+    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
+      // For floating-point precision of 12:
+      //
+      //   TwoToFractionalPartOfX =
+      //     0.999892986f +
+      //       (0.696457318f +
+      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
+      //
+      // 0.000107046256 error, which is 13 to 14 bits
+      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+                               getF32Constant(DAG, 0x3da235e3));
+      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
+                               getF32Constant(DAG, 0x3e65b8f3));
+      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
+      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
+                               getF32Constant(DAG, 0x3f324b07));
+      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
+      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
+                               getF32Constant(DAG, 0x3f7ff8fd));
+      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7);
+
+      // Add the exponent into the result in integer domain.
+      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
+                               TwoToFracPartOfX, IntegerPartOfX);
+
+      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8);
+    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
+      // For floating-point precision of 18:
+      //
+      //   TwoToFractionalPartOfX =
+      //     0.999999982f +
+      //       (0.693148872f +
+      //         (0.240227044f +
+      //           (0.554906021e-1f +
+      //             (0.961591928e-2f +
+      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
+      //
+      // error 2.47208000*10^(-7), which is better than 18 bits
+      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+                               getF32Constant(DAG, 0x3924b03e));
+      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
+                               getF32Constant(DAG, 0x3ab24b87));
+      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
+      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
+                               getF32Constant(DAG, 0x3c1d8c17));
+      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
+      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
+                               getF32Constant(DAG, 0x3d634a1d));
+      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
+      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
+                               getF32Constant(DAG, 0x3e75fe14));
+      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
+      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
+                                getF32Constant(DAG, 0x3f317234));
+      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
+      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
+                                getF32Constant(DAG, 0x3f800000));
+      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,
+                                             MVT::i32, t13);
+
+      // Add the exponent into the result in integer domain.
+      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
+                                TwoToFracPartOfX, IntegerPartOfX);
+
+      result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14);
+    }
+  } else {
+    // No special expansion.
+    result = DAG.getNode(ISD::FEXP, dl,
+                         getValue(I.getOperand(1)).getValueType(),
+                         getValue(I.getOperand(1)));
+  }
+
+  setValue(&I, result);
+}
+
+/// visitLog - Lower a log intrinsic. Handles the special sequences for
+/// limited-precision mode.
+void
+SelectionDAGBuilder::visitLog(CallInst &I) {
+  SDValue result;
+  DebugLoc dl = getCurDebugLoc();
+
+  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
+      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
+    SDValue Op = getValue(I.getOperand(1));
+    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
+
+    // Scale the exponent by log(2) [0.69314718f].
+    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
+    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
+                                        getF32Constant(DAG, 0x3f317218));
+
+    // Get the significand and build it into a floating-point number with
+    // exponent of 1.
+    SDValue X = GetSignificand(DAG, Op1, dl);
+
+    if (LimitFloatPrecision <= 6) {
+      // For floating-point precision of 6:
+      //
+      //   LogofMantissa =
+      //     -1.1609546f +
+      //       (1.4034025f - 0.23903021f * x) * x;
+      //
+      // error 0.0034276066, which is better than 8 bits
+      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+                               getF32Constant(DAG, 0xbe74c456));
+      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
+                               getF32Constant(DAG, 0x3fb3a2b1));
+      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
+      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
+                                          getF32Constant(DAG, 0x3f949a29));
+
+      result = DAG.getNode(ISD::FADD, dl,
+                           MVT::f32, LogOfExponent, LogOfMantissa);
+    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
+      // For floating-point precision of 12:
+      //
+      //   LogOfMantissa =
+      //     -1.7417939f +
+      //       (2.8212026f +
+      //         (-1.4699568f +
+      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
+      //
+      // error 0.000061011436, which is 14 bits
+      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+                               getF32Constant(DAG, 0xbd67b6d6));
+      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
+                               getF32Constant(DAG, 0x3ee4f4b8));
+      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
+      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
+                               getF32Constant(DAG, 0x3fbc278b));
+      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
+      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
+                               getF32Constant(DAG, 0x40348e95));
+      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
+      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
+                                          getF32Constant(DAG, 0x3fdef31a));
+
+      result = DAG.getNode(ISD::FADD, dl,
+                           MVT::f32, LogOfExponent, LogOfMantissa);
+    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
+      // For floating-point precision of 18:
+      //
+      //   LogOfMantissa =
+      //     -2.1072184f +
+      //       (4.2372794f +
+      //         (-3.7029485f +
+      //           (2.2781945f +
+      //             (-0.87823314f +
+      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
+      //
+      // error 0.0000023660568, which is better than 18 bits
+      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+                               getF32Constant(DAG, 0xbc91e5ac));
+      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
+                               getF32Constant(DAG, 0x3e4350aa));
+      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
+      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
+                               getF32Constant(DAG, 0x3f60d3e3));
+      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
+      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
+                               getF32Constant(DAG, 0x4011cdf0));
+      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
+      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
+                               getF32Constant(DAG, 0x406cfd1c));
+      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
+      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
+                               getF32Constant(DAG, 0x408797cb));
+      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
+      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
+                                          getF32Constant(DAG, 0x4006dcab));
+
+      result = DAG.getNode(ISD::FADD, dl,
+                           MVT::f32, LogOfExponent, LogOfMantissa);
+    }
+  } else {
+    // No special expansion.
+    result = DAG.getNode(ISD::FLOG, dl,
+                         getValue(I.getOperand(1)).getValueType(),
+                         getValue(I.getOperand(1)));
+  }
+
+  setValue(&I, result);
+}
+
+/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
+/// limited-precision mode.
+void
+SelectionDAGBuilder::visitLog2(CallInst &I) {
+  SDValue result;
+  DebugLoc dl = getCurDebugLoc();
+
+  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
+      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
+    SDValue Op = getValue(I.getOperand(1));
+    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
+
+    // Get the exponent.
+    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
+
+    // Get the significand and build it into a floating-point number with
+    // exponent of 1.
+    SDValue X = GetSignificand(DAG, Op1, dl);
+
+    // Different possible minimax approximations of significand in
+    // floating-point for various degrees of accuracy over [1,2].
+    if (LimitFloatPrecision <= 6) {
+      // For floating-point precision of 6:
+      //
+      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
+      //
+      // error 0.0049451742, which is more than 7 bits
+      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+                               getF32Constant(DAG, 0xbeb08fe0));
+      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
+                               getF32Constant(DAG, 0x40019463));
+      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
+      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
+                                           getF32Constant(DAG, 0x3fd6633d));
+
+      result = DAG.getNode(ISD::FADD, dl,
+                           MVT::f32, LogOfExponent, Log2ofMantissa);
+    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
+      // For floating-point precision of 12:
+      //
+      //   Log2ofMantissa =
+      //     -2.51285454f +
+      //       (4.07009056f +
+      //         (-2.12067489f +
+      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
+      //
+      // error 0.0000876136000, which is better than 13 bits
+      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+                               getF32Constant(DAG, 0xbda7262e));
+      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
+                               getF32Constant(DAG, 0x3f25280b));
+      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
+      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
+                               getF32Constant(DAG, 0x4007b923));
+      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
+      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
+                               getF32Constant(DAG, 0x40823e2f));
+      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
+      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
+                                           getF32Constant(DAG, 0x4020d29c));
+
+      result = DAG.getNode(ISD::FADD, dl,
+                           MVT::f32, LogOfExponent, Log2ofMantissa);
+    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
+      // For floating-point precision of 18:
+      //
+      //   Log2ofMantissa =
+      //     -3.0400495f +
+      //       (6.1129976f +
+      //         (-5.3420409f +
+      //           (3.2865683f +
+      //             (-1.2669343f +
+      //               (0.27515199f -
+      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
+      //
+      // error 0.0000018516, which is better than 18 bits
+      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+                               getF32Constant(DAG, 0xbcd2769e));
+      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
+                               getF32Constant(DAG, 0x3e8ce0b9));
+      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
+      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
+                               getF32Constant(DAG, 0x3fa22ae7));
+      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
+      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
+                               getF32Constant(DAG, 0x40525723));
+      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
+      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
+                               getF32Constant(DAG, 0x40aaf200));
+      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
+      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
+                               getF32Constant(DAG, 0x40c39dad));
+      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
+      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
+                                           getF32Constant(DAG, 0x4042902c));
+
+      result = DAG.getNode(ISD::FADD, dl,
+                           MVT::f32, LogOfExponent, Log2ofMantissa);
+    }
+  } else {
+    // No special expansion.
+    result = DAG.getNode(ISD::FLOG2, dl,
+                         getValue(I.getOperand(1)).getValueType(),
+                         getValue(I.getOperand(1)));
+  }
+
+  setValue(&I, result);
+}
+
+/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
+/// limited-precision mode.
+void
+SelectionDAGBuilder::visitLog10(CallInst &I) {
+  SDValue result;
+  DebugLoc dl = getCurDebugLoc();
+
+  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
+      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
+    SDValue Op = getValue(I.getOperand(1));
+    SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
+
+    // Scale the exponent by log10(2) [0.30102999f].
+    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
+    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
+                                        getF32Constant(DAG, 0x3e9a209a));
+
+    // Get the significand and build it into a floating-point number with
+    // exponent of 1.
+    SDValue X = GetSignificand(DAG, Op1, dl);
+
+    if (LimitFloatPrecision <= 6) {
+      // For floating-point precision of 6:
+      //
+      //   Log10ofMantissa =
+      //     -0.50419619f +
+      //       (0.60948995f - 0.10380950f * x) * x;
+      //
+      // error 0.0014886165, which is 6 bits
+      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+                               getF32Constant(DAG, 0xbdd49a13));
+      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
+                               getF32Constant(DAG, 0x3f1c0789));
+      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
+      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
+                                            getF32Constant(DAG, 0x3f011300));
+
+      result = DAG.getNode(ISD::FADD, dl,
+                           MVT::f32, LogOfExponent, Log10ofMantissa);
+    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
+      // For floating-point precision of 12:
+      //
+      //   Log10ofMantissa =
+      //     -0.64831180f +
+      //       (0.91751397f +
+      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
+      //
+      // error 0.00019228036, which is better than 12 bits
+      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+                               getF32Constant(DAG, 0x3d431f31));
+      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
+                               getF32Constant(DAG, 0x3ea21fb2));
+      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
+      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
+                               getF32Constant(DAG, 0x3f6ae232));
+      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
+      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
+                                            getF32Constant(DAG, 0x3f25f7c3));
+
+      result = DAG.getNode(ISD::FADD, dl,
+                           MVT::f32, LogOfExponent, Log10ofMantissa);
+    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
+      // For floating-point precision of 18:
+      //
+      //   Log10ofMantissa =
+      //     -0.84299375f +
+      //       (1.5327582f +
+      //         (-1.0688956f +
+      //           (0.49102474f +
+      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
+      //
+      // error 0.0000037995730, which is better than 18 bits
+      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+                               getF32Constant(DAG, 0x3c5d51ce));
+      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
+                               getF32Constant(DAG, 0x3e00685a));
+      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
+      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
+                               getF32Constant(DAG, 0x3efb6798));
+      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
+      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
+                               getF32Constant(DAG, 0x3f88d192));
+      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
+      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
+                               getF32Constant(DAG, 0x3fc4316c));
+      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
+      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
+                                            getF32Constant(DAG, 0x3f57ce70));
+
+      result = DAG.getNode(ISD::FADD, dl,
+                           MVT::f32, LogOfExponent, Log10ofMantissa);
+    }
+  } else {
+    // No special expansion.
+    result = DAG.getNode(ISD::FLOG10, dl,
+                         getValue(I.getOperand(1)).getValueType(),
+                         getValue(I.getOperand(1)));
+  }
+
+  setValue(&I, result);
+}
+
+/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
+/// limited-precision mode.
+void
+SelectionDAGBuilder::visitExp2(CallInst &I) {
+  SDValue result;
+  DebugLoc dl = getCurDebugLoc();
+
+  if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
+      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
+    SDValue Op = getValue(I.getOperand(1));
+
+    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
+
+    //   FractionalPartOfX = x - (float)IntegerPartOfX;
+    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
+    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
+
+    //   IntegerPartOfX <<= 23;
+    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
+                                 DAG.getConstant(23, TLI.getPointerTy()));
+
+    if (LimitFloatPrecision <= 6) {
+      // For floating-point precision of 6:
+      //
+      //   TwoToFractionalPartOfX =
+      //     0.997535578f +
+      //       (0.735607626f + 0.252464424f * x) * x;
+      //
+      // error 0.0144103317, which is 6 bits
+      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+                               getF32Constant(DAG, 0x3e814304));
+      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
+                               getF32Constant(DAG, 0x3f3c50c8));
+      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
+      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
+                               getF32Constant(DAG, 0x3f7f5e7e));
+      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
+      SDValue TwoToFractionalPartOfX =
+        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
+
+      result = DAG.getNode(ISD::BIT_CONVERT, dl,
+                           MVT::f32, TwoToFractionalPartOfX);
+    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
+      // For floating-point precision of 12:
+      //
+      //   TwoToFractionalPartOfX =
+      //     0.999892986f +
+      //       (0.696457318f +
+      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
+      //
+      // error 0.000107046256, which is 13 to 14 bits
+      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+                               getF32Constant(DAG, 0x3da235e3));
+      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
+                               getF32Constant(DAG, 0x3e65b8f3));
+      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
+      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
+                               getF32Constant(DAG, 0x3f324b07));
+      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
+      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
+                               getF32Constant(DAG, 0x3f7ff8fd));
+      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
+      SDValue TwoToFractionalPartOfX =
+        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
+
+      result = DAG.getNode(ISD::BIT_CONVERT, dl,
+                           MVT::f32, TwoToFractionalPartOfX);
+    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
+      // For floating-point precision of 18:
+      //
+      //   TwoToFractionalPartOfX =
+      //     0.999999982f +
+      //       (0.693148872f +
+      //         (0.240227044f +
+      //           (0.554906021e-1f +
+      //             (0.961591928e-2f +
+      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
+      // error 2.47208000*10^(-7), which is better than 18 bits
+      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+                               getF32Constant(DAG, 0x3924b03e));
+      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
+                               getF32Constant(DAG, 0x3ab24b87));
+      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
+      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
+                               getF32Constant(DAG, 0x3c1d8c17));
+      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
+      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
+                               getF32Constant(DAG, 0x3d634a1d));
+      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
+      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
+                               getF32Constant(DAG, 0x3e75fe14));
+      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
+      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
+                                getF32Constant(DAG, 0x3f317234));
+      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
+      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
+                                getF32Constant(DAG, 0x3f800000));
+      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
+      SDValue TwoToFractionalPartOfX =
+        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
+
+      result = DAG.getNode(ISD::BIT_CONVERT, dl,
+                           MVT::f32, TwoToFractionalPartOfX);
+    }
+  } else {
+    // No special expansion.
+    result = DAG.getNode(ISD::FEXP2, dl,
+                         getValue(I.getOperand(1)).getValueType(),
+                         getValue(I.getOperand(1)));
+  }
+
+  setValue(&I, result);
+}
+
+/// visitPow - Lower a pow intrinsic. Handles the special sequences for
+/// limited-precision mode with x == 10.0f.
+void
+SelectionDAGBuilder::visitPow(CallInst &I) {
+  SDValue result;
+  Value *Val = I.getOperand(1);
+  DebugLoc dl = getCurDebugLoc();
+  bool IsExp10 = false;
+
+  if (getValue(Val).getValueType() == MVT::f32 &&
+      getValue(I.getOperand(2)).getValueType() == MVT::f32 &&
+      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
+    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
+      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
+        APFloat Ten(10.0f);
+        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
+      }
+    }
+  }
+
+  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
+    SDValue Op = getValue(I.getOperand(2));
+
+    // Put the exponent in the right bit position for later addition to the
+    // final result:
+    //
+    //   #define LOG2OF10 3.3219281f
+    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
+    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
+                             getF32Constant(DAG, 0x40549a78));
+    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
+
+    //   FractionalPartOfX = x - (float)IntegerPartOfX;
+    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
+    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
+
+    //   IntegerPartOfX <<= 23;
+    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
+                                 DAG.getConstant(23, TLI.getPointerTy()));
+
+    if (LimitFloatPrecision <= 6) {
+      // For floating-point precision of 6:
+      //
+      //   twoToFractionalPartOfX =
+      //     0.997535578f +
+      //       (0.735607626f + 0.252464424f * x) * x;
+      //
+      // error 0.0144103317, which is 6 bits
+      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+                               getF32Constant(DAG, 0x3e814304));
+      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
+                               getF32Constant(DAG, 0x3f3c50c8));
+      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
+      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
+                               getF32Constant(DAG, 0x3f7f5e7e));
+      SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
+      SDValue TwoToFractionalPartOfX =
+        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
+
+      result = DAG.getNode(ISD::BIT_CONVERT, dl,
+                           MVT::f32, TwoToFractionalPartOfX);
+    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
+      // For floating-point precision of 12:
+      //
+      //   TwoToFractionalPartOfX =
+      //     0.999892986f +
+      //       (0.696457318f +
+      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
+      //
+      // error 0.000107046256, which is 13 to 14 bits
+      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+                               getF32Constant(DAG, 0x3da235e3));
+      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
+                               getF32Constant(DAG, 0x3e65b8f3));
+      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
+      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
+                               getF32Constant(DAG, 0x3f324b07));
+      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
+      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
+                               getF32Constant(DAG, 0x3f7ff8fd));
+      SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
+      SDValue TwoToFractionalPartOfX =
+        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
+
+      result = DAG.getNode(ISD::BIT_CONVERT, dl,
+                           MVT::f32, TwoToFractionalPartOfX);
+    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
+      // For floating-point precision of 18:
+      //
+      //   TwoToFractionalPartOfX =
+      //     0.999999982f +
+      //       (0.693148872f +
+      //         (0.240227044f +
+      //           (0.554906021e-1f +
+      //             (0.961591928e-2f +
+      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
+      // error 2.47208000*10^(-7), which is better than 18 bits
+      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
+                               getF32Constant(DAG, 0x3924b03e));
+      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
+                               getF32Constant(DAG, 0x3ab24b87));
+      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
+      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
+                               getF32Constant(DAG, 0x3c1d8c17));
+      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
+      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
+                               getF32Constant(DAG, 0x3d634a1d));
+      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
+      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
+                               getF32Constant(DAG, 0x3e75fe14));
+      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
+      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
+                                getF32Constant(DAG, 0x3f317234));
+      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
+      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
+                                getF32Constant(DAG, 0x3f800000));
+      SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
+      SDValue TwoToFractionalPartOfX =
+        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
+
+      result = DAG.getNode(ISD::BIT_CONVERT, dl,
+                           MVT::f32, TwoToFractionalPartOfX);
+    }
+  } else {
+    // No special expansion.
+    result = DAG.getNode(ISD::FPOW, dl,
+                         getValue(I.getOperand(1)).getValueType(),
+                         getValue(I.getOperand(1)),
+                         getValue(I.getOperand(2)));
+  }
+
+  setValue(&I, result);
+}
+
+/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
+/// we want to emit this as a call to a named external function, return the name
+/// otherwise lower it and return null.
+const char *
+SelectionDAGBuilder::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
+  DebugLoc dl = getCurDebugLoc();
+  switch (Intrinsic) {
+  default:
+    // By default, turn this into a target intrinsic node.
+    visitTargetIntrinsic(I, Intrinsic);
+    return 0;
+  case Intrinsic::vastart:  visitVAStart(I); return 0;
+  case Intrinsic::vaend:    visitVAEnd(I); return 0;
+  case Intrinsic::vacopy:   visitVACopy(I); return 0;
+  case Intrinsic::returnaddress:
+    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
+                             getValue(I.getOperand(1))));
+    return 0;
+  case Intrinsic::frameaddress:
+    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
+                             getValue(I.getOperand(1))));
+    return 0;
+  case Intrinsic::setjmp:
+    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
+    break;
+  case Intrinsic::longjmp:
+    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
+    break;
+  case Intrinsic::memcpy: {
+    SDValue Op1 = getValue(I.getOperand(1));
+    SDValue Op2 = getValue(I.getOperand(2));
+    SDValue Op3 = getValue(I.getOperand(3));
+    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
+    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, false,
+                              I.getOperand(1), 0, I.getOperand(2), 0));
+    return 0;
+  }
+  case Intrinsic::memset: {
+    SDValue Op1 = getValue(I.getOperand(1));
+    SDValue Op2 = getValue(I.getOperand(2));
+    SDValue Op3 = getValue(I.getOperand(3));
+    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
+    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align,
+                              I.getOperand(1), 0));
+    return 0;
+  }
+  case Intrinsic::memmove: {
+    SDValue Op1 = getValue(I.getOperand(1));
+    SDValue Op2 = getValue(I.getOperand(2));
+    SDValue Op3 = getValue(I.getOperand(3));
+    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
+
+    // If the source and destination are known to not be aliases, we can
+    // lower memmove as memcpy.
+    uint64_t Size = -1ULL;
+    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
+      Size = C->getZExtValue();
+    if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
+        AliasAnalysis::NoAlias) {
+      DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, false,
+                                I.getOperand(1), 0, I.getOperand(2), 0));
+      return 0;
+    }
+
+    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align,
+                               I.getOperand(1), 0, I.getOperand(2), 0));
+    return 0;
+  }
+  case Intrinsic::dbg_stoppoint: 
+  case Intrinsic::dbg_region_start:
+  case Intrinsic::dbg_region_end:
+  case Intrinsic::dbg_func_start:
+    // FIXME - Remove this instructions once the dust settles.
+    return 0;
+  case Intrinsic::dbg_declare: {
+    if (OptLevel != CodeGenOpt::None) 
+      // FIXME: Variable debug info is not supported here.
+      return 0;
+    DwarfWriter *DW = DAG.getDwarfWriter();
+    if (!DW)
+      return 0;
+    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
+    if (!isValidDebugInfoIntrinsic(DI, CodeGenOpt::None))
+      return 0;
+
+    MDNode *Variable = DI.getVariable();
+    Value *Address = DI.getAddress();
+    if (BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
+      Address = BCI->getOperand(0);
+    AllocaInst *AI = dyn_cast<AllocaInst>(Address);
+    // Don't handle byval struct arguments or VLAs, for example.
+    if (!AI)
+      return 0;
+    DenseMap<const AllocaInst*, int>::iterator SI =
+      FuncInfo.StaticAllocaMap.find(AI);
+    if (SI == FuncInfo.StaticAllocaMap.end()) 
+      return 0; // VLAs.
+    int FI = SI->second;
+
+    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
+    if (MMI) {
+      MetadataContext &TheMetadata = 
+        DI.getParent()->getContext().getMetadata();
+      unsigned MDDbgKind = TheMetadata.getMDKind("dbg");
+      MDNode *Dbg = TheMetadata.getMD(MDDbgKind, &DI);
+      MMI->setVariableDbgInfo(Variable, FI, Dbg);
+    }
+    return 0;
+  }
+  case Intrinsic::eh_exception: {
+    // Insert the EXCEPTIONADDR instruction.
+    assert(CurMBB->isLandingPad() &&"Call to eh.exception not in landing pad!");
+    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
+    SDValue Ops[1];
+    Ops[0] = DAG.getRoot();
+    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
+    setValue(&I, Op);
+    DAG.setRoot(Op.getValue(1));
+    return 0;
+  }
+
+  case Intrinsic::eh_selector: {
+    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
+
+    if (CurMBB->isLandingPad())
+      AddCatchInfo(I, MMI, CurMBB);
+    else {
+#ifndef NDEBUG
+      FuncInfo.CatchInfoLost.insert(&I);
+#endif
+      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
+      unsigned Reg = TLI.getExceptionSelectorRegister();
+      if (Reg) CurMBB->addLiveIn(Reg);
+    }
+
+    // Insert the EHSELECTION instruction.
+    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
+    SDValue Ops[2];
+    Ops[0] = getValue(I.getOperand(1));
+    Ops[1] = getRoot();
+    SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
+
+    DAG.setRoot(Op.getValue(1));
+
+    setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
+    return 0;
+  }
+
+  case Intrinsic::eh_typeid_for: {
+    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
+
+    if (MMI) {
+      // Find the type id for the given typeinfo.
+      GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
+
+      unsigned TypeID = MMI->getTypeIDFor(GV);
+      setValue(&I, DAG.getConstant(TypeID, MVT::i32));
+    } else {
+      // Return something different to eh_selector.
+      setValue(&I, DAG.getConstant(1, MVT::i32));
+    }
+
+    return 0;
+  }
+
+  case Intrinsic::eh_return_i32:
+  case Intrinsic::eh_return_i64:
+    if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
+      MMI->setCallsEHReturn(true);
+      DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
+                              MVT::Other,
+                              getControlRoot(),
+                              getValue(I.getOperand(1)),
+                              getValue(I.getOperand(2))));
+    } else {
+      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
+    }
+
+    return 0;
+  case Intrinsic::eh_unwind_init:
+    if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
+      MMI->setCallsUnwindInit(true);
+    }
+
+    return 0;
+
+  case Intrinsic::eh_dwarf_cfa: {
+    EVT VT = getValue(I.getOperand(1)).getValueType();
+    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), dl,
+                                        TLI.getPointerTy());
+
+    SDValue Offset = DAG.getNode(ISD::ADD, dl,
+                                 TLI.getPointerTy(),
+                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
+                                             TLI.getPointerTy()),
+                                 CfaArg);
+    setValue(&I, DAG.getNode(ISD::ADD, dl,
+                             TLI.getPointerTy(),
+                             DAG.getNode(ISD::FRAMEADDR, dl,
+                                         TLI.getPointerTy(),
+                                         DAG.getConstant(0,
+                                                         TLI.getPointerTy())),
+                             Offset));
+    return 0;
+  }
+  case Intrinsic::convertff:
+  case Intrinsic::convertfsi:
+  case Intrinsic::convertfui:
+  case Intrinsic::convertsif:
+  case Intrinsic::convertuif:
+  case Intrinsic::convertss:
+  case Intrinsic::convertsu:
+  case Intrinsic::convertus:
+  case Intrinsic::convertuu: {
+    ISD::CvtCode Code = ISD::CVT_INVALID;
+    switch (Intrinsic) {
+    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
+    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
+    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
+    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
+    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
+    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
+    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
+    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
+    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
+    }
+    EVT DestVT = TLI.getValueType(I.getType());
+    Value* Op1 = I.getOperand(1);
+    setValue(&I, DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
+                                DAG.getValueType(DestVT),
+                                DAG.getValueType(getValue(Op1).getValueType()),
+                                getValue(I.getOperand(2)),
+                                getValue(I.getOperand(3)),
+                                Code));
+    return 0;
+  }
+
+  case Intrinsic::sqrt:
+    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
+                             getValue(I.getOperand(1)).getValueType(),
+                             getValue(I.getOperand(1))));
+    return 0;
+  case Intrinsic::powi:
+    setValue(&I, DAG.getNode(ISD::FPOWI, dl,
+                             getValue(I.getOperand(1)).getValueType(),
+                             getValue(I.getOperand(1)),
+                             getValue(I.getOperand(2))));
+    return 0;
+  case Intrinsic::sin:
+    setValue(&I, DAG.getNode(ISD::FSIN, dl,
+                             getValue(I.getOperand(1)).getValueType(),
+                             getValue(I.getOperand(1))));
+    return 0;
+  case Intrinsic::cos:
+    setValue(&I, DAG.getNode(ISD::FCOS, dl,
+                             getValue(I.getOperand(1)).getValueType(),
+                             getValue(I.getOperand(1))));
+    return 0;
+  case Intrinsic::log:
+    visitLog(I);
+    return 0;
+  case Intrinsic::log2:
+    visitLog2(I);
+    return 0;
+  case Intrinsic::log10:
+    visitLog10(I);
+    return 0;
+  case Intrinsic::exp:
+    visitExp(I);
+    return 0;
+  case Intrinsic::exp2:
+    visitExp2(I);
+    return 0;
+  case Intrinsic::pow:
+    visitPow(I);
+    return 0;
+  case Intrinsic::pcmarker: {
+    SDValue Tmp = getValue(I.getOperand(1));
+    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
+    return 0;
+  }
+  case Intrinsic::readcyclecounter: {
+    SDValue Op = getRoot();
+    SDValue Tmp = DAG.getNode(ISD::READCYCLECOUNTER, dl,
+                              DAG.getVTList(MVT::i64, MVT::Other),
+                              &Op, 1);
+    setValue(&I, Tmp);
+    DAG.setRoot(Tmp.getValue(1));
+    return 0;
+  }
+  case Intrinsic::bswap:
+    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
+                             getValue(I.getOperand(1)).getValueType(),
+                             getValue(I.getOperand(1))));
+    return 0;
+  case Intrinsic::cttz: {
+    SDValue Arg = getValue(I.getOperand(1));
+    EVT Ty = Arg.getValueType();
+    SDValue result = DAG.getNode(ISD::CTTZ, dl, Ty, Arg);
+    setValue(&I, result);
+    return 0;
+  }
+  case Intrinsic::ctlz: {
+    SDValue Arg = getValue(I.getOperand(1));
+    EVT Ty = Arg.getValueType();
+    SDValue result = DAG.getNode(ISD::CTLZ, dl, Ty, Arg);
+    setValue(&I, result);
+    return 0;
+  }
+  case Intrinsic::ctpop: {
+    SDValue Arg = getValue(I.getOperand(1));
+    EVT Ty = Arg.getValueType();
+    SDValue result = DAG.getNode(ISD::CTPOP, dl, Ty, Arg);
+    setValue(&I, result);
+    return 0;
+  }
+  case Intrinsic::stacksave: {
+    SDValue Op = getRoot();
+    SDValue Tmp = DAG.getNode(ISD::STACKSAVE, dl,
+              DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
+    setValue(&I, Tmp);
+    DAG.setRoot(Tmp.getValue(1));
+    return 0;
+  }
+  case Intrinsic::stackrestore: {
+    SDValue Tmp = getValue(I.getOperand(1));
+    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Tmp));
+    return 0;
+  }
+  case Intrinsic::stackprotector: {
+    // Emit code into the DAG to store the stack guard onto the stack.
+    MachineFunction &MF = DAG.getMachineFunction();
+    MachineFrameInfo *MFI = MF.getFrameInfo();
+    EVT PtrTy = TLI.getPointerTy();
+
+    SDValue Src = getValue(I.getOperand(1));   // The guard's value.
+    AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2));
+
+    int FI = FuncInfo.StaticAllocaMap[Slot];
+    MFI->setStackProtectorIndex(FI);
+
+    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
+
+    // Store the stack protector onto the stack.
+    SDValue Result = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
+                                  PseudoSourceValue::getFixedStack(FI),
+                                  0, true);
+    setValue(&I, Result);
+    DAG.setRoot(Result);
+    return 0;
+  }
+  case Intrinsic::objectsize: {
+    // If we don't know by now, we're never going to know.
+    ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(2));
+
+    assert(CI && "Non-constant type in __builtin_object_size?");
+
+    SDValue Arg = getValue(I.getOperand(0));
+    EVT Ty = Arg.getValueType();
+
+    if (CI->getZExtValue() < 2)
+      setValue(&I, DAG.getConstant(-1ULL, Ty));
+    else
+      setValue(&I, DAG.getConstant(0, Ty));
+    return 0;
+  }
+  case Intrinsic::var_annotation:
+    // Discard annotate attributes
+    return 0;
+
+  case Intrinsic::init_trampoline: {
+    const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts());
+
+    SDValue Ops[6];
+    Ops[0] = getRoot();
+    Ops[1] = getValue(I.getOperand(1));
+    Ops[2] = getValue(I.getOperand(2));
+    Ops[3] = getValue(I.getOperand(3));
+    Ops[4] = DAG.getSrcValue(I.getOperand(1));
+    Ops[5] = DAG.getSrcValue(F);
+
+    SDValue Tmp = DAG.getNode(ISD::TRAMPOLINE, dl,
+                              DAG.getVTList(TLI.getPointerTy(), MVT::Other),
+                              Ops, 6);
+
+    setValue(&I, Tmp);
+    DAG.setRoot(Tmp.getValue(1));
+    return 0;
+  }
+
+  case Intrinsic::gcroot:
+    if (GFI) {
+      Value *Alloca = I.getOperand(1);
+      Constant *TypeMap = cast<Constant>(I.getOperand(2));
+
+      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
+      GFI->addStackRoot(FI->getIndex(), TypeMap);
+    }
+    return 0;
+
+  case Intrinsic::gcread:
+  case Intrinsic::gcwrite:
+    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
+    return 0;
+
+  case Intrinsic::flt_rounds: {
+    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
+    return 0;
+  }
+
+  case Intrinsic::trap: {
+    DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
+    return 0;
+  }
+
+  case Intrinsic::uadd_with_overflow:
+    return implVisitAluOverflow(I, ISD::UADDO);
+  case Intrinsic::sadd_with_overflow:
+    return implVisitAluOverflow(I, ISD::SADDO);
+  case Intrinsic::usub_with_overflow:
+    return implVisitAluOverflow(I, ISD::USUBO);
+  case Intrinsic::ssub_with_overflow:
+    return implVisitAluOverflow(I, ISD::SSUBO);
+  case Intrinsic::umul_with_overflow:
+    return implVisitAluOverflow(I, ISD::UMULO);
+  case Intrinsic::smul_with_overflow:
+    return implVisitAluOverflow(I, ISD::SMULO);
+
+  case Intrinsic::prefetch: {
+    SDValue Ops[4];
+    Ops[0] = getRoot();
+    Ops[1] = getValue(I.getOperand(1));
+    Ops[2] = getValue(I.getOperand(2));
+    Ops[3] = getValue(I.getOperand(3));
+    DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4));
+    return 0;
+  }
+
+  case Intrinsic::memory_barrier: {
+    SDValue Ops[6];
+    Ops[0] = getRoot();
+    for (int x = 1; x < 6; ++x)
+      Ops[x] = getValue(I.getOperand(x));
+
+    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
+    return 0;
+  }
+  case Intrinsic::atomic_cmp_swap: {
+    SDValue Root = getRoot();
+    SDValue L =
+      DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
+                    getValue(I.getOperand(2)).getValueType().getSimpleVT(),
+                    Root,
+                    getValue(I.getOperand(1)),
+                    getValue(I.getOperand(2)),
+                    getValue(I.getOperand(3)),
+                    I.getOperand(1));
+    setValue(&I, L);
+    DAG.setRoot(L.getValue(1));
+    return 0;
+  }
+  case Intrinsic::atomic_load_add:
+    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
+  case Intrinsic::atomic_load_sub:
+    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
+  case Intrinsic::atomic_load_or:
+    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
+  case Intrinsic::atomic_load_xor:
+    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
+  case Intrinsic::atomic_load_and:
+    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
+  case Intrinsic::atomic_load_nand:
+    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
+  case Intrinsic::atomic_load_max:
+    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
+  case Intrinsic::atomic_load_min:
+    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
+  case Intrinsic::atomic_load_umin:
+    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
+  case Intrinsic::atomic_load_umax:
+    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
+  case Intrinsic::atomic_swap:
+    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
+
+  case Intrinsic::invariant_start:
+  case Intrinsic::lifetime_start:
+    // Discard region information.
+    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
+    return 0;
+  case Intrinsic::invariant_end:
+  case Intrinsic::lifetime_end:
+    // Discard region information.
+    return 0;
+  }
+}
+
+/// Test if the given instruction is in a position to be optimized
+/// with a tail-call. This roughly means that it's in a block with
+/// a return and there's nothing that needs to be scheduled
+/// between it and the return.
+///
+/// This function only tests target-independent requirements.
+/// For target-dependent requirements, a target should override
+/// TargetLowering::IsEligibleForTailCallOptimization.
+///
+static bool
+isInTailCallPosition(const Instruction *I, Attributes CalleeRetAttr,
+                     const TargetLowering &TLI) {
+  const BasicBlock *ExitBB = I->getParent();
+  const TerminatorInst *Term = ExitBB->getTerminator();
+  const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
+  const Function *F = ExitBB->getParent();
+
+  // The block must end in a return statement or an unreachable.
+  if (!Ret && !isa<UnreachableInst>(Term)) return false;
+
+  // If I will have a chain, make sure no other instruction that will have a
+  // chain interposes between I and the return.
+  if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
+      !I->isSafeToSpeculativelyExecute())
+    for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ;
+         --BBI) {
+      if (&*BBI == I)
+        break;
+      if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
+          !BBI->isSafeToSpeculativelyExecute())
+        return false;
+    }
+
+  // If the block ends with a void return or unreachable, it doesn't matter
+  // what the call's return type is.
+  if (!Ret || Ret->getNumOperands() == 0) return true;
+
+  // If the return value is undef, it doesn't matter what the call's
+  // return type is.
+  if (isa<UndefValue>(Ret->getOperand(0))) return true;
+
+  // Conservatively require the attributes of the call to match those of
+  // the return. Ignore noalias because it doesn't affect the call sequence.
+  unsigned CallerRetAttr = F->getAttributes().getRetAttributes();
+  if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias)
+    return false;
+
+  // Otherwise, make sure the unmodified return value of I is the return value.
+  for (const Instruction *U = dyn_cast<Instruction>(Ret->getOperand(0)); ;
+       U = dyn_cast<Instruction>(U->getOperand(0))) {
+    if (!U)
+      return false;
+    if (!U->hasOneUse())
+      return false;
+    if (U == I)
+      break;
+    // Check for a truly no-op truncate.
+    if (isa<TruncInst>(U) &&
+        TLI.isTruncateFree(U->getOperand(0)->getType(), U->getType()))
+      continue;
+    // Check for a truly no-op bitcast.
+    if (isa<BitCastInst>(U) &&
+        (U->getOperand(0)->getType() == U->getType() ||
+         (isa<PointerType>(U->getOperand(0)->getType()) &&
+          isa<PointerType>(U->getType()))))
+      continue;
+    // Otherwise it's not a true no-op.
+    return false;
+  }
+
+  return true;
+}
+
+void SelectionDAGBuilder::LowerCallTo(CallSite CS, SDValue Callee,
+                                      bool isTailCall,
+                                      MachineBasicBlock *LandingPad) {
+  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
+  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
+  const Type *RetTy = FTy->getReturnType();
+  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
+  unsigned BeginLabel = 0, EndLabel = 0;
+
+  TargetLowering::ArgListTy Args;
+  TargetLowering::ArgListEntry Entry;
+  Args.reserve(CS.arg_size());
+
+  // Check whether the function can return without sret-demotion.
+  SmallVector<EVT, 4> OutVTs;
+  SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
+  SmallVector<uint64_t, 4> Offsets;
+  getReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), 
+    OutVTs, OutsFlags, TLI, &Offsets);
+  
+
+  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 
+                        FTy->isVarArg(), OutVTs, OutsFlags, DAG);
+
+  SDValue DemoteStackSlot;
+
+  if (!CanLowerReturn) {
+    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
+                      FTy->getReturnType());
+    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
+                      FTy->getReturnType());
+    MachineFunction &MF = DAG.getMachineFunction();
+    int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
+    const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
+
+    DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
+    Entry.Node = DemoteStackSlot;
+    Entry.Ty = StackSlotPtrType;
+    Entry.isSExt = false;
+    Entry.isZExt = false;
+    Entry.isInReg = false;
+    Entry.isSRet = true;
+    Entry.isNest = false;
+    Entry.isByVal = false;
+    Entry.Alignment = Align;
+    Args.push_back(Entry);
+    RetTy = Type::getVoidTy(FTy->getContext());
+  }
+
+  for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
+       i != e; ++i) {
+    SDValue ArgNode = getValue(*i);
+    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
+
+    unsigned attrInd = i - CS.arg_begin() + 1;
+    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
+    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
+    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
+    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
+    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
+    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
+    Entry.Alignment = CS.getParamAlignment(attrInd);
+    Args.push_back(Entry);
+  }
+
+  if (LandingPad && MMI) {
+    // Insert a label before the invoke call to mark the try range.  This can be
+    // used to detect deletion of the invoke via the MachineModuleInfo.
+    BeginLabel = MMI->NextLabelID();
+
+    // Both PendingLoads and PendingExports must be flushed here;
+    // this call might not return.
+    (void)getRoot();
+    DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getCurDebugLoc(),
+                             getControlRoot(), BeginLabel));
+  }
+
+  // Check if target-independent constraints permit a tail call here.
+  // Target-dependent constraints are checked within TLI.LowerCallTo.
+  if (isTailCall &&
+      !isInTailCallPosition(CS.getInstruction(),
+                            CS.getAttributes().getRetAttributes(),
+                            TLI))
+    isTailCall = false;
+
+  std::pair<SDValue,SDValue> Result =
+    TLI.LowerCallTo(getRoot(), RetTy,
+                    CS.paramHasAttr(0, Attribute::SExt),
+                    CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
+                    CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
+                    CS.getCallingConv(),
+                    isTailCall,
+                    !CS.getInstruction()->use_empty(),
+                    Callee, Args, DAG, getCurDebugLoc());
+  assert((isTailCall || Result.second.getNode()) &&
+         "Non-null chain expected with non-tail call!");
+  assert((Result.second.getNode() || !Result.first.getNode()) &&
+         "Null value expected with tail call!");
+  if (Result.first.getNode())
+    setValue(CS.getInstruction(), Result.first);
+  else if (!CanLowerReturn && Result.second.getNode()) {
+    // The instruction result is the result of loading from the
+    // hidden sret parameter.
+    SmallVector<EVT, 1> PVTs;
+    const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
+
+    ComputeValueVTs(TLI, PtrRetTy, PVTs);
+    assert(PVTs.size() == 1 && "Pointers should fit in one register");
+    EVT PtrVT = PVTs[0];
+    unsigned NumValues = OutVTs.size();
+    SmallVector<SDValue, 4> Values(NumValues);
+    SmallVector<SDValue, 4> Chains(NumValues);
+
+    for (unsigned i = 0; i < NumValues; ++i) {
+      SDValue L = DAG.getLoad(OutVTs[i], getCurDebugLoc(), Result.second,
+        DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, DemoteStackSlot,
+        DAG.getConstant(Offsets[i], PtrVT)),
+        NULL, Offsets[i], false, 1);
+      Values[i] = L;
+      Chains[i] = L.getValue(1);
+    }
+    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
+                                MVT::Other, &Chains[0], NumValues);
+    PendingLoads.push_back(Chain);
+
+    setValue(CS.getInstruction(), DAG.getNode(ISD::MERGE_VALUES,
+             getCurDebugLoc(), DAG.getVTList(&OutVTs[0], NumValues),
+             &Values[0], NumValues));
+  }
+  // As a special case, a null chain means that a tail call has
+  // been emitted and the DAG root is already updated.
+  if (Result.second.getNode())
+    DAG.setRoot(Result.second);
+  else
+    HasTailCall = true;
+
+  if (LandingPad && MMI) {
+    // Insert a label at the end of the invoke call to mark the try range.  This
+    // can be used to detect deletion of the invoke via the MachineModuleInfo.
+    EndLabel = MMI->NextLabelID();
+    DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getCurDebugLoc(),
+                             getRoot(), EndLabel));
+
+    // Inform MachineModuleInfo of range.
+    MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
+  }
+}
+
+
+void SelectionDAGBuilder::visitCall(CallInst &I) {
+  const char *RenameFn = 0;
+  if (Function *F = I.getCalledFunction()) {
+    if (F->isDeclaration()) {
+      const TargetIntrinsicInfo *II = TLI.getTargetMachine().getIntrinsicInfo();
+      if (II) {
+        if (unsigned IID = II->getIntrinsicID(F)) {
+          RenameFn = visitIntrinsicCall(I, IID);
+          if (!RenameFn)
+            return;
+        }
+      }
+      if (unsigned IID = F->getIntrinsicID()) {
+        RenameFn = visitIntrinsicCall(I, IID);
+        if (!RenameFn)
+          return;
+      }
+    }
+
+    // Check for well-known libc/libm calls.  If the function is internal, it
+    // can't be a library call.
+    if (!F->hasLocalLinkage() && F->hasName()) {
+      StringRef Name = F->getName();
+      if (Name == "copysign" || Name == "copysignf") {
+        if (I.getNumOperands() == 3 &&   // Basic sanity checks.
+            I.getOperand(1)->getType()->isFloatingPoint() &&
+            I.getType() == I.getOperand(1)->getType() &&
+            I.getType() == I.getOperand(2)->getType()) {
+          SDValue LHS = getValue(I.getOperand(1));
+          SDValue RHS = getValue(I.getOperand(2));
+          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
+                                   LHS.getValueType(), LHS, RHS));
+          return;
+        }
+      } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
+        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
+            I.getOperand(1)->getType()->isFloatingPoint() &&
+            I.getType() == I.getOperand(1)->getType()) {
+          SDValue Tmp = getValue(I.getOperand(1));
+          setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
+                                   Tmp.getValueType(), Tmp));
+          return;
+        }
+      } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
+        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
+            I.getOperand(1)->getType()->isFloatingPoint() &&
+            I.getType() == I.getOperand(1)->getType() &&
+            I.onlyReadsMemory()) {
+          SDValue Tmp = getValue(I.getOperand(1));
+          setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
+                                   Tmp.getValueType(), Tmp));
+          return;
+        }
+      } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
+        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
+            I.getOperand(1)->getType()->isFloatingPoint() &&
+            I.getType() == I.getOperand(1)->getType() &&
+            I.onlyReadsMemory()) {
+          SDValue Tmp = getValue(I.getOperand(1));
+          setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
+                                   Tmp.getValueType(), Tmp));
+          return;
+        }
+      } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
+        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
+            I.getOperand(1)->getType()->isFloatingPoint() &&
+            I.getType() == I.getOperand(1)->getType() &&
+            I.onlyReadsMemory()) {
+          SDValue Tmp = getValue(I.getOperand(1));
+          setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
+                                   Tmp.getValueType(), Tmp));
+          return;
+        }
+      }
+    }
+  } else if (isa<InlineAsm>(I.getOperand(0))) {
+    visitInlineAsm(&I);
+    return;
+  }
+
+  SDValue Callee;
+  if (!RenameFn)
+    Callee = getValue(I.getOperand(0));
+  else
+    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
+
+  // Check if we can potentially perform a tail call. More detailed
+  // checking is be done within LowerCallTo, after more information
+  // about the call is known.
+  bool isTailCall = PerformTailCallOpt && I.isTailCall();
+
+  LowerCallTo(&I, Callee, isTailCall);
+}
+
+
+/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
+/// this value and returns the result as a ValueVT value.  This uses
+/// Chain/Flag as the input and updates them for the output Chain/Flag.
+/// If the Flag pointer is NULL, no flag is used.
+SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl,
+                                      SDValue &Chain,
+                                      SDValue *Flag) const {
+  // Assemble the legal parts into the final values.
+  SmallVector<SDValue, 4> Values(ValueVTs.size());
+  SmallVector<SDValue, 8> Parts;
+  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
+    // Copy the legal parts from the registers.
+    EVT ValueVT = ValueVTs[Value];
+    unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVT);
+    EVT RegisterVT = RegVTs[Value];
+
+    Parts.resize(NumRegs);
+    for (unsigned i = 0; i != NumRegs; ++i) {
+      SDValue P;
+      if (Flag == 0)
+        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
+      else {
+        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
+        *Flag = P.getValue(2);
+      }
+      Chain = P.getValue(1);
+
+      // If the source register was virtual and if we know something about it,
+      // add an assert node.
+      if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
+          RegisterVT.isInteger() && !RegisterVT.isVector()) {
+        unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
+        FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
+        if (FLI.LiveOutRegInfo.size() > SlotNo) {
+          FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo];
+
+          unsigned RegSize = RegisterVT.getSizeInBits();
+          unsigned NumSignBits = LOI.NumSignBits;
+          unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
+
+          // FIXME: We capture more information than the dag can represent.  For
+          // now, just use the tightest assertzext/assertsext possible.
+          bool isSExt = true;
+          EVT FromVT(MVT::Other);
+          if (NumSignBits == RegSize)
+            isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
+          else if (NumZeroBits >= RegSize-1)
+            isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
+          else if (NumSignBits > RegSize-8)
+            isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
+          else if (NumZeroBits >= RegSize-8)
+            isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
+          else if (NumSignBits > RegSize-16)
+            isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
+          else if (NumZeroBits >= RegSize-16)
+            isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
+          else if (NumSignBits > RegSize-32)
+            isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
+          else if (NumZeroBits >= RegSize-32)
+            isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
+
+          if (FromVT != MVT::Other) {
+            P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
+                            RegisterVT, P, DAG.getValueType(FromVT));
+
+          }
+        }
+      }
+
+      Parts[i] = P;
+    }
+
+    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
+                                     NumRegs, RegisterVT, ValueVT);
+    Part += NumRegs;
+    Parts.clear();
+  }
+
+  return DAG.getNode(ISD::MERGE_VALUES, dl,
+                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
+                     &Values[0], ValueVTs.size());
+}
+
+/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
+/// specified value into the registers specified by this object.  This uses
+/// Chain/Flag as the input and updates them for the output Chain/Flag.
+/// If the Flag pointer is NULL, no flag is used.
+void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
+                                 SDValue &Chain, SDValue *Flag) const {
+  // Get the list of the values's legal parts.
+  unsigned NumRegs = Regs.size();
+  SmallVector<SDValue, 8> Parts(NumRegs);
+  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
+    EVT ValueVT = ValueVTs[Value];
+    unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), ValueVT);
+    EVT RegisterVT = RegVTs[Value];
+
+    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
+                   &Parts[Part], NumParts, RegisterVT);
+    Part += NumParts;
+  }
+
+  // Copy the parts into the registers.
+  SmallVector<SDValue, 8> Chains(NumRegs);
+  for (unsigned i = 0; i != NumRegs; ++i) {
+    SDValue Part;
+    if (Flag == 0)
+      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
+    else {
+      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
+      *Flag = Part.getValue(1);
+    }
+    Chains[i] = Part.getValue(0);
+  }
+
+  if (NumRegs == 1 || Flag)
+    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
+    // flagged to it. That is the CopyToReg nodes and the user are considered
+    // a single scheduling unit. If we create a TokenFactor and return it as
+    // chain, then the TokenFactor is both a predecessor (operand) of the
+    // user as well as a successor (the TF operands are flagged to the user).
+    // c1, f1 = CopyToReg
+    // c2, f2 = CopyToReg
+    // c3     = TokenFactor c1, c2
+    // ...
+    //        = op c3, ..., f2
+    Chain = Chains[NumRegs-1];
+  else
+    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
+}
+
+/// AddInlineAsmOperands - Add this value to the specified inlineasm node
+/// operand list.  This adds the code marker and includes the number of
+/// values added into it.
+void RegsForValue::AddInlineAsmOperands(unsigned Code,
+                                        bool HasMatching,unsigned MatchingIdx,
+                                        SelectionDAG &DAG,
+                                        std::vector<SDValue> &Ops) const {
+  EVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
+  assert(Regs.size() < (1 << 13) && "Too many inline asm outputs!");
+  unsigned Flag = Code | (Regs.size() << 3);
+  if (HasMatching)
+    Flag |= 0x80000000 | (MatchingIdx << 16);
+  Ops.push_back(DAG.getTargetConstant(Flag, IntPtrTy));
+  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
+    unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
+    EVT RegisterVT = RegVTs[Value];
+    for (unsigned i = 0; i != NumRegs; ++i) {
+      assert(Reg < Regs.size() && "Mismatch in # registers expected");
+      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
+    }
+  }
+}
+
+/// isAllocatableRegister - If the specified register is safe to allocate,
+/// i.e. it isn't a stack pointer or some other special register, return the
+/// register class for the register.  Otherwise, return null.
+static const TargetRegisterClass *
+isAllocatableRegister(unsigned Reg, MachineFunction &MF,
+                      const TargetLowering &TLI,
+                      const TargetRegisterInfo *TRI) {
+  EVT FoundVT = MVT::Other;
+  const TargetRegisterClass *FoundRC = 0;
+  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
+       E = TRI->regclass_end(); RCI != E; ++RCI) {
+    EVT ThisVT = MVT::Other;
+
+    const TargetRegisterClass *RC = *RCI;
+    // If none of the the value types for this register class are valid, we
+    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
+    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
+         I != E; ++I) {
+      if (TLI.isTypeLegal(*I)) {
+        // If we have already found this register in a different register class,
+        // choose the one with the largest VT specified.  For example, on
+        // PowerPC, we favor f64 register classes over f32.
+        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
+          ThisVT = *I;
+          break;
+        }
+      }
+    }
+
+    if (ThisVT == MVT::Other) continue;
+
+    // NOTE: This isn't ideal.  In particular, this might allocate the
+    // frame pointer in functions that need it (due to them not being taken
+    // out of allocation, because a variable sized allocation hasn't been seen
+    // yet).  This is a slight code pessimization, but should still work.
+    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
+         E = RC->allocation_order_end(MF); I != E; ++I)
+      if (*I == Reg) {
+        // We found a matching register class.  Keep looking at others in case
+        // we find one with larger registers that this physreg is also in.
+        FoundRC = RC;
+        FoundVT = ThisVT;
+        break;
+      }
+  }
+  return FoundRC;
+}
+
+
+namespace llvm {
+/// AsmOperandInfo - This contains information for each constraint that we are
+/// lowering.
+class VISIBILITY_HIDDEN SDISelAsmOperandInfo :
+    public TargetLowering::AsmOperandInfo {
+public:
+  /// CallOperand - If this is the result output operand or a clobber
+  /// this is null, otherwise it is the incoming operand to the CallInst.
+  /// This gets modified as the asm is processed.
+  SDValue CallOperand;
+
+  /// AssignedRegs - If this is a register or register class operand, this
+  /// contains the set of register corresponding to the operand.
+  RegsForValue AssignedRegs;
+
+  explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
+    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
+  }
+
+  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
+  /// busy in OutputRegs/InputRegs.
+  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
+                         std::set<unsigned> &OutputRegs,
+                         std::set<unsigned> &InputRegs,
+                         const TargetRegisterInfo &TRI) const {
+    if (isOutReg) {
+      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
+        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
+    }
+    if (isInReg) {
+      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
+        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
+    }
+  }
+
+  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
+  /// corresponds to.  If there is no Value* for this operand, it returns
+  /// MVT::Other.
+  EVT getCallOperandValEVT(LLVMContext &Context, 
+                           const TargetLowering &TLI,
+                           const TargetData *TD) const {
+    if (CallOperandVal == 0) return MVT::Other;
+
+    if (isa<BasicBlock>(CallOperandVal))
+      return TLI.getPointerTy();
+
+    const llvm::Type *OpTy = CallOperandVal->getType();
+
+    // If this is an indirect operand, the operand is a pointer to the
+    // accessed type.
+    if (isIndirect)
+      OpTy = cast<PointerType>(OpTy)->getElementType();
+
+    // If OpTy is not a single value, it may be a struct/union that we
+    // can tile with integers.
+    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
+      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
+      switch (BitSize) {
+      default: break;
+      case 1:
+      case 8:
+      case 16:
+      case 32:
+      case 64:
+      case 128:
+        OpTy = IntegerType::get(Context, BitSize);
+        break;
+      }
+    }
+
+    return TLI.getValueType(OpTy, true);
+  }
+
+private:
+  /// MarkRegAndAliases - Mark the specified register and all aliases in the
+  /// specified set.
+  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
+                                const TargetRegisterInfo &TRI) {
+    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
+    Regs.insert(Reg);
+    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
+      for (; *Aliases; ++Aliases)
+        Regs.insert(*Aliases);
+  }
+};
+} // end llvm namespace.
+
+
+/// GetRegistersForValue - Assign registers (virtual or physical) for the
+/// specified operand.  We prefer to assign virtual registers, to allow the
+/// register allocator handle the assignment process.  However, if the asm uses
+/// features that we can't model on machineinstrs, we have SDISel do the
+/// allocation.  This produces generally horrible, but correct, code.
+///
+///   OpInfo describes the operand.
+///   Input and OutputRegs are the set of already allocated physical registers.
+///
+void SelectionDAGBuilder::
+GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
+                     std::set<unsigned> &OutputRegs,
+                     std::set<unsigned> &InputRegs) {
+  LLVMContext &Context = FuncInfo.Fn->getContext();
+
+  // Compute whether this value requires an input register, an output register,
+  // or both.
+  bool isOutReg = false;
+  bool isInReg = false;
+  switch (OpInfo.Type) {
+  case InlineAsm::isOutput:
+    isOutReg = true;
+
+    // If there is an input constraint that matches this, we need to reserve
+    // the input register so no other inputs allocate to it.
+    isInReg = OpInfo.hasMatchingInput();
+    break;
+  case InlineAsm::isInput:
+    isInReg = true;
+    isOutReg = false;
+    break;
+  case InlineAsm::isClobber:
+    isOutReg = true;
+    isInReg = true;
+    break;
+  }
+
+
+  MachineFunction &MF = DAG.getMachineFunction();
+  SmallVector<unsigned, 4> Regs;
+
+  // If this is a constraint for a single physreg, or a constraint for a
+  // register class, find it.
+  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
+    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
+                                     OpInfo.ConstraintVT);
+
+  unsigned NumRegs = 1;
+  if (OpInfo.ConstraintVT != MVT::Other) {
+    // If this is a FP input in an integer register (or visa versa) insert a bit
+    // cast of the input value.  More generally, handle any case where the input
+    // value disagrees with the register class we plan to stick this in.
+    if (OpInfo.Type == InlineAsm::isInput &&
+        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
+      // Try to convert to the first EVT that the reg class contains.  If the
+      // types are identical size, use a bitcast to convert (e.g. two differing
+      // vector types).
+      EVT RegVT = *PhysReg.second->vt_begin();
+      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
+        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
+                                         RegVT, OpInfo.CallOperand);
+        OpInfo.ConstraintVT = RegVT;
+      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
+        // If the input is a FP value and we want it in FP registers, do a
+        // bitcast to the corresponding integer type.  This turns an f64 value
+        // into i64, which can be passed with two i32 values on a 32-bit
+        // machine.
+        RegVT = EVT::getIntegerVT(Context, 
+                                  OpInfo.ConstraintVT.getSizeInBits());
+        OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
+                                         RegVT, OpInfo.CallOperand);
+        OpInfo.ConstraintVT = RegVT;
+      }
+    }
+
+    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
+  }
+
+  EVT RegVT;
+  EVT ValueVT = OpInfo.ConstraintVT;
+
+  // If this is a constraint for a specific physical register, like {r17},
+  // assign it now.
+  if (unsigned AssignedReg = PhysReg.first) {
+    const TargetRegisterClass *RC = PhysReg.second;
+    if (OpInfo.ConstraintVT == MVT::Other)
+      ValueVT = *RC->vt_begin();
+
+    // Get the actual register value type.  This is important, because the user
+    // may have asked for (e.g.) the AX register in i32 type.  We need to
+    // remember that AX is actually i16 to get the right extension.
+    RegVT = *RC->vt_begin();
+
+    // This is a explicit reference to a physical register.
+    Regs.push_back(AssignedReg);
+
+    // If this is an expanded reference, add the rest of the regs to Regs.
+    if (NumRegs != 1) {
+      TargetRegisterClass::iterator I = RC->begin();
+      for (; *I != AssignedReg; ++I)
+        assert(I != RC->end() && "Didn't find reg!");
+
+      // Already added the first reg.
+      --NumRegs; ++I;
+      for (; NumRegs; --NumRegs, ++I) {
+        assert(I != RC->end() && "Ran out of registers to allocate!");
+        Regs.push_back(*I);
+      }
+    }
+    OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
+    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
+    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
+    return;
+  }
+
+  // Otherwise, if this was a reference to an LLVM register class, create vregs
+  // for this reference.
+  if (const TargetRegisterClass *RC = PhysReg.second) {
+    RegVT = *RC->vt_begin();
+    if (OpInfo.ConstraintVT == MVT::Other)
+      ValueVT = RegVT;
+
+    // Create the appropriate number of virtual registers.
+    MachineRegisterInfo &RegInfo = MF.getRegInfo();
+    for (; NumRegs; --NumRegs)
+      Regs.push_back(RegInfo.createVirtualRegister(RC));
+
+    OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
+    return;
+  }
+  
+  // This is a reference to a register class that doesn't directly correspond
+  // to an LLVM register class.  Allocate NumRegs consecutive, available,
+  // registers from the class.
+  std::vector<unsigned> RegClassRegs
+    = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
+                                            OpInfo.ConstraintVT);
+
+  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
+  unsigned NumAllocated = 0;
+  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
+    unsigned Reg = RegClassRegs[i];
+    // See if this register is available.
+    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
+        (isInReg  && InputRegs.count(Reg))) {    // Already used.
+      // Make sure we find consecutive registers.
+      NumAllocated = 0;
+      continue;
+    }
+
+    // Check to see if this register is allocatable (i.e. don't give out the
+    // stack pointer).
+    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
+    if (!RC) {        // Couldn't allocate this register.
+      // Reset NumAllocated to make sure we return consecutive registers.
+      NumAllocated = 0;
+      continue;
+    }
+
+    // Okay, this register is good, we can use it.
+    ++NumAllocated;
+
+    // If we allocated enough consecutive registers, succeed.
+    if (NumAllocated == NumRegs) {
+      unsigned RegStart = (i-NumAllocated)+1;
+      unsigned RegEnd   = i+1;
+      // Mark all of the allocated registers used.
+      for (unsigned i = RegStart; i != RegEnd; ++i)
+        Regs.push_back(RegClassRegs[i]);
+
+      OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(),
+                                         OpInfo.ConstraintVT);
+      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
+      return;
+    }
+  }
+
+  // Otherwise, we couldn't allocate enough registers for this.
+}
+
+/// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
+/// processed uses a memory 'm' constraint.
+static bool
+hasInlineAsmMemConstraint(std::vector<InlineAsm::ConstraintInfo> &CInfos,
+                          const TargetLowering &TLI) {
+  for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
+    InlineAsm::ConstraintInfo &CI = CInfos[i];
+    for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
+      TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
+      if (CType == TargetLowering::C_Memory)
+        return true;
+    }
+    
+    // Indirect operand accesses access memory.
+    if (CI.isIndirect)
+      return true;
+  }
+
+  return false;
+}
+
+/// visitInlineAsm - Handle a call to an InlineAsm object.
+///
+void SelectionDAGBuilder::visitInlineAsm(CallSite CS) {
+  InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
+
+  /// ConstraintOperands - Information about all of the constraints.
+  std::vector<SDISelAsmOperandInfo> ConstraintOperands;
+
+  std::set<unsigned> OutputRegs, InputRegs;
+
+  // Do a prepass over the constraints, canonicalizing them, and building up the
+  // ConstraintOperands list.
+  std::vector<InlineAsm::ConstraintInfo>
+    ConstraintInfos = IA->ParseConstraints();
+
+  bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI);
+  
+  SDValue Chain, Flag;
+  
+  // We won't need to flush pending loads if this asm doesn't touch
+  // memory and is nonvolatile.
+  if (hasMemory || IA->hasSideEffects())
+    Chain = getRoot();
+  else
+    Chain = DAG.getRoot();
+
+  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
+  unsigned ResNo = 0;   // ResNo - The result number of the next output.
+  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
+    ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
+    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
+
+    EVT OpVT = MVT::Other;
+
+    // Compute the value type for each operand.
+    switch (OpInfo.Type) {
+    case InlineAsm::isOutput:
+      // Indirect outputs just consume an argument.
+      if (OpInfo.isIndirect) {
+        OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
+        break;
+      }
+
+      // The return value of the call is this value.  As such, there is no
+      // corresponding argument.
+      assert(CS.getType() != Type::getVoidTy(*DAG.getContext()) &&
+             "Bad inline asm!");
+      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
+        OpVT = TLI.getValueType(STy->getElementType(ResNo));
+      } else {
+        assert(ResNo == 0 && "Asm only has one result!");
+        OpVT = TLI.getValueType(CS.getType());
+      }
+      ++ResNo;
+      break;
+    case InlineAsm::isInput:
+      OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
+      break;
+    case InlineAsm::isClobber:
+      // Nothing to do.
+      break;
+    }
+
+    // If this is an input or an indirect output, process the call argument.
+    // BasicBlocks are labels, currently appearing only in asm's.
+    if (OpInfo.CallOperandVal) {
+      // Strip bitcasts, if any.  This mostly comes up for functions.
+      OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts();
+
+      if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
+        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
+      } else {
+        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
+      }
+
+      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
+    }
+
+    OpInfo.ConstraintVT = OpVT;
+  }
+
+  // Second pass over the constraints: compute which constraint option to use
+  // and assign registers to constraints that want a specific physreg.
+  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
+    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
+
+    // If this is an output operand with a matching input operand, look up the
+    // matching input. If their types mismatch, e.g. one is an integer, the
+    // other is floating point, or their sizes are different, flag it as an
+    // error.
+    if (OpInfo.hasMatchingInput()) {
+      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
+      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
+        if ((OpInfo.ConstraintVT.isInteger() !=
+             Input.ConstraintVT.isInteger()) ||
+            (OpInfo.ConstraintVT.getSizeInBits() !=
+             Input.ConstraintVT.getSizeInBits())) {
+          llvm_report_error("Unsupported asm: input constraint"
+                            " with a matching output constraint of incompatible"
+                            " type!");
+        }
+        Input.ConstraintVT = OpInfo.ConstraintVT;
+      }
+    }
+
+    // Compute the constraint code and ConstraintType to use.
+    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG);
+
+    // If this is a memory input, and if the operand is not indirect, do what we
+    // need to to provide an address for the memory input.
+    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
+        !OpInfo.isIndirect) {
+      assert(OpInfo.Type == InlineAsm::isInput &&
+             "Can only indirectify direct input operands!");
+
+      // Memory operands really want the address of the value.  If we don't have
+      // an indirect input, put it in the constpool if we can, otherwise spill
+      // it to a stack slot.
+
+      // If the operand is a float, integer, or vector constant, spill to a
+      // constant pool entry to get its address.
+      Value *OpVal = OpInfo.CallOperandVal;
+      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
+          isa<ConstantVector>(OpVal)) {
+        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
+                                                 TLI.getPointerTy());
+      } else {
+        // Otherwise, create a stack slot and emit a store to it before the
+        // asm.
+        const Type *Ty = OpVal->getType();
+        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
+        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
+        MachineFunction &MF = DAG.getMachineFunction();
+        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
+        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
+        Chain = DAG.getStore(Chain, getCurDebugLoc(),
+                             OpInfo.CallOperand, StackSlot, NULL, 0);
+        OpInfo.CallOperand = StackSlot;
+      }
+
+      // There is no longer a Value* corresponding to this operand.
+      OpInfo.CallOperandVal = 0;
+      // It is now an indirect operand.
+      OpInfo.isIndirect = true;
+    }
+
+    // If this constraint is for a specific register, allocate it before
+    // anything else.
+    if (OpInfo.ConstraintType == TargetLowering::C_Register)
+      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
+  }
+  ConstraintInfos.clear();
+
+
+  // Second pass - Loop over all of the operands, assigning virtual or physregs
+  // to register class operands.
+  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
+    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
+
+    // C_Register operands have already been allocated, Other/Memory don't need
+    // to be.
+    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
+      GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
+  }
+
+  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
+  std::vector<SDValue> AsmNodeOperands;
+  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
+  AsmNodeOperands.push_back(
+          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
+
+
+  // Loop over all of the inputs, copying the operand values into the
+  // appropriate registers and processing the output regs.
+  RegsForValue RetValRegs;
+
+  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
+  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
+
+  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
+    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
+
+    switch (OpInfo.Type) {
+    case InlineAsm::isOutput: {
+      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
+          OpInfo.ConstraintType != TargetLowering::C_Register) {
+        // Memory output, or 'other' output (e.g. 'X' constraint).
+        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
+
+        // Add information to the INLINEASM node to know about this output.
+        unsigned ResOpType = 4/*MEM*/ | (1<<3);
+        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
+                                                        TLI.getPointerTy()));
+        AsmNodeOperands.push_back(OpInfo.CallOperand);
+        break;
+      }
+
+      // Otherwise, this is a register or register class output.
+
+      // Copy the output from the appropriate register.  Find a register that
+      // we can use.
+      if (OpInfo.AssignedRegs.Regs.empty()) {
+        llvm_report_error("Couldn't allocate output reg for"
+                          " constraint '" + OpInfo.ConstraintCode + "'!");
+      }
+
+      // If this is an indirect operand, store through the pointer after the
+      // asm.
+      if (OpInfo.isIndirect) {
+        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
+                                                      OpInfo.CallOperandVal));
+      } else {
+        // This is the result value of the call.
+        assert(CS.getType() != Type::getVoidTy(*DAG.getContext()) &&
+               "Bad inline asm!");
+        // Concatenate this output onto the outputs list.
+        RetValRegs.append(OpInfo.AssignedRegs);
+      }
+
+      // Add information to the INLINEASM node to know that this register is
+      // set.
+      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
+                                               6 /* EARLYCLOBBER REGDEF */ :
+                                               2 /* REGDEF */ ,
+                                               false,
+                                               0,
+                                               DAG, AsmNodeOperands);
+      break;
+    }
+    case InlineAsm::isInput: {
+      SDValue InOperandVal = OpInfo.CallOperand;
+
+      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
+        // If this is required to match an output register we have already set,
+        // just use its register.
+        unsigned OperandNo = OpInfo.getMatchedOperand();
+
+        // Scan until we find the definition we already emitted of this operand.
+        // When we find it, create a RegsForValue operand.
+        unsigned CurOp = 2;  // The first operand.
+        for (; OperandNo; --OperandNo) {
+          // Advance to the next operand.
+          unsigned OpFlag =
+            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
+          assert(((OpFlag & 7) == 2 /*REGDEF*/ ||
+                  (OpFlag & 7) == 6 /*EARLYCLOBBER REGDEF*/ ||
+                  (OpFlag & 7) == 4 /*MEM*/) &&
+                 "Skipped past definitions?");
+          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
+        }
+
+        unsigned OpFlag =
+          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
+        if ((OpFlag & 7) == 2 /*REGDEF*/
+            || (OpFlag & 7) == 6 /* EARLYCLOBBER REGDEF */) {
+          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
+          if (OpInfo.isIndirect) {
+            llvm_report_error("Don't know how to handle tied indirect "
+                              "register inputs yet!");
+          }
+          RegsForValue MatchedRegs;
+          MatchedRegs.TLI = &TLI;
+          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
+          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
+          MatchedRegs.RegVTs.push_back(RegVT);
+          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
+          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
+               i != e; ++i)
+            MatchedRegs.Regs.
+              push_back(RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
+
+          // Use the produced MatchedRegs object to
+          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
+                                    Chain, &Flag);
+          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/,
+                                           true, OpInfo.getMatchedOperand(),
+                                           DAG, AsmNodeOperands);
+          break;
+        } else {
+          assert(((OpFlag & 7) == 4) && "Unknown matching constraint!");
+          assert((InlineAsm::getNumOperandRegisters(OpFlag)) == 1 &&
+                 "Unexpected number of operands");
+          // Add information to the INLINEASM node to know about this input.
+          // See InlineAsm.h isUseOperandTiedToDef.
+          OpFlag |= 0x80000000 | (OpInfo.getMatchedOperand() << 16);
+          AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
+                                                          TLI.getPointerTy()));
+          AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
+          break;
+        }
+      }
+
+      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
+        assert(!OpInfo.isIndirect &&
+               "Don't know how to handle indirect other inputs yet!");
+
+        std::vector<SDValue> Ops;
+        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
+                                         hasMemory, Ops, DAG);
+        if (Ops.empty()) {
+          llvm_report_error("Invalid operand for inline asm"
+                            " constraint '" + OpInfo.ConstraintCode + "'!");
+        }
+
+        // Add information to the INLINEASM node to know about this input.
+        unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
+        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
+                                                        TLI.getPointerTy()));
+        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
+        break;
+      } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
+        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
+        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
+               "Memory operands expect pointer values");
+
+        // Add information to the INLINEASM node to know about this input.
+        unsigned ResOpType = 4/*MEM*/ | (1<<3);
+        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
+                                                        TLI.getPointerTy()));
+        AsmNodeOperands.push_back(InOperandVal);
+        break;
+      }
+
+      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
+              OpInfo.ConstraintType == TargetLowering::C_Register) &&
+             "Unknown constraint type!");
+      assert(!OpInfo.isIndirect &&
+             "Don't know how to handle indirect register inputs yet!");
+
+      // Copy the input into the appropriate registers.
+      if (OpInfo.AssignedRegs.Regs.empty()) {
+        llvm_report_error("Couldn't allocate input reg for"
+                          " constraint '"+ OpInfo.ConstraintCode +"'!");
+      }
+
+      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
+                                        Chain, &Flag);
+
+      OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, false, 0,
+                                               DAG, AsmNodeOperands);
+      break;
+    }
+    case InlineAsm::isClobber: {
+      // Add the clobbered value to the operand list, so that the register
+      // allocator is aware that the physreg got clobbered.
+      if (!OpInfo.AssignedRegs.Regs.empty())
+        OpInfo.AssignedRegs.AddInlineAsmOperands(6 /* EARLYCLOBBER REGDEF */,
+                                                 false, 0, DAG,AsmNodeOperands);
+      break;
+    }
+    }
+  }
+
+  // Finish up input operands.
+  AsmNodeOperands[0] = Chain;
+  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
+
+  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
+                      DAG.getVTList(MVT::Other, MVT::Flag),
+                      &AsmNodeOperands[0], AsmNodeOperands.size());
+  Flag = Chain.getValue(1);
+
+  // If this asm returns a register value, copy the result from that register
+  // and set it as the value of the call.
+  if (!RetValRegs.Regs.empty()) {
+    SDValue Val = RetValRegs.getCopyFromRegs(DAG, getCurDebugLoc(),
+                                             Chain, &Flag);
+
+    // FIXME: Why don't we do this for inline asms with MRVs?
+    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
+      EVT ResultType = TLI.getValueType(CS.getType());
+
+      // If any of the results of the inline asm is a vector, it may have the
+      // wrong width/num elts.  This can happen for register classes that can
+      // contain multiple different value types.  The preg or vreg allocated may
+      // not have the same VT as was expected.  Convert it to the right type
+      // with bit_convert.
+      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
+        Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
+                          ResultType, Val);
+
+      } else if (ResultType != Val.getValueType() &&
+                 ResultType.isInteger() && Val.getValueType().isInteger()) {
+        // If a result value was tied to an input value, the computed result may
+        // have a wider width than the expected result.  Extract the relevant
+        // portion.
+        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
+      }
+
+      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
+    }
+
+    setValue(CS.getInstruction(), Val);
+    // Don't need to use this as a chain in this case.
+    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
+      return;
+  }
+
+  std::vector<std::pair<SDValue, Value*> > StoresToEmit;
+
+  // Process indirect outputs, first output all of the flagged copies out of
+  // physregs.
+  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
+    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
+    Value *Ptr = IndirectStoresToEmit[i].second;
+    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, getCurDebugLoc(),
+                                             Chain, &Flag);
+    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
+
+  }
+
+  // Emit the non-flagged stores from the physregs.
+  SmallVector<SDValue, 8> OutChains;
+  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
+    OutChains.push_back(DAG.getStore(Chain, getCurDebugLoc(),
+                                    StoresToEmit[i].first,
+                                    getValue(StoresToEmit[i].second),
+                                    StoresToEmit[i].second, 0));
+  if (!OutChains.empty())
+    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
+                        &OutChains[0], OutChains.size());
+  DAG.setRoot(Chain);
+}
+
+void SelectionDAGBuilder::visitVAStart(CallInst &I) {
+  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
+                          MVT::Other, getRoot(),
+                          getValue(I.getOperand(1)),
+                          DAG.getSrcValue(I.getOperand(1))));
+}
+
+void SelectionDAGBuilder::visitVAArg(VAArgInst &I) {
+  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
+                           getRoot(), getValue(I.getOperand(0)),
+                           DAG.getSrcValue(I.getOperand(0)));
+  setValue(&I, V);
+  DAG.setRoot(V.getValue(1));
+}
+
+void SelectionDAGBuilder::visitVAEnd(CallInst &I) {
+  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
+                          MVT::Other, getRoot(),
+                          getValue(I.getOperand(1)),
+                          DAG.getSrcValue(I.getOperand(1))));
+}
+
+void SelectionDAGBuilder::visitVACopy(CallInst &I) {
+  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
+                          MVT::Other, getRoot(),
+                          getValue(I.getOperand(1)),
+                          getValue(I.getOperand(2)),
+                          DAG.getSrcValue(I.getOperand(1)),
+                          DAG.getSrcValue(I.getOperand(2))));
+}
+
+/// TargetLowering::LowerCallTo - This is the default LowerCallTo
+/// implementation, which just calls LowerCall.
+/// FIXME: When all targets are
+/// migrated to using LowerCall, this hook should be integrated into SDISel.
+std::pair<SDValue, SDValue>
+TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
+                            bool RetSExt, bool RetZExt, bool isVarArg,
+                            bool isInreg, unsigned NumFixedArgs,
+                            CallingConv::ID CallConv, bool isTailCall,
+                            bool isReturnValueUsed,
+                            SDValue Callee,
+                            ArgListTy &Args, SelectionDAG &DAG, DebugLoc dl) {
+
+  assert((!isTailCall || PerformTailCallOpt) &&
+         "isTailCall set when tail-call optimizations are disabled!");
+
+  // Handle all of the outgoing arguments.
+  SmallVector<ISD::OutputArg, 32> Outs;
+  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
+    SmallVector<EVT, 4> ValueVTs;
+    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
+    for (unsigned Value = 0, NumValues = ValueVTs.size();
+         Value != NumValues; ++Value) {
+      EVT VT = ValueVTs[Value];
+      const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
+      SDValue Op = SDValue(Args[i].Node.getNode(),
+                           Args[i].Node.getResNo() + Value);
+      ISD::ArgFlagsTy Flags;
+      unsigned OriginalAlignment =
+        getTargetData()->getABITypeAlignment(ArgTy);
+
+      if (Args[i].isZExt)
+        Flags.setZExt();
+      if (Args[i].isSExt)
+        Flags.setSExt();
+      if (Args[i].isInReg)
+        Flags.setInReg();
+      if (Args[i].isSRet)
+        Flags.setSRet();
+      if (Args[i].isByVal) {
+        Flags.setByVal();
+        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
+        const Type *ElementTy = Ty->getElementType();
+        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
+        unsigned FrameSize  = getTargetData()->getTypeAllocSize(ElementTy);
+        // For ByVal, alignment should come from FE.  BE will guess if this
+        // info is not there but there are cases it cannot get right.
+        if (Args[i].Alignment)
+          FrameAlign = Args[i].Alignment;
+        Flags.setByValAlign(FrameAlign);
+        Flags.setByValSize(FrameSize);
+      }
+      if (Args[i].isNest)
+        Flags.setNest();
+      Flags.setOrigAlign(OriginalAlignment);
+
+      EVT PartVT = getRegisterType(RetTy->getContext(), VT);
+      unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
+      SmallVector<SDValue, 4> Parts(NumParts);
+      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
+
+      if (Args[i].isSExt)
+        ExtendKind = ISD::SIGN_EXTEND;
+      else if (Args[i].isZExt)
+        ExtendKind = ISD::ZERO_EXTEND;
+
+      getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, PartVT, ExtendKind);
+
+      for (unsigned j = 0; j != NumParts; ++j) {
+        // if it isn't first piece, alignment must be 1
+        ISD::OutputArg MyFlags(Flags, Parts[j], i < NumFixedArgs);
+        if (NumParts > 1 && j == 0)
+          MyFlags.Flags.setSplit();
+        else if (j != 0)
+          MyFlags.Flags.setOrigAlign(1);
+
+        Outs.push_back(MyFlags);
+      }
+    }
+  }
+
+  // Handle the incoming return values from the call.
+  SmallVector<ISD::InputArg, 32> Ins;
+  SmallVector<EVT, 4> RetTys;
+  ComputeValueVTs(*this, RetTy, RetTys);
+  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
+    EVT VT = RetTys[I];
+    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
+    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
+    for (unsigned i = 0; i != NumRegs; ++i) {
+      ISD::InputArg MyFlags;
+      MyFlags.VT = RegisterVT;
+      MyFlags.Used = isReturnValueUsed;
+      if (RetSExt)
+        MyFlags.Flags.setSExt();
+      if (RetZExt)
+        MyFlags.Flags.setZExt();
+      if (isInreg)
+        MyFlags.Flags.setInReg();
+      Ins.push_back(MyFlags);
+    }
+  }
+
+  // Check if target-dependent constraints permit a tail call here.
+  // Target-independent constraints should be checked by the caller.
+  if (isTailCall &&
+      !IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, Ins, DAG))
+    isTailCall = false;
+
+  SmallVector<SDValue, 4> InVals;
+  Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
+                    Outs, Ins, dl, DAG, InVals);
+
+  // Verify that the target's LowerCall behaved as expected.
+  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
+         "LowerCall didn't return a valid chain!");
+  assert((!isTailCall || InVals.empty()) &&
+         "LowerCall emitted a return value for a tail call!");
+  assert((isTailCall || InVals.size() == Ins.size()) &&
+         "LowerCall didn't emit the correct number of values!");
+  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
+          assert(InVals[i].getNode() &&
+                 "LowerCall emitted a null value!");
+          assert(Ins[i].VT == InVals[i].getValueType() &&
+                 "LowerCall emitted a value with the wrong type!");
+        });
+
+  // For a tail call, the return value is merely live-out and there aren't
+  // any nodes in the DAG representing it. Return a special value to
+  // indicate that a tail call has been emitted and no more Instructions
+  // should be processed in the current block.
+  if (isTailCall) {
+    DAG.setRoot(Chain);
+    return std::make_pair(SDValue(), SDValue());
+  }
+
+  // Collect the legal value parts into potentially illegal values
+  // that correspond to the original function's return values.
+  ISD::NodeType AssertOp = ISD::DELETED_NODE;
+  if (RetSExt)
+    AssertOp = ISD::AssertSext;
+  else if (RetZExt)
+    AssertOp = ISD::AssertZext;
+  SmallVector<SDValue, 4> ReturnValues;
+  unsigned CurReg = 0;
+  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
+    EVT VT = RetTys[I];
+    EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
+    unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
+
+    SDValue ReturnValue =
+      getCopyFromParts(DAG, dl, &InVals[CurReg], NumRegs, RegisterVT, VT,
+                       AssertOp);
+    ReturnValues.push_back(ReturnValue);
+    CurReg += NumRegs;
+  }
+
+  // For a function returning void, there is no return value. We can't create
+  // such a node, so we just return a null return value in that case. In
+  // that case, nothing will actualy look at the value.
+  if (ReturnValues.empty())
+    return std::make_pair(SDValue(), Chain);
+
+  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
+                            DAG.getVTList(&RetTys[0], RetTys.size()),
+                            &ReturnValues[0], ReturnValues.size());
+
+  return std::make_pair(Res, Chain);
+}
+
+void TargetLowering::LowerOperationWrapper(SDNode *N,
+                                           SmallVectorImpl<SDValue> &Results,
+                                           SelectionDAG &DAG) {
+  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
+  if (Res.getNode())
+    Results.push_back(Res);
+}
+
+SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
+  llvm_unreachable("LowerOperation not implemented for this target!");
+  return SDValue();
+}
+
+
+void SelectionDAGBuilder::CopyValueToVirtualRegister(Value *V, unsigned Reg) {
+  SDValue Op = getValue(V);
+  assert((Op.getOpcode() != ISD::CopyFromReg ||
+          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
+         "Copy from a reg to the same reg!");
+  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
+
+  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
+  SDValue Chain = DAG.getEntryNode();
+  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
+  PendingExports.push_back(Chain);
+}
+
+#include "llvm/CodeGen/SelectionDAGISel.h"
+
+void SelectionDAGISel::LowerArguments(BasicBlock *LLVMBB) {
+  // If this is the entry block, emit arguments.
+  Function &F = *LLVMBB->getParent();
+  SelectionDAG &DAG = SDB->DAG;
+  SDValue OldRoot = DAG.getRoot();
+  DebugLoc dl = SDB->getCurDebugLoc();
+  const TargetData *TD = TLI.getTargetData();
+  SmallVector<ISD::InputArg, 16> Ins;
+
+  // Check whether the function can return without sret-demotion.
+  SmallVector<EVT, 4> OutVTs;
+  SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
+  getReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 
+                OutVTs, OutsFlags, TLI);
+  FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
+
+  FLI.CanLowerReturn = TLI.CanLowerReturn(F.getCallingConv(), F.isVarArg(), 
+    OutVTs, OutsFlags, DAG);
+  if (!FLI.CanLowerReturn) {
+    // Put in an sret pointer parameter before all the other parameters.
+    SmallVector<EVT, 1> ValueVTs;
+    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
+
+    // NOTE: Assuming that a pointer will never break down to more than one VT
+    // or one register.
+    ISD::ArgFlagsTy Flags;
+    Flags.setSRet();
+    EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), ValueVTs[0]);
+    ISD::InputArg RetArg(Flags, RegisterVT, true);
+    Ins.push_back(RetArg);
+  }
+
+  // Set up the incoming argument description vector.
+  unsigned Idx = 1;
+  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
+       I != E; ++I, ++Idx) {
+    SmallVector<EVT, 4> ValueVTs;
+    ComputeValueVTs(TLI, I->getType(), ValueVTs);
+    bool isArgValueUsed = !I->use_empty();
+    for (unsigned Value = 0, NumValues = ValueVTs.size();
+         Value != NumValues; ++Value) {
+      EVT VT = ValueVTs[Value];
+      const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
+      ISD::ArgFlagsTy Flags;
+      unsigned OriginalAlignment =
+        TD->getABITypeAlignment(ArgTy);
+
+      if (F.paramHasAttr(Idx, Attribute::ZExt))
+        Flags.setZExt();
+      if (F.paramHasAttr(Idx, Attribute::SExt))
+        Flags.setSExt();
+      if (F.paramHasAttr(Idx, Attribute::InReg))
+        Flags.setInReg();
+      if (F.paramHasAttr(Idx, Attribute::StructRet))
+        Flags.setSRet();
+      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
+        Flags.setByVal();
+        const PointerType *Ty = cast<PointerType>(I->getType());
+        const Type *ElementTy = Ty->getElementType();
+        unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy);
+        unsigned FrameSize  = TD->getTypeAllocSize(ElementTy);
+        // For ByVal, alignment should be passed from FE.  BE will guess if
+        // this info is not there but there are cases it cannot get right.
+        if (F.getParamAlignment(Idx))
+          FrameAlign = F.getParamAlignment(Idx);
+        Flags.setByValAlign(FrameAlign);
+        Flags.setByValSize(FrameSize);
+      }
+      if (F.paramHasAttr(Idx, Attribute::Nest))
+        Flags.setNest();
+      Flags.setOrigAlign(OriginalAlignment);
+
+      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
+      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
+      for (unsigned i = 0; i != NumRegs; ++i) {
+        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
+        if (NumRegs > 1 && i == 0)
+          MyFlags.Flags.setSplit();
+        // if it isn't first piece, alignment must be 1
+        else if (i > 0)
+          MyFlags.Flags.setOrigAlign(1);
+        Ins.push_back(MyFlags);
+      }
+    }
+  }
+
+  // Call the target to set up the argument values.
+  SmallVector<SDValue, 8> InVals;
+  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
+                                             F.isVarArg(), Ins,
+                                             dl, DAG, InVals);
+
+  // Verify that the target's LowerFormalArguments behaved as expected.
+  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
+         "LowerFormalArguments didn't return a valid chain!");
+  assert(InVals.size() == Ins.size() &&
+         "LowerFormalArguments didn't emit the correct number of values!");
+  DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
+          assert(InVals[i].getNode() &&
+                 "LowerFormalArguments emitted a null value!");
+          assert(Ins[i].VT == InVals[i].getValueType() &&
+                 "LowerFormalArguments emitted a value with the wrong type!");
+        });
+
+  // Update the DAG with the new chain value resulting from argument lowering.
+  DAG.setRoot(NewRoot);
+
+  // Set up the argument values.
+  unsigned i = 0;
+  Idx = 1;
+  if (!FLI.CanLowerReturn) {
+    // Create a virtual register for the sret pointer, and put in a copy
+    // from the sret argument into it.
+    SmallVector<EVT, 1> ValueVTs;
+    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
+    EVT VT = ValueVTs[0];
+    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
+    ISD::NodeType AssertOp = ISD::DELETED_NODE;
+    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT,
+                                        VT, AssertOp);
+
+    MachineFunction& MF = SDB->DAG.getMachineFunction();
+    MachineRegisterInfo& RegInfo = MF.getRegInfo();
+    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
+    FLI.DemoteRegister = SRetReg;
+    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), SRetReg, ArgValue);
+    DAG.setRoot(NewRoot);
+    
+    // i indexes lowered arguments.  Bump it past the hidden sret argument.
+    // Idx indexes LLVM arguments.  Don't touch it.
+    ++i;
+  }
+  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
+      ++I, ++Idx) {
+    SmallVector<SDValue, 4> ArgValues;
+    SmallVector<EVT, 4> ValueVTs;
+    ComputeValueVTs(TLI, I->getType(), ValueVTs);
+    unsigned NumValues = ValueVTs.size();
+    for (unsigned Value = 0; Value != NumValues; ++Value) {
+      EVT VT = ValueVTs[Value];
+      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
+      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
+
+      if (!I->use_empty()) {
+        ISD::NodeType AssertOp = ISD::DELETED_NODE;
+        if (F.paramHasAttr(Idx, Attribute::SExt))
+          AssertOp = ISD::AssertSext;
+        else if (F.paramHasAttr(Idx, Attribute::ZExt))
+          AssertOp = ISD::AssertZext;
+
+        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
+                                             PartVT, VT, AssertOp));
+      }
+      i += NumParts;
+    }
+    if (!I->use_empty()) {
+      SDB->setValue(I, DAG.getMergeValues(&ArgValues[0], NumValues,
+                                          SDB->getCurDebugLoc()));
+      // If this argument is live outside of the entry block, insert a copy from
+      // whereever we got it to the vreg that other BB's will reference it as.
+      SDB->CopyToExportRegsIfNeeded(I);
+    }
+  }
+  assert(i == InVals.size() && "Argument register count mismatch!");
+
+  // Finally, if the target has anything special to do, allow it to do so.
+  // FIXME: this should insert code into the DAG!
+  EmitFunctionEntryCode(F, SDB->DAG.getMachineFunction());
+}
+
+/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
+/// ensure constants are generated when needed.  Remember the virtual registers
+/// that need to be added to the Machine PHI nodes as input.  We cannot just
+/// directly add them, because expansion might result in multiple MBB's for one
+/// BB.  As such, the start of the BB might correspond to a different MBB than
+/// the end.
+///
+void
+SelectionDAGISel::HandlePHINodesInSuccessorBlocks(BasicBlock *LLVMBB) {
+  TerminatorInst *TI = LLVMBB->getTerminator();
+
+  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
+
+  // Check successor nodes' PHI nodes that expect a constant to be available
+  // from this block.
+  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
+    BasicBlock *SuccBB = TI->getSuccessor(succ);
+    if (!isa<PHINode>(SuccBB->begin())) continue;
+    MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB];
+
+    // If this terminator has multiple identical successors (common for
+    // switches), only handle each succ once.
+    if (!SuccsHandled.insert(SuccMBB)) continue;
+
+    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
+    PHINode *PN;
+
+    // At this point we know that there is a 1-1 correspondence between LLVM PHI
+    // nodes and Machine PHI nodes, but the incoming operands have not been
+    // emitted yet.
+    for (BasicBlock::iterator I = SuccBB->begin();
+         (PN = dyn_cast<PHINode>(I)); ++I) {
+      // Ignore dead phi's.
+      if (PN->use_empty()) continue;
+
+      unsigned Reg;
+      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
+
+      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
+        unsigned &RegOut = SDB->ConstantsOut[C];
+        if (RegOut == 0) {
+          RegOut = FuncInfo->CreateRegForValue(C);
+          SDB->CopyValueToVirtualRegister(C, RegOut);
+        }
+        Reg = RegOut;
+      } else {
+        Reg = FuncInfo->ValueMap[PHIOp];
+        if (Reg == 0) {
+          assert(isa<AllocaInst>(PHIOp) &&
+                 FuncInfo->StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
+                 "Didn't codegen value into a register!??");
+          Reg = FuncInfo->CreateRegForValue(PHIOp);
+          SDB->CopyValueToVirtualRegister(PHIOp, Reg);
+        }
+      }
+
+      // Remember that this register needs to added to the machine PHI node as
+      // the input for this MBB.
+      SmallVector<EVT, 4> ValueVTs;
+      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
+      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
+        EVT VT = ValueVTs[vti];
+        unsigned NumRegisters = TLI.getNumRegisters(*CurDAG->getContext(), VT);
+        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
+          SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
+        Reg += NumRegisters;
+      }
+    }
+  }
+  SDB->ConstantsOut.clear();
+}
+
+/// This is the Fast-ISel version of HandlePHINodesInSuccessorBlocks. It only
+/// supports legal types, and it emits MachineInstrs directly instead of
+/// creating SelectionDAG nodes.
+///
+bool
+SelectionDAGISel::HandlePHINodesInSuccessorBlocksFast(BasicBlock *LLVMBB,
+                                                      FastISel *F) {
+  TerminatorInst *TI = LLVMBB->getTerminator();
+
+  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
+  unsigned OrigNumPHINodesToUpdate = SDB->PHINodesToUpdate.size();
+
+  // Check successor nodes' PHI nodes that expect a constant to be available
+  // from this block.
+  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
+    BasicBlock *SuccBB = TI->getSuccessor(succ);
+    if (!isa<PHINode>(SuccBB->begin())) continue;
+    MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB];
+
+    // If this terminator has multiple identical successors (common for
+    // switches), only handle each succ once.
+    if (!SuccsHandled.insert(SuccMBB)) continue;
+
+    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
+    PHINode *PN;
+
+    // At this point we know that there is a 1-1 correspondence between LLVM PHI
+    // nodes and Machine PHI nodes, but the incoming operands have not been
+    // emitted yet.
+    for (BasicBlock::iterator I = SuccBB->begin();
+         (PN = dyn_cast<PHINode>(I)); ++I) {
+      // Ignore dead phi's.
+      if (PN->use_empty()) continue;
+
+      // Only handle legal types. Two interesting things to note here. First,
+      // by bailing out early, we may leave behind some dead instructions,
+      // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
+      // own moves. Second, this check is necessary becuase FastISel doesn't
+      // use CreateRegForValue to create registers, so it always creates
+      // exactly one register for each non-void instruction.
+      EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
+      if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
+        // Promote MVT::i1.
+        if (VT == MVT::i1)
+          VT = TLI.getTypeToTransformTo(*CurDAG->getContext(), VT);
+        else {
+          SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
+          return false;
+        }
+      }
+
+      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
+
+      unsigned Reg = F->getRegForValue(PHIOp);
+      if (Reg == 0) {
+        SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
+        return false;
+      }
+      SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
+    }
+  }
+
+  return true;
+}