Optimized FCMP_OEQ and FCMP_UNE for x86.

Where previously LLVM might emit code like this:

        ucomisd %xmm1, %xmm0
        setne   %al
        setp    %cl
        orb     %al, %cl
        jne     .LBB4_2

it now emits this:

        ucomisd %xmm1, %xmm0
        jne     .LBB4_2
        jp      .LBB4_2

It has fewer instructions and uses fewer registers, but it does
have more branches. And in the case that this code is followed by
a non-fallthrough edge, it may be followed by a jmp instruction,
resulting in three branch instructions in sequence. Some effort
is made to avoid this situation.

To achieve this, X86ISelLowering.cpp now recognizes FCMP_OEQ and
FCMP_UNE in lowered form, and replace them with code that emits
two branches, except in the case where it would require converting
a fall-through edge to an explicit branch.

Also, X86InstrInfo.cpp's branch analysis and transform code now
knows now to handle blocks with multiple conditional branches. It
uses loops instead of having fixed checks for up to two
instructions. It can now analyze and transform code generated
from FCMP_OEQ and FCMP_UNE.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57873 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Target/X86/X86InstrInfo.h b/lib/Target/X86/X86InstrInfo.h
index 0a0de5e..17be894 100644
--- a/lib/Target/X86/X86InstrInfo.h
+++ b/lib/Target/X86/X86InstrInfo.h
@@ -44,6 +44,15 @@
     COND_O  = 13,
     COND_P  = 14,
     COND_S  = 15,
+
+    // Artificial condition codes. These are used by AnalyzeBranch
+    // to indicate a block terminated with two conditional branches to
+    // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
+    // which can't be represented on x86 with a single condition. These
+    // are never used in MachineInstrs.
+    COND_NE_OR_P,
+    COND_NP_OR_E,
+
     COND_INVALID
   };