Break anti-dependence breaking out into its own class.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@85127 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/CodeGen/CriticalAntiDepBreaker.cpp b/lib/CodeGen/CriticalAntiDepBreaker.cpp
new file mode 100644
index 0000000..ceb48d7
--- /dev/null
+++ b/lib/CodeGen/CriticalAntiDepBreaker.cpp
@@ -0,0 +1,539 @@
+//===----- CriticalAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the CriticalAntiDepBreaker class, which
+// implements register anti-dependence breaking along a blocks
+// critical path during post-RA scheduler.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "critical-antidep"
+#include "CriticalAntiDepBreaker.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+CriticalAntiDepBreaker::
+CriticalAntiDepBreaker(MachineFunction& MFi) : 
+  AntiDepBreaker(), MF(MFi),
+  MRI(MF.getRegInfo()),
+  TRI(MF.getTarget().getRegisterInfo()),
+  AllocatableSet(TRI->getAllocatableSet(MF))
+{
+}
+
+CriticalAntiDepBreaker::~CriticalAntiDepBreaker() {
+}
+
+void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
+  // Clear out the register class data.
+  std::fill(Classes, array_endof(Classes),
+            static_cast<const TargetRegisterClass *>(0));
+
+  // Initialize the indices to indicate that no registers are live.
+  std::fill(KillIndices, array_endof(KillIndices), ~0u);
+  std::fill(DefIndices, array_endof(DefIndices), BB->size());
+
+  // Clear "do not change" set.
+  KeepRegs.clear();
+
+  bool IsReturnBlock = (!BB->empty() && BB->back().getDesc().isReturn());
+
+  // Determine the live-out physregs for this block.
+  if (IsReturnBlock) {
+    // In a return block, examine the function live-out regs.
+    for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
+         E = MRI.liveout_end(); I != E; ++I) {
+      unsigned Reg = *I;
+      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
+      KillIndices[Reg] = BB->size();
+      DefIndices[Reg] = ~0u;
+      // Repeat, for all aliases.
+      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
+        unsigned AliasReg = *Alias;
+        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
+        KillIndices[AliasReg] = BB->size();
+        DefIndices[AliasReg] = ~0u;
+      }
+    }
+  } else {
+    // In a non-return block, examine the live-in regs of all successors.
+    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
+         SE = BB->succ_end(); SI != SE; ++SI)
+      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
+           E = (*SI)->livein_end(); I != E; ++I) {
+        unsigned Reg = *I;
+        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
+        KillIndices[Reg] = BB->size();
+        DefIndices[Reg] = ~0u;
+        // Repeat, for all aliases.
+        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
+          unsigned AliasReg = *Alias;
+          Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
+          KillIndices[AliasReg] = BB->size();
+          DefIndices[AliasReg] = ~0u;
+        }
+      }
+  }
+
+  // Mark live-out callee-saved registers. In a return block this is
+  // all callee-saved registers. In non-return this is any
+  // callee-saved register that is not saved in the prolog.
+  const MachineFrameInfo *MFI = MF.getFrameInfo();
+  BitVector Pristine = MFI->getPristineRegs(BB);
+  for (const unsigned *I = TRI->getCalleeSavedRegs(); *I; ++I) {
+    unsigned Reg = *I;
+    if (!IsReturnBlock && !Pristine.test(Reg)) continue;
+    Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
+    KillIndices[Reg] = BB->size();
+    DefIndices[Reg] = ~0u;
+    // Repeat, for all aliases.
+    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
+      unsigned AliasReg = *Alias;
+      Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
+      KillIndices[AliasReg] = BB->size();
+      DefIndices[AliasReg] = ~0u;
+    }
+  }
+}
+
+void CriticalAntiDepBreaker::FinishBlock() {
+  RegRefs.clear();
+  KeepRegs.clear();
+}
+
+void CriticalAntiDepBreaker::Observe(MachineInstr *MI, unsigned Count,
+                                     unsigned InsertPosIndex) {
+  assert(Count < InsertPosIndex && "Instruction index out of expected range!");
+
+  // Any register which was defined within the previous scheduling region
+  // may have been rescheduled and its lifetime may overlap with registers
+  // in ways not reflected in our current liveness state. For each such
+  // register, adjust the liveness state to be conservatively correct.
+  for (unsigned Reg = 0; Reg != TargetRegisterInfo::FirstVirtualRegister; ++Reg)
+    if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
+      assert(KillIndices[Reg] == ~0u && "Clobbered register is live!");
+      // Mark this register to be non-renamable.
+      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
+      // Move the def index to the end of the previous region, to reflect
+      // that the def could theoretically have been scheduled at the end.
+      DefIndices[Reg] = InsertPosIndex;
+    }
+
+  PrescanInstruction(MI);
+  ScanInstruction(MI, Count);
+}
+
+/// CriticalPathStep - Return the next SUnit after SU on the bottom-up
+/// critical path.
+static SDep *CriticalPathStep(SUnit *SU) {
+  SDep *Next = 0;
+  unsigned NextDepth = 0;
+  // Find the predecessor edge with the greatest depth.
+  for (SUnit::pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
+       P != PE; ++P) {
+    SUnit *PredSU = P->getSUnit();
+    unsigned PredLatency = P->getLatency();
+    unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
+    // In the case of a latency tie, prefer an anti-dependency edge over
+    // other types of edges.
+    if (NextDepth < PredTotalLatency ||
+        (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
+      NextDepth = PredTotalLatency;
+      Next = &*P;
+    }
+  }
+  return Next;
+}
+
+void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr *MI) {
+  // Scan the register operands for this instruction and update
+  // Classes and RegRefs.
+  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+    MachineOperand &MO = MI->getOperand(i);
+    if (!MO.isReg()) continue;
+    unsigned Reg = MO.getReg();
+    if (Reg == 0) continue;
+    const TargetRegisterClass *NewRC = 0;
+    
+    if (i < MI->getDesc().getNumOperands())
+      NewRC = MI->getDesc().OpInfo[i].getRegClass(TRI);
+
+    // For now, only allow the register to be changed if its register
+    // class is consistent across all uses.
+    if (!Classes[Reg] && NewRC)
+      Classes[Reg] = NewRC;
+    else if (!NewRC || Classes[Reg] != NewRC)
+      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
+
+    // Now check for aliases.
+    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
+      // If an alias of the reg is used during the live range, give up.
+      // Note that this allows us to skip checking if AntiDepReg
+      // overlaps with any of the aliases, among other things.
+      unsigned AliasReg = *Alias;
+      if (Classes[AliasReg]) {
+        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
+        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
+      }
+    }
+
+    // If we're still willing to consider this register, note the reference.
+    if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
+      RegRefs.insert(std::make_pair(Reg, &MO));
+
+    // It's not safe to change register allocation for source operands of
+    // that have special allocation requirements.
+    if (MO.isUse() && MI->getDesc().hasExtraSrcRegAllocReq()) {
+      if (KeepRegs.insert(Reg)) {
+        for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
+             *Subreg; ++Subreg)
+          KeepRegs.insert(*Subreg);
+      }
+    }
+  }
+}
+
+void CriticalAntiDepBreaker::ScanInstruction(MachineInstr *MI,
+                                             unsigned Count) {
+  // Update liveness.
+  // Proceding upwards, registers that are defed but not used in this
+  // instruction are now dead.
+  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+    MachineOperand &MO = MI->getOperand(i);
+    if (!MO.isReg()) continue;
+    unsigned Reg = MO.getReg();
+    if (Reg == 0) continue;
+    if (!MO.isDef()) continue;
+    // Ignore two-addr defs.
+    if (MI->isRegTiedToUseOperand(i)) continue;
+
+    DefIndices[Reg] = Count;
+    KillIndices[Reg] = ~0u;
+    assert(((KillIndices[Reg] == ~0u) !=
+            (DefIndices[Reg] == ~0u)) &&
+           "Kill and Def maps aren't consistent for Reg!");
+    KeepRegs.erase(Reg);
+    Classes[Reg] = 0;
+    RegRefs.erase(Reg);
+    // Repeat, for all subregs.
+    for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
+         *Subreg; ++Subreg) {
+      unsigned SubregReg = *Subreg;
+      DefIndices[SubregReg] = Count;
+      KillIndices[SubregReg] = ~0u;
+      KeepRegs.erase(SubregReg);
+      Classes[SubregReg] = 0;
+      RegRefs.erase(SubregReg);
+    }
+    // Conservatively mark super-registers as unusable.
+    for (const unsigned *Super = TRI->getSuperRegisters(Reg);
+         *Super; ++Super) {
+      unsigned SuperReg = *Super;
+      Classes[SuperReg] = reinterpret_cast<TargetRegisterClass *>(-1);
+    }
+  }
+  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+    MachineOperand &MO = MI->getOperand(i);
+    if (!MO.isReg()) continue;
+    unsigned Reg = MO.getReg();
+    if (Reg == 0) continue;
+    if (!MO.isUse()) continue;
+
+    const TargetRegisterClass *NewRC = 0;
+    if (i < MI->getDesc().getNumOperands())
+      NewRC = MI->getDesc().OpInfo[i].getRegClass(TRI);
+
+    // For now, only allow the register to be changed if its register
+    // class is consistent across all uses.
+    if (!Classes[Reg] && NewRC)
+      Classes[Reg] = NewRC;
+    else if (!NewRC || Classes[Reg] != NewRC)
+      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
+
+    RegRefs.insert(std::make_pair(Reg, &MO));
+
+    // It wasn't previously live but now it is, this is a kill.
+    if (KillIndices[Reg] == ~0u) {
+      KillIndices[Reg] = Count;
+      DefIndices[Reg] = ~0u;
+          assert(((KillIndices[Reg] == ~0u) !=
+                  (DefIndices[Reg] == ~0u)) &&
+               "Kill and Def maps aren't consistent for Reg!");
+    }
+    // Repeat, for all aliases.
+    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
+      unsigned AliasReg = *Alias;
+      if (KillIndices[AliasReg] == ~0u) {
+        KillIndices[AliasReg] = Count;
+        DefIndices[AliasReg] = ~0u;
+      }
+    }
+  }
+}
+
+unsigned
+CriticalAntiDepBreaker::findSuitableFreeRegister(unsigned AntiDepReg,
+                                                 unsigned LastNewReg,
+                                                 const TargetRegisterClass *RC) {
+  for (TargetRegisterClass::iterator R = RC->allocation_order_begin(MF),
+       RE = RC->allocation_order_end(MF); R != RE; ++R) {
+    unsigned NewReg = *R;
+    // Don't replace a register with itself.
+    if (NewReg == AntiDepReg) continue;
+    // Don't replace a register with one that was recently used to repair
+    // an anti-dependence with this AntiDepReg, because that would
+    // re-introduce that anti-dependence.
+    if (NewReg == LastNewReg) continue;
+    // If NewReg is dead and NewReg's most recent def is not before
+    // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
+    assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u)) &&
+           "Kill and Def maps aren't consistent for AntiDepReg!");
+    assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u)) &&
+           "Kill and Def maps aren't consistent for NewReg!");
+    if (KillIndices[NewReg] != ~0u ||
+        Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
+        KillIndices[AntiDepReg] > DefIndices[NewReg])
+      continue;
+    return NewReg;
+  }
+
+  // No registers are free and available!
+  return 0;
+}
+
+unsigned CriticalAntiDepBreaker::
+BreakAntiDependencies(std::vector<SUnit>& SUnits,
+                      MachineBasicBlock::iterator& Begin,
+                      MachineBasicBlock::iterator& End,
+                      unsigned InsertPosIndex) {
+  // The code below assumes that there is at least one instruction,
+  // so just duck out immediately if the block is empty.
+  if (SUnits.empty()) return 0;
+
+  // Find the node at the bottom of the critical path.
+  SUnit *Max = 0;
+  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
+    SUnit *SU = &SUnits[i];
+    if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
+      Max = SU;
+  }
+
+#ifndef NDEBUG
+  {
+    DEBUG(errs() << "Critical path has total latency "
+          << (Max->getDepth() + Max->Latency) << "\n");
+    DEBUG(errs() << "Available regs:");
+    for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
+      if (KillIndices[Reg] == ~0u)
+        DEBUG(errs() << " " << TRI->getName(Reg));
+    }
+    DEBUG(errs() << '\n');
+  }
+#endif
+
+  // Track progress along the critical path through the SUnit graph as we walk
+  // the instructions.
+  SUnit *CriticalPathSU = Max;
+  MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
+
+  // Consider this pattern:
+  //   A = ...
+  //   ... = A
+  //   A = ...
+  //   ... = A
+  //   A = ...
+  //   ... = A
+  //   A = ...
+  //   ... = A
+  // There are three anti-dependencies here, and without special care,
+  // we'd break all of them using the same register:
+  //   A = ...
+  //   ... = A
+  //   B = ...
+  //   ... = B
+  //   B = ...
+  //   ... = B
+  //   B = ...
+  //   ... = B
+  // because at each anti-dependence, B is the first register that
+  // isn't A which is free.  This re-introduces anti-dependencies
+  // at all but one of the original anti-dependencies that we were
+  // trying to break.  To avoid this, keep track of the most recent
+  // register that each register was replaced with, avoid
+  // using it to repair an anti-dependence on the same register.
+  // This lets us produce this:
+  //   A = ...
+  //   ... = A
+  //   B = ...
+  //   ... = B
+  //   C = ...
+  //   ... = C
+  //   B = ...
+  //   ... = B
+  // This still has an anti-dependence on B, but at least it isn't on the
+  // original critical path.
+  //
+  // TODO: If we tracked more than one register here, we could potentially
+  // fix that remaining critical edge too. This is a little more involved,
+  // because unlike the most recent register, less recent registers should
+  // still be considered, though only if no other registers are available.
+  unsigned LastNewReg[TargetRegisterInfo::FirstVirtualRegister] = {};
+
+  // Attempt to break anti-dependence edges on the critical path. Walk the
+  // instructions from the bottom up, tracking information about liveness
+  // as we go to help determine which registers are available.
+  unsigned Broken = 0;
+  unsigned Count = InsertPosIndex - 1;
+  for (MachineBasicBlock::iterator I = End, E = Begin;
+       I != E; --Count) {
+    MachineInstr *MI = --I;
+
+    // Check if this instruction has a dependence on the critical path that
+    // is an anti-dependence that we may be able to break. If it is, set
+    // AntiDepReg to the non-zero register associated with the anti-dependence.
+    //
+    // We limit our attention to the critical path as a heuristic to avoid
+    // breaking anti-dependence edges that aren't going to significantly
+    // impact the overall schedule. There are a limited number of registers
+    // and we want to save them for the important edges.
+    // 
+    // TODO: Instructions with multiple defs could have multiple
+    // anti-dependencies. The current code here only knows how to break one
+    // edge per instruction. Note that we'd have to be able to break all of
+    // the anti-dependencies in an instruction in order to be effective.
+    unsigned AntiDepReg = 0;
+    if (MI == CriticalPathMI) {
+      if (SDep *Edge = CriticalPathStep(CriticalPathSU)) {
+        SUnit *NextSU = Edge->getSUnit();
+
+        // Only consider anti-dependence edges.
+        if (Edge->getKind() == SDep::Anti) {
+          AntiDepReg = Edge->getReg();
+          assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
+          if (!AllocatableSet.test(AntiDepReg))
+            // Don't break anti-dependencies on non-allocatable registers.
+            AntiDepReg = 0;
+          else if (KeepRegs.count(AntiDepReg))
+            // Don't break anti-dependencies if an use down below requires
+            // this exact register.
+            AntiDepReg = 0;
+          else {
+            // If the SUnit has other dependencies on the SUnit that it
+            // anti-depends on, don't bother breaking the anti-dependency
+            // since those edges would prevent such units from being
+            // scheduled past each other regardless.
+            //
+            // Also, if there are dependencies on other SUnits with the
+            // same register as the anti-dependency, don't attempt to
+            // break it.
+            for (SUnit::pred_iterator P = CriticalPathSU->Preds.begin(),
+                 PE = CriticalPathSU->Preds.end(); P != PE; ++P)
+              if (P->getSUnit() == NextSU ?
+                    (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
+                    (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
+                AntiDepReg = 0;
+                break;
+              }
+          }
+        }
+        CriticalPathSU = NextSU;
+        CriticalPathMI = CriticalPathSU->getInstr();
+      } else {
+        // We've reached the end of the critical path.
+        CriticalPathSU = 0;
+        CriticalPathMI = 0;
+      }
+    }
+
+    PrescanInstruction(MI);
+
+    if (MI->getDesc().hasExtraDefRegAllocReq())
+      // If this instruction's defs have special allocation requirement, don't
+      // break this anti-dependency.
+      AntiDepReg = 0;
+    else if (AntiDepReg) {
+      // If this instruction has a use of AntiDepReg, breaking it
+      // is invalid.
+      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+        MachineOperand &MO = MI->getOperand(i);
+        if (!MO.isReg()) continue;
+        unsigned Reg = MO.getReg();
+        if (Reg == 0) continue;
+        if (MO.isUse() && AntiDepReg == Reg) {
+          AntiDepReg = 0;
+          break;
+        }
+      }
+    }
+
+    // Determine AntiDepReg's register class, if it is live and is
+    // consistently used within a single class.
+    const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0;
+    assert((AntiDepReg == 0 || RC != NULL) &&
+           "Register should be live if it's causing an anti-dependence!");
+    if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
+      AntiDepReg = 0;
+
+    // Look for a suitable register to use to break the anti-depenence.
+    //
+    // TODO: Instead of picking the first free register, consider which might
+    // be the best.
+    if (AntiDepReg != 0) {
+      if (unsigned NewReg = findSuitableFreeRegister(AntiDepReg,
+                                                     LastNewReg[AntiDepReg],
+                                                     RC)) {
+        DEBUG(errs() << "Breaking anti-dependence edge on "
+              << TRI->getName(AntiDepReg)
+              << " with " << RegRefs.count(AntiDepReg) << " references"
+              << " using " << TRI->getName(NewReg) << "!\n");
+
+        // Update the references to the old register to refer to the new
+        // register.
+        std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
+                  std::multimap<unsigned, MachineOperand *>::iterator>
+           Range = RegRefs.equal_range(AntiDepReg);
+        for (std::multimap<unsigned, MachineOperand *>::iterator
+             Q = Range.first, QE = Range.second; Q != QE; ++Q)
+          Q->second->setReg(NewReg);
+
+        // We just went back in time and modified history; the
+        // liveness information for the anti-depenence reg is now
+        // inconsistent. Set the state as if it were dead.
+        Classes[NewReg] = Classes[AntiDepReg];
+        DefIndices[NewReg] = DefIndices[AntiDepReg];
+        KillIndices[NewReg] = KillIndices[AntiDepReg];
+        assert(((KillIndices[NewReg] == ~0u) !=
+                (DefIndices[NewReg] == ~0u)) &&
+             "Kill and Def maps aren't consistent for NewReg!");
+
+        Classes[AntiDepReg] = 0;
+        DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
+        KillIndices[AntiDepReg] = ~0u;
+        assert(((KillIndices[AntiDepReg] == ~0u) !=
+                (DefIndices[AntiDepReg] == ~0u)) &&
+             "Kill and Def maps aren't consistent for AntiDepReg!");
+
+        RegRefs.erase(AntiDepReg);
+        LastNewReg[AntiDepReg] = NewReg;
+        ++Broken;
+      }
+    }
+
+    ScanInstruction(MI, Count);
+  }
+
+  return Broken;
+}