| <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"  | 
 |                       "http://www.w3.org/TR/html4/strict.dtd"> | 
 | <html> | 
 | <head> | 
 |  <title>LLVM Link Time Optimization: Design and Implementation</title> | 
 |   <link rel="stylesheet" href="llvm.css" type="text/css"> | 
 | </head> | 
 |  | 
 | <div class="doc_title"> | 
 |   LLVM Link Time Optimization: Design and Implementation | 
 | </div> | 
 |  | 
 | <ul> | 
 |   <li><a href="#desc">Description</a></li> | 
 |   <li><a href="#design">Design Philosophy</a> | 
 |   <ul> | 
 |     <li><a href="#example1">Example of link time optimization</a></li> | 
 |     <li><a href="#alternative_approaches">Alternative Approaches</a></li> | 
 |   </ul></li> | 
 |   <li><a href="#multiphase">Multi-phase communication between LLVM and linker</a> | 
 |   <ul> | 
 |     <li><a href="#phase1">Phase 1 : Read LLVM Bytecode Files</a></li> | 
 |     <li><a href="#phase2">Phase 2 : Symbol Resolution</a></li> | 
 |     <li><a href="#phase3">Phase 3 : Optimize Bitcode Files</a></li> | 
 |     <li><a href="#phase4">Phase 4 : Symbol Resolution after optimization</a></li> | 
 |   </ul></li> | 
 |   <li><a href="#lto">libLTO</a> | 
 |   <ul> | 
 |     <li><a href="#lto_module_t">lto_module_t</a></li> | 
 |     <li><a href="#lto_code_gen_t">lto_code_gen_t</a></li> | 
 |   </ul> | 
 | </ul> | 
 |  | 
 | <div class="doc_author"> | 
 | <p>Written by Devang Patel and Nick Kledzik</p> | 
 | </div> | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"> | 
 | <a name="desc">Description</a> | 
 | </div> | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | <div class="doc_text"> | 
 | <p> | 
 | LLVM features powerful intermodular optimizations which can be used at link  | 
 | time.  Link Time Optimization (LTO) is another name for intermodular optimization  | 
 | when performed during the link stage. This document describes the interface  | 
 | and design between the LTO optimizer and the linker.</p> | 
 | </div> | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"> | 
 | <a name="design">Design Philosophy</a> | 
 | </div> | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | <div class="doc_text"> | 
 | <p> | 
 | The LLVM Link Time Optimizer provides complete transparency, while doing  | 
 | intermodular optimization, in the compiler tool chain. Its main goal is to let  | 
 | the developer take advantage of intermodular optimizations without making any  | 
 | significant changes to the developer's makefiles or build system. This is  | 
 | achieved through tight integration with the linker. In this model, the linker  | 
 | treates LLVM bitcode files like native object files and allows mixing and  | 
 | matching among them. The linker uses <a href="#lto">libLTO</a>, a shared | 
 | object, to handle LLVM bitcode files. This tight integration between  | 
 | the linker and LLVM optimizer helps to do optimizations that are not possible  | 
 | in other models. The linker input allows the optimizer to avoid relying on  | 
 | conservative escape analysis. | 
 | </p> | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="example1">Example of link time optimization</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |   <p>The following example illustrates the advantages of LTO's integrated | 
 |   approach and clean interface. This example requires a system linker which | 
 |   supports LTO through the interface described in this document.  Here, | 
 |   llvm-gcc transparently invokes system linker. </p> | 
 |   <ul> | 
 |     <li> Input source file <tt>a.c</tt> is compiled into LLVM bitcode form. | 
 |     <li> Input source file <tt>main.c</tt> is compiled into native object code. | 
 |   </ul> | 
 | <div class="doc_code"><pre> | 
 | --- a.h --- | 
 | extern int foo1(void); | 
 | extern void foo2(void); | 
 | extern void foo4(void); | 
 | --- a.c --- | 
 | #include "a.h" | 
 |  | 
 | static signed int i = 0; | 
 |  | 
 | void foo2(void) { | 
 |  i = -1; | 
 | } | 
 |  | 
 | static int foo3() { | 
 | foo4(); | 
 | return 10; | 
 | } | 
 |  | 
 | int foo1(void) { | 
 | int data = 0; | 
 |  | 
 | if (i < 0) { data = foo3(); } | 
 |  | 
 | data = data + 42; | 
 | return data; | 
 | } | 
 |  | 
 | --- main.c --- | 
 | #include <stdio.h> | 
 | #include "a.h" | 
 |  | 
 | void foo4(void) { | 
 |  printf ("Hi\n"); | 
 | } | 
 |  | 
 | int main() { | 
 |  return foo1(); | 
 | } | 
 |  | 
 | --- command lines --- | 
 | $ llvm-gcc --emit-llvm -c a.c -o a.o  # <-- a.o is LLVM bitcode file | 
 | $ llvm-gcc -c main.c -o main.o # <-- main.o is native object file | 
 | $ llvm-gcc a.o main.o -o main # <-- standard link command without any modifications | 
 | </pre></div> | 
 |   <p>In this example, the linker recognizes that <tt>foo2()</tt> is an  | 
 |   externally visible symbol defined in LLVM bitcode file. The linker completes  | 
 |   its usual symbol resolution  | 
 |   pass and finds that <tt>foo2()</tt> is not used anywhere. This information  | 
 |   is used by the LLVM optimizer and it removes <tt>foo2()</tt>. As soon as  | 
 |   <tt>foo2()</tt> is removed, the optimizer recognizes that condition  | 
 |   <tt>i < 0</tt> is always false, which means <tt>foo3()</tt> is never  | 
 |   used. Hence, the optimizer removes <tt>foo3()</tt>, also.  And this in turn,  | 
 |   enables linker to remove <tt>foo4()</tt>.  This example illustrates the  | 
 |   advantage of tight integration with the linker. Here, the optimizer can not  | 
 |   remove <tt>foo3()</tt> without the linker's input. | 
 |   </p> | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="alternative_approaches">Alternative Approaches</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |   <dl> | 
 |     <dt><b>Compiler driver invokes link time optimizer separately.</b></dt> | 
 |     <dd>In this model the link time optimizer is not able to take advantage of  | 
 |     information collected during the linker's normal symbol resolution phase.  | 
 |     In the above example, the optimizer can not remove <tt>foo2()</tt> without  | 
 |     the linker's input because it is externally visible. This in turn prohibits | 
 |     the optimizer from removing <tt>foo3()</tt>.</dd> | 
 |     <dt><b>Use separate tool to collect symbol information from all object | 
 |     files.</b></dt> | 
 |     <dd>In this model, a new, separate, tool or library replicates the linker's | 
 |     capability to collect information for link time optimization. Not only is | 
 |     this code duplication difficult to justify, but it also has several other  | 
 |     disadvantages.  For example, the linking semantics and the features  | 
 |     provided by the linker on various platform are not unique. This means,  | 
 |     this new tool needs to support all such features and platforms in one  | 
 |     super tool or a separate tool per platform is required. This increases  | 
 |     maintance cost for link time optimizer significantly, which is not  | 
 |     necessary. This approach also requires staying synchronized with linker  | 
 |     developements on various platforms, which is not the main focus of the link  | 
 |     time optimizer. Finally, this approach increases end user's build time due  | 
 |     to the duplication of work done by this separate tool and the linker itself. | 
 |     </dd> | 
 |   </dl> | 
 | </div> | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"> | 
 |   <a name="multiphase">Multi-phase communication between libLTO and linker</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |   <p>The linker collects information about symbol defininitions and uses in  | 
 |   various link objects which is more accurate than any information collected  | 
 |   by other tools during typical build cycles.  The linker collects this  | 
 |   information by looking at the definitions and uses of symbols in native .o  | 
 |   files and using symbol visibility information. The linker also uses  | 
 |   user-supplied information, such as a list of exported symbols. LLVM  | 
 |   optimizer collects control flow information, data flow information and knows  | 
 |   much more about program structure from the optimizer's point of view.  | 
 |   Our goal is to take advantage of tight intergration between the linker and  | 
 |   the optimizer by sharing this information during various linking phases. | 
 | </p> | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="phase1">Phase 1 : Read LLVM Bitcode Files</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |   <p>The linker first reads all object files in natural order and collects  | 
 |   symbol information. This includes native object files as well as LLVM bitcode  | 
 |   files.  To minimize the cost to the linker in the case that all .o files | 
 |   are native object files, the linker only calls <tt>lto_module_create()</tt>  | 
 |   when a supplied object file is found to not be a native object file.  If | 
 |   <tt>lto_module_create()</tt> returns that the file is an LLVM bitcode file,  | 
 |   the linker | 
 |   then iterates over the module using <tt>lto_module_get_symbol_name()</tt> and | 
 |   <tt>lto_module_get_symbol_attribute()</tt> to get all symbols defined and  | 
 |   referenced. | 
 |   This information is added to the linker's global symbol table. | 
 | </p> | 
 |   <p>The lto* functions are all implemented in a shared object libLTO.  This | 
 |   allows the LLVM LTO code to be updated independently of the linker tool. | 
 |   On platforms that support it, the shared object is lazily loaded.  | 
 | </p> | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="phase2">Phase 2 : Symbol Resolution</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |   <p>In this stage, the linker resolves symbols using global symbol table.  | 
 |   It may report undefined symbol errors, read archive members, replace  | 
 |   weak symbols, etc.  The linker is able to do this seamlessly even though it  | 
 |   does not know the exact content of input LLVM bitcode files.  If dead code  | 
 |   stripping is enabled then the linker collects the list of live symbols. | 
 |   </p> | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="phase3">Phase 3 : Optimize Bitcode Files</a> | 
 | </div> | 
 | <div class="doc_text"> | 
 |   <p>After symbol resolution, the linker tells the LTO shared object which | 
 |   symbols are needed by native object files.  In the example above, the linker  | 
 |   reports that only <tt>foo1()</tt> is used by native object files using  | 
 |   <tt>lto_codegen_add_must_preserve_symbol()</tt>.  Next the linker invokes | 
 |   the LLVM optimizer and code generators using <tt>lto_codegen_compile()</tt> | 
 |   which returns a native object file creating by merging the LLVM bitcode files  | 
 |   and applying various optimization passes.   | 
 | </p> | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="phase4">Phase 4 : Symbol Resolution after optimization</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |   <p>In this phase, the linker reads optimized a native object file and  | 
 |   updates the internal global symbol table to reflect any changes. The linker  | 
 |   also collects information about any changes in use of external symbols by  | 
 |   LLVM bitcode files. In the examle above, the linker notes that  | 
 |   <tt>foo4()</tt> is not used any more. If dead code stripping is enabled then  | 
 |   the linker refreshes the live symbol information appropriately and performs  | 
 |   dead code stripping.</p> | 
 |   <p>After this phase, the linker continues linking as if it never saw LLVM  | 
 |   bitcode files.</p> | 
 | </div> | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"> | 
 | <a name="lto">libLTO</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |   <p><tt>libLTO</tt> is a shared object that is part of the LLVM tools, and  | 
 |   is intended for use by a linker. <tt>libLTO</tt> provides an abstract C  | 
 |   interface to use the LLVM interprocedural optimizer without exposing details  | 
 |   of LLVM's internals. The intention is to keep the interface as stable as  | 
 |   possible even when the LLVM optimizer continues to evolve. It should even | 
 |   be possible for a completely different compilation technology to provide | 
 |   a different libLTO that works with their object files and the standard | 
 |   linker tool.</p> | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="lto_module_t">lto_module_t</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |    <p>A non-native object file is handled via an <tt>lto_module_t</tt>.   | 
 |    The following functions allow the linker to check if a file (on disk | 
 |    or in a memory buffer) is a file which libLTO can process: <pre> | 
 |    lto_module_is_object_file(const char*) | 
 |    lto_module_is_object_file_for_target(const char*, const char*) | 
 |    lto_module_is_object_file_in_memory(const void*, size_t) | 
 |    lto_module_is_object_file_in_memory_for_target(const void*, size_t, const char*)</pre> | 
 |   If the object file can be processed by libLTO, the linker creates a | 
 |   <tt>lto_module_t</tt> by using one of <pre> | 
 |    lto_module_create(const char*) | 
 |    lto_module_create_from_memory(const void*, size_t)</pre> | 
 |   and when done, the handle is released via<pre> | 
 |    lto_module_dispose(lto_module_t)</pre> | 
 |   The linker can introspect the non-native object file by getting the number | 
 |   of symbols and getting the name and attributes of each symbol via: <pre> | 
 |    lto_module_get_num_symbols(lto_module_t) | 
 |    lto_module_get_symbol_name(lto_module_t, unsigned int) | 
 |    lto_module_get_symbol_attribute(lto_module_t, unsigned int)</pre> | 
 |   The attributes of a symbol include the alignment, visibility, and kind. | 
 | </p> | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="lto_code_gen_t">lto_code_gen_t</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |   <p>Once the linker has loaded each non-native object files into an | 
 |   <tt>lto_module_t</tt>, it can request libLTO to process them all and | 
 |   generate a native object file.  This is done in a couple of steps. | 
 |   First a code generator is created with:<pre> | 
 |     lto_codegen_create() </pre> | 
 |   then each non-native object file is added to the code generator with:<pre> | 
 |     lto_codegen_add_module(lto_code_gen_t, lto_module_t)</pre> | 
 |   The linker then has the option of setting some codegen options.  Whether | 
 |   or not to generate DWARF debug info is set with: <pre> | 
 |     lto_codegen_set_debug_model(lto_code_gen_t) </pre> | 
 |   Which kind of position independence is set with: <pre> | 
 |     lto_codegen_set_pic_model(lto_code_gen_t) </pre> | 
 |   And each symbol that is referenced by a native object file or otherwise | 
 |   must not be optimized away is set with: <pre> | 
 |     lto_codegen_add_must_preserve_symbol(lto_code_gen_t, const char*)</pre> | 
 |   After all these settings are done, the linker requests that a native  | 
 |   object file be created from the modules with the settings using: | 
 |     lto_codegen_compile(lto_code_gen_t, size*)</pre> | 
 |   which returns a pointer to a buffer containing the generated native | 
 |   object file.  The linker then parses that and links it with the rest  | 
 |   of the native object files.   | 
 | </div> | 
 |  | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | <hr> | 
 | <address> | 
 |   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img | 
 |   src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a> | 
 |   <a href="http://validator.w3.org/check/referer"><img | 
 |   src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a> | 
 |  | 
 |   Devang Patel and Nick Kledzik<br> | 
 |   <a href="http://llvm.org">LLVM Compiler Infrastructure</a><br> | 
 |   Last modified: $Date$ | 
 | </address> | 
 |  | 
 | </body> | 
 | </html> | 
 |  |