Update to LLVM 3.5a.

Change-Id: Ifadecab779f128e62e430c2b4f6ddd84953ed617
diff --git a/lib/Target/ARM64/ARM64FastISel.cpp b/lib/Target/ARM64/ARM64FastISel.cpp
new file mode 100644
index 0000000..51b0f76
--- /dev/null
+++ b/lib/Target/ARM64/ARM64FastISel.cpp
@@ -0,0 +1,1929 @@
+//===-- ARM6464FastISel.cpp - ARM64 FastISel implementation ---------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the ARM64-specific support for the FastISel class. Some
+// of the target-specific code is generated by tablegen in the file
+// ARM64GenFastISel.inc, which is #included here.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARM64.h"
+#include "ARM64TargetMachine.h"
+#include "ARM64Subtarget.h"
+#include "ARM64CallingConv.h"
+#include "MCTargetDesc/ARM64AddressingModes.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/FastISel.h"
+#include "llvm/CodeGen/FunctionLoweringInfo.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GetElementPtrTypeIterator.h"
+#include "llvm/IR/GlobalAlias.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/Support/CommandLine.h"
+using namespace llvm;
+
+namespace {
+
+class ARM64FastISel : public FastISel {
+
+  class Address {
+  public:
+    typedef enum {
+      RegBase,
+      FrameIndexBase
+    } BaseKind;
+
+  private:
+    BaseKind Kind;
+    union {
+      unsigned Reg;
+      int FI;
+    } Base;
+    int64_t Offset;
+
+  public:
+    Address() : Kind(RegBase), Offset(0) { Base.Reg = 0; }
+    void setKind(BaseKind K) { Kind = K; }
+    BaseKind getKind() const { return Kind; }
+    bool isRegBase() const { return Kind == RegBase; }
+    bool isFIBase() const { return Kind == FrameIndexBase; }
+    void setReg(unsigned Reg) {
+      assert(isRegBase() && "Invalid base register access!");
+      Base.Reg = Reg;
+    }
+    unsigned getReg() const {
+      assert(isRegBase() && "Invalid base register access!");
+      return Base.Reg;
+    }
+    void setFI(unsigned FI) {
+      assert(isFIBase() && "Invalid base frame index  access!");
+      Base.FI = FI;
+    }
+    unsigned getFI() const {
+      assert(isFIBase() && "Invalid base frame index access!");
+      return Base.FI;
+    }
+    void setOffset(int64_t O) { Offset = O; }
+    int64_t getOffset() { return Offset; }
+
+    bool isValid() { return isFIBase() || (isRegBase() && getReg() != 0); }
+  };
+
+  /// Subtarget - Keep a pointer to the ARM64Subtarget around so that we can
+  /// make the right decision when generating code for different targets.
+  const ARM64Subtarget *Subtarget;
+  LLVMContext *Context;
+
+private:
+  // Selection routines.
+  bool SelectLoad(const Instruction *I);
+  bool SelectStore(const Instruction *I);
+  bool SelectBranch(const Instruction *I);
+  bool SelectIndirectBr(const Instruction *I);
+  bool SelectCmp(const Instruction *I);
+  bool SelectSelect(const Instruction *I);
+  bool SelectFPExt(const Instruction *I);
+  bool SelectFPTrunc(const Instruction *I);
+  bool SelectFPToInt(const Instruction *I, bool Signed);
+  bool SelectIntToFP(const Instruction *I, bool Signed);
+  bool SelectRem(const Instruction *I, unsigned ISDOpcode);
+  bool SelectCall(const Instruction *I, const char *IntrMemName);
+  bool SelectIntrinsicCall(const IntrinsicInst &I);
+  bool SelectRet(const Instruction *I);
+  bool SelectTrunc(const Instruction *I);
+  bool SelectIntExt(const Instruction *I);
+  bool SelectMul(const Instruction *I);
+
+  // Utility helper routines.
+  bool isTypeLegal(Type *Ty, MVT &VT);
+  bool isLoadStoreTypeLegal(Type *Ty, MVT &VT);
+  bool ComputeAddress(const Value *Obj, Address &Addr);
+  bool SimplifyAddress(Address &Addr, MVT VT, int64_t ScaleFactor,
+                       bool UseUnscaled);
+  void AddLoadStoreOperands(Address &Addr, const MachineInstrBuilder &MIB,
+                            unsigned Flags, bool UseUnscaled);
+  bool IsMemCpySmall(uint64_t Len, unsigned Alignment);
+  bool TryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
+                          unsigned Alignment);
+  // Emit functions.
+  bool EmitCmp(Value *Src1Value, Value *Src2Value, bool isZExt);
+  bool EmitLoad(MVT VT, unsigned &ResultReg, Address Addr,
+                bool UseUnscaled = false);
+  bool EmitStore(MVT VT, unsigned SrcReg, Address Addr,
+                 bool UseUnscaled = false);
+  unsigned EmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
+  unsigned Emiti1Ext(unsigned SrcReg, MVT DestVT, bool isZExt);
+
+  unsigned ARM64MaterializeFP(const ConstantFP *CFP, MVT VT);
+  unsigned ARM64MaterializeGV(const GlobalValue *GV);
+
+  // Call handling routines.
+private:
+  CCAssignFn *CCAssignFnForCall(CallingConv::ID CC) const;
+  bool ProcessCallArgs(SmallVectorImpl<Value *> &Args,
+                       SmallVectorImpl<unsigned> &ArgRegs,
+                       SmallVectorImpl<MVT> &ArgVTs,
+                       SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
+                       SmallVectorImpl<unsigned> &RegArgs, CallingConv::ID CC,
+                       unsigned &NumBytes);
+  bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
+                  const Instruction *I, CallingConv::ID CC, unsigned &NumBytes);
+
+public:
+  // Backend specific FastISel code.
+  virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI);
+  virtual unsigned TargetMaterializeConstant(const Constant *C);
+
+  explicit ARM64FastISel(FunctionLoweringInfo &funcInfo,
+                         const TargetLibraryInfo *libInfo)
+      : FastISel(funcInfo, libInfo) {
+    Subtarget = &TM.getSubtarget<ARM64Subtarget>();
+    Context = &funcInfo.Fn->getContext();
+  }
+
+  virtual bool TargetSelectInstruction(const Instruction *I);
+
+#include "ARM64GenFastISel.inc"
+};
+
+} // end anonymous namespace
+
+#include "ARM64GenCallingConv.inc"
+
+CCAssignFn *ARM64FastISel::CCAssignFnForCall(CallingConv::ID CC) const {
+  if (CC == CallingConv::WebKit_JS)
+    return CC_ARM64_WebKit_JS;
+  return Subtarget->isTargetDarwin() ? CC_ARM64_DarwinPCS : CC_ARM64_AAPCS;
+}
+
+unsigned ARM64FastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
+  assert(TLI.getValueType(AI->getType(), true) == MVT::i64 &&
+         "Alloca should always return a pointer.");
+
+  // Don't handle dynamic allocas.
+  if (!FuncInfo.StaticAllocaMap.count(AI))
+    return 0;
+
+  DenseMap<const AllocaInst *, int>::iterator SI =
+      FuncInfo.StaticAllocaMap.find(AI);
+
+  if (SI != FuncInfo.StaticAllocaMap.end()) {
+    unsigned ResultReg = createResultReg(&ARM64::GPR64RegClass);
+    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::ADDXri),
+            ResultReg)
+        .addFrameIndex(SI->second)
+        .addImm(0)
+        .addImm(0);
+    return ResultReg;
+  }
+
+  return 0;
+}
+
+unsigned ARM64FastISel::ARM64MaterializeFP(const ConstantFP *CFP, MVT VT) {
+  const APFloat Val = CFP->getValueAPF();
+  bool is64bit = (VT == MVT::f64);
+
+  // This checks to see if we can use FMOV instructions to materialize
+  // a constant, otherwise we have to materialize via the constant pool.
+  if (TLI.isFPImmLegal(Val, VT)) {
+    int Imm;
+    unsigned Opc;
+    if (is64bit) {
+      Imm = ARM64_AM::getFP64Imm(Val);
+      Opc = ARM64::FMOVDi;
+    } else {
+      Imm = ARM64_AM::getFP32Imm(Val);
+      Opc = ARM64::FMOVSi;
+    }
+    unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
+    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
+        .addImm(Imm);
+    return ResultReg;
+  }
+
+  // Materialize via constant pool.  MachineConstantPool wants an explicit
+  // alignment.
+  unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
+  if (Align == 0)
+    Align = DL.getTypeAllocSize(CFP->getType());
+
+  unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
+  unsigned ADRPReg = createResultReg(&ARM64::GPR64RegClass);
+  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::ADRP),
+          ADRPReg).addConstantPoolIndex(Idx, 0, ARM64II::MO_PAGE);
+
+  unsigned Opc = is64bit ? ARM64::LDRDui : ARM64::LDRSui;
+  unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
+  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
+      .addReg(ADRPReg)
+      .addConstantPoolIndex(Idx, 0, ARM64II::MO_PAGEOFF | ARM64II::MO_NC);
+  return ResultReg;
+}
+
+unsigned ARM64FastISel::ARM64MaterializeGV(const GlobalValue *GV) {
+  // We can't handle thread-local variables quickly yet. Unfortunately we have
+  // to peer through any aliases to find out if that rule applies.
+  const GlobalValue *TLSGV = GV;
+  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
+    TLSGV = GA->getAliasedGlobal();
+
+  if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(TLSGV))
+    if (GVar->isThreadLocal())
+      return 0;
+
+  unsigned char OpFlags = Subtarget->ClassifyGlobalReference(GV, TM);
+
+  EVT DestEVT = TLI.getValueType(GV->getType(), true);
+  if (!DestEVT.isSimple())
+    return 0;
+  MVT DestVT = DestEVT.getSimpleVT();
+
+  unsigned ADRPReg = createResultReg(&ARM64::GPR64RegClass);
+  unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT));
+
+  if (OpFlags & ARM64II::MO_GOT) {
+    // ADRP + LDRX
+    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::ADRP),
+            ADRPReg)
+        .addGlobalAddress(GV, 0, ARM64II::MO_GOT | ARM64II::MO_PAGE);
+    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::LDRXui),
+            ResultReg)
+        .addReg(ADRPReg)
+        .addGlobalAddress(GV, 0, ARM64II::MO_GOT | ARM64II::MO_PAGEOFF |
+                                     ARM64II::MO_NC);
+  } else {
+    // ADRP + ADDX
+    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::ADRP),
+            ADRPReg).addGlobalAddress(GV, 0, ARM64II::MO_PAGE);
+    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::ADDXri),
+            ResultReg)
+        .addReg(ADRPReg)
+        .addGlobalAddress(GV, 0, ARM64II::MO_PAGEOFF | ARM64II::MO_NC)
+        .addImm(0);
+  }
+  return ResultReg;
+}
+
+unsigned ARM64FastISel::TargetMaterializeConstant(const Constant *C) {
+  EVT CEVT = TLI.getValueType(C->getType(), true);
+
+  // Only handle simple types.
+  if (!CEVT.isSimple())
+    return 0;
+  MVT VT = CEVT.getSimpleVT();
+
+  // FIXME: Handle ConstantInt.
+  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
+    return ARM64MaterializeFP(CFP, VT);
+  else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
+    return ARM64MaterializeGV(GV);
+
+  return 0;
+}
+
+// Computes the address to get to an object.
+bool ARM64FastISel::ComputeAddress(const Value *Obj, Address &Addr) {
+  const User *U = NULL;
+  unsigned Opcode = Instruction::UserOp1;
+  if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
+    // Don't walk into other basic blocks unless the object is an alloca from
+    // another block, otherwise it may not have a virtual register assigned.
+    if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
+        FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
+      Opcode = I->getOpcode();
+      U = I;
+    }
+  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
+    Opcode = C->getOpcode();
+    U = C;
+  }
+
+  if (const PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
+    if (Ty->getAddressSpace() > 255)
+      // Fast instruction selection doesn't support the special
+      // address spaces.
+      return false;
+
+  switch (Opcode) {
+  default:
+    break;
+  case Instruction::BitCast: {
+    // Look through bitcasts.
+    return ComputeAddress(U->getOperand(0), Addr);
+  }
+  case Instruction::IntToPtr: {
+    // Look past no-op inttoptrs.
+    if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
+      return ComputeAddress(U->getOperand(0), Addr);
+    break;
+  }
+  case Instruction::PtrToInt: {
+    // Look past no-op ptrtoints.
+    if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
+      return ComputeAddress(U->getOperand(0), Addr);
+    break;
+  }
+  case Instruction::GetElementPtr: {
+    Address SavedAddr = Addr;
+    uint64_t TmpOffset = Addr.getOffset();
+
+    // Iterate through the GEP folding the constants into offsets where
+    // we can.
+    gep_type_iterator GTI = gep_type_begin(U);
+    for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e;
+         ++i, ++GTI) {
+      const Value *Op = *i;
+      if (StructType *STy = dyn_cast<StructType>(*GTI)) {
+        const StructLayout *SL = DL.getStructLayout(STy);
+        unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
+        TmpOffset += SL->getElementOffset(Idx);
+      } else {
+        uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
+        for (;;) {
+          if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
+            // Constant-offset addressing.
+            TmpOffset += CI->getSExtValue() * S;
+            break;
+          }
+          if (canFoldAddIntoGEP(U, Op)) {
+            // A compatible add with a constant operand. Fold the constant.
+            ConstantInt *CI =
+                cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
+            TmpOffset += CI->getSExtValue() * S;
+            // Iterate on the other operand.
+            Op = cast<AddOperator>(Op)->getOperand(0);
+            continue;
+          }
+          // Unsupported
+          goto unsupported_gep;
+        }
+      }
+    }
+
+    // Try to grab the base operand now.
+    Addr.setOffset(TmpOffset);
+    if (ComputeAddress(U->getOperand(0), Addr))
+      return true;
+
+    // We failed, restore everything and try the other options.
+    Addr = SavedAddr;
+
+  unsupported_gep:
+    break;
+  }
+  case Instruction::Alloca: {
+    const AllocaInst *AI = cast<AllocaInst>(Obj);
+    DenseMap<const AllocaInst *, int>::iterator SI =
+        FuncInfo.StaticAllocaMap.find(AI);
+    if (SI != FuncInfo.StaticAllocaMap.end()) {
+      Addr.setKind(Address::FrameIndexBase);
+      Addr.setFI(SI->second);
+      return true;
+    }
+    break;
+  }
+  }
+
+  // Try to get this in a register if nothing else has worked.
+  if (!Addr.isValid())
+    Addr.setReg(getRegForValue(Obj));
+  return Addr.isValid();
+}
+
+bool ARM64FastISel::isTypeLegal(Type *Ty, MVT &VT) {
+  EVT evt = TLI.getValueType(Ty, true);
+
+  // Only handle simple types.
+  if (evt == MVT::Other || !evt.isSimple())
+    return false;
+  VT = evt.getSimpleVT();
+
+  // Handle all legal types, i.e. a register that will directly hold this
+  // value.
+  return TLI.isTypeLegal(VT);
+}
+
+bool ARM64FastISel::isLoadStoreTypeLegal(Type *Ty, MVT &VT) {
+  if (isTypeLegal(Ty, VT))
+    return true;
+
+  // If this is a type than can be sign or zero-extended to a basic operation
+  // go ahead and accept it now. For stores, this reflects truncation.
+  if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
+    return true;
+
+  return false;
+}
+
+bool ARM64FastISel::SimplifyAddress(Address &Addr, MVT VT, int64_t ScaleFactor,
+                                    bool UseUnscaled) {
+  bool needsLowering = false;
+  int64_t Offset = Addr.getOffset();
+  switch (VT.SimpleTy) {
+  default:
+    return false;
+  case MVT::i1:
+  case MVT::i8:
+  case MVT::i16:
+  case MVT::i32:
+  case MVT::i64:
+  case MVT::f32:
+  case MVT::f64:
+    if (!UseUnscaled)
+      // Using scaled, 12-bit, unsigned immediate offsets.
+      needsLowering = ((Offset & 0xfff) != Offset);
+    else
+      // Using unscaled, 9-bit, signed immediate offsets.
+      needsLowering = (Offset > 256 || Offset < -256);
+    break;
+  }
+
+  // FIXME: If this is a stack pointer and the offset needs to be simplified
+  // then put the alloca address into a register, set the base type back to
+  // register and continue. This should almost never happen.
+  if (needsLowering && Addr.getKind() == Address::FrameIndexBase) {
+    return false;
+  }
+
+  // Since the offset is too large for the load/store instruction get the
+  // reg+offset into a register.
+  if (needsLowering) {
+    uint64_t UnscaledOffset = Addr.getOffset() * ScaleFactor;
+    unsigned ResultReg = FastEmit_ri_(MVT::i64, ISD::ADD, Addr.getReg(), false,
+                                      UnscaledOffset, MVT::i64);
+    if (ResultReg == 0)
+      return false;
+    Addr.setReg(ResultReg);
+    Addr.setOffset(0);
+  }
+  return true;
+}
+
+void ARM64FastISel::AddLoadStoreOperands(Address &Addr,
+                                         const MachineInstrBuilder &MIB,
+                                         unsigned Flags, bool UseUnscaled) {
+  int64_t Offset = Addr.getOffset();
+  // Frame base works a bit differently. Handle it separately.
+  if (Addr.getKind() == Address::FrameIndexBase) {
+    int FI = Addr.getFI();
+    // FIXME: We shouldn't be using getObjectSize/getObjectAlignment.  The size
+    // and alignment should be based on the VT.
+    MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
+        MachinePointerInfo::getFixedStack(FI, Offset), Flags,
+        MFI.getObjectSize(FI), MFI.getObjectAlignment(FI));
+    // Now add the rest of the operands.
+    MIB.addFrameIndex(FI).addImm(Offset).addMemOperand(MMO);
+  } else {
+    // Now add the rest of the operands.
+    MIB.addReg(Addr.getReg());
+    MIB.addImm(Offset);
+  }
+}
+
+bool ARM64FastISel::EmitLoad(MVT VT, unsigned &ResultReg, Address Addr,
+                             bool UseUnscaled) {
+  // Negative offsets require unscaled, 9-bit, signed immediate offsets.
+  // Otherwise, we try using scaled, 12-bit, unsigned immediate offsets.
+  if (!UseUnscaled && Addr.getOffset() < 0)
+    UseUnscaled = true;
+
+  unsigned Opc;
+  const TargetRegisterClass *RC;
+  bool VTIsi1 = false;
+  int64_t ScaleFactor = 0;
+  switch (VT.SimpleTy) {
+  default:
+    return false;
+  case MVT::i1:
+    VTIsi1 = true;
+  // Intentional fall-through.
+  case MVT::i8:
+    Opc = UseUnscaled ? ARM64::LDURBBi : ARM64::LDRBBui;
+    RC = &ARM64::GPR32RegClass;
+    ScaleFactor = 1;
+    break;
+  case MVT::i16:
+    Opc = UseUnscaled ? ARM64::LDURHHi : ARM64::LDRHHui;
+    RC = &ARM64::GPR32RegClass;
+    ScaleFactor = 2;
+    break;
+  case MVT::i32:
+    Opc = UseUnscaled ? ARM64::LDURWi : ARM64::LDRWui;
+    RC = &ARM64::GPR32RegClass;
+    ScaleFactor = 4;
+    break;
+  case MVT::i64:
+    Opc = UseUnscaled ? ARM64::LDURXi : ARM64::LDRXui;
+    RC = &ARM64::GPR64RegClass;
+    ScaleFactor = 8;
+    break;
+  case MVT::f32:
+    Opc = UseUnscaled ? ARM64::LDURSi : ARM64::LDRSui;
+    RC = TLI.getRegClassFor(VT);
+    ScaleFactor = 4;
+    break;
+  case MVT::f64:
+    Opc = UseUnscaled ? ARM64::LDURDi : ARM64::LDRDui;
+    RC = TLI.getRegClassFor(VT);
+    ScaleFactor = 8;
+    break;
+  }
+  // Scale the offset.
+  if (!UseUnscaled) {
+    int64_t Offset = Addr.getOffset();
+    if (Offset & (ScaleFactor - 1))
+      // Retry using an unscaled, 9-bit, signed immediate offset.
+      return EmitLoad(VT, ResultReg, Addr, /*UseUnscaled*/ true);
+
+    Addr.setOffset(Offset / ScaleFactor);
+  }
+
+  // Simplify this down to something we can handle.
+  if (!SimplifyAddress(Addr, VT, UseUnscaled ? 1 : ScaleFactor, UseUnscaled))
+    return false;
+
+  // Create the base instruction, then add the operands.
+  ResultReg = createResultReg(RC);
+  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+                                    TII.get(Opc), ResultReg);
+  AddLoadStoreOperands(Addr, MIB, MachineMemOperand::MOLoad, UseUnscaled);
+
+  // Loading an i1 requires special handling.
+  if (VTIsi1) {
+    unsigned ANDReg = createResultReg(&ARM64::GPR32RegClass);
+    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::ANDWri),
+            ANDReg)
+        .addReg(ResultReg)
+        .addImm(ARM64_AM::encodeLogicalImmediate(1, 32));
+    ResultReg = ANDReg;
+  }
+  return true;
+}
+
+bool ARM64FastISel::SelectLoad(const Instruction *I) {
+  MVT VT;
+  // Verify we have a legal type before going any further.  Currently, we handle
+  // simple types that will directly fit in a register (i32/f32/i64/f64) or
+  // those that can be sign or zero-extended to a basic operation (i1/i8/i16).
+  if (!isLoadStoreTypeLegal(I->getType(), VT) || cast<LoadInst>(I)->isAtomic())
+    return false;
+
+  // See if we can handle this address.
+  Address Addr;
+  if (!ComputeAddress(I->getOperand(0), Addr))
+    return false;
+
+  unsigned ResultReg;
+  if (!EmitLoad(VT, ResultReg, Addr))
+    return false;
+
+  UpdateValueMap(I, ResultReg);
+  return true;
+}
+
+bool ARM64FastISel::EmitStore(MVT VT, unsigned SrcReg, Address Addr,
+                              bool UseUnscaled) {
+  // Negative offsets require unscaled, 9-bit, signed immediate offsets.
+  // Otherwise, we try using scaled, 12-bit, unsigned immediate offsets.
+  if (!UseUnscaled && Addr.getOffset() < 0)
+    UseUnscaled = true;
+
+  unsigned StrOpc;
+  bool VTIsi1 = false;
+  int64_t ScaleFactor = 0;
+  // Using scaled, 12-bit, unsigned immediate offsets.
+  switch (VT.SimpleTy) {
+  default:
+    return false;
+  case MVT::i1:
+    VTIsi1 = true;
+  case MVT::i8:
+    StrOpc = UseUnscaled ? ARM64::STURBBi : ARM64::STRBBui;
+    ScaleFactor = 1;
+    break;
+  case MVT::i16:
+    StrOpc = UseUnscaled ? ARM64::STURHHi : ARM64::STRHHui;
+    ScaleFactor = 2;
+    break;
+  case MVT::i32:
+    StrOpc = UseUnscaled ? ARM64::STURWi : ARM64::STRWui;
+    ScaleFactor = 4;
+    break;
+  case MVT::i64:
+    StrOpc = UseUnscaled ? ARM64::STURXi : ARM64::STRXui;
+    ScaleFactor = 8;
+    break;
+  case MVT::f32:
+    StrOpc = UseUnscaled ? ARM64::STURSi : ARM64::STRSui;
+    ScaleFactor = 4;
+    break;
+  case MVT::f64:
+    StrOpc = UseUnscaled ? ARM64::STURDi : ARM64::STRDui;
+    ScaleFactor = 8;
+    break;
+  }
+  // Scale the offset.
+  if (!UseUnscaled) {
+    int64_t Offset = Addr.getOffset();
+    if (Offset & (ScaleFactor - 1))
+      // Retry using an unscaled, 9-bit, signed immediate offset.
+      return EmitStore(VT, SrcReg, Addr, /*UseUnscaled*/ true);
+
+    Addr.setOffset(Offset / ScaleFactor);
+  }
+
+  // Simplify this down to something we can handle.
+  if (!SimplifyAddress(Addr, VT, UseUnscaled ? 1 : ScaleFactor, UseUnscaled))
+    return false;
+
+  // Storing an i1 requires special handling.
+  if (VTIsi1) {
+    unsigned ANDReg = createResultReg(&ARM64::GPR32RegClass);
+    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::ANDWri),
+            ANDReg)
+        .addReg(SrcReg)
+        .addImm(ARM64_AM::encodeLogicalImmediate(1, 32));
+    SrcReg = ANDReg;
+  }
+  // Create the base instruction, then add the operands.
+  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+                                    TII.get(StrOpc)).addReg(SrcReg);
+  AddLoadStoreOperands(Addr, MIB, MachineMemOperand::MOStore, UseUnscaled);
+  return true;
+}
+
+bool ARM64FastISel::SelectStore(const Instruction *I) {
+  MVT VT;
+  Value *Op0 = I->getOperand(0);
+  // Verify we have a legal type before going any further.  Currently, we handle
+  // simple types that will directly fit in a register (i32/f32/i64/f64) or
+  // those that can be sign or zero-extended to a basic operation (i1/i8/i16).
+  if (!isLoadStoreTypeLegal(Op0->getType(), VT) ||
+      cast<StoreInst>(I)->isAtomic())
+    return false;
+
+  // Get the value to be stored into a register.
+  unsigned SrcReg = getRegForValue(Op0);
+  if (SrcReg == 0)
+    return false;
+
+  // See if we can handle this address.
+  Address Addr;
+  if (!ComputeAddress(I->getOperand(1), Addr))
+    return false;
+
+  if (!EmitStore(VT, SrcReg, Addr))
+    return false;
+  return true;
+}
+
+static ARM64CC::CondCode getCompareCC(CmpInst::Predicate Pred) {
+  switch (Pred) {
+  case CmpInst::FCMP_ONE:
+  case CmpInst::FCMP_UEQ:
+  default:
+    // AL is our "false" for now. The other two need more compares.
+    return ARM64CC::AL;
+  case CmpInst::ICMP_EQ:
+  case CmpInst::FCMP_OEQ:
+    return ARM64CC::EQ;
+  case CmpInst::ICMP_SGT:
+  case CmpInst::FCMP_OGT:
+    return ARM64CC::GT;
+  case CmpInst::ICMP_SGE:
+  case CmpInst::FCMP_OGE:
+    return ARM64CC::GE;
+  case CmpInst::ICMP_UGT:
+  case CmpInst::FCMP_UGT:
+    return ARM64CC::HI;
+  case CmpInst::FCMP_OLT:
+    return ARM64CC::MI;
+  case CmpInst::ICMP_ULE:
+  case CmpInst::FCMP_OLE:
+    return ARM64CC::LS;
+  case CmpInst::FCMP_ORD:
+    return ARM64CC::VC;
+  case CmpInst::FCMP_UNO:
+    return ARM64CC::VS;
+  case CmpInst::FCMP_UGE:
+    return ARM64CC::PL;
+  case CmpInst::ICMP_SLT:
+  case CmpInst::FCMP_ULT:
+    return ARM64CC::LT;
+  case CmpInst::ICMP_SLE:
+  case CmpInst::FCMP_ULE:
+    return ARM64CC::LE;
+  case CmpInst::FCMP_UNE:
+  case CmpInst::ICMP_NE:
+    return ARM64CC::NE;
+  case CmpInst::ICMP_UGE:
+    return ARM64CC::CS;
+  case CmpInst::ICMP_ULT:
+    return ARM64CC::CC;
+  }
+}
+
+bool ARM64FastISel::SelectBranch(const Instruction *I) {
+  const BranchInst *BI = cast<BranchInst>(I);
+  MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
+  MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
+
+  if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
+    if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
+      // We may not handle every CC for now.
+      ARM64CC::CondCode CC = getCompareCC(CI->getPredicate());
+      if (CC == ARM64CC::AL)
+        return false;
+
+      // Emit the cmp.
+      if (!EmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
+        return false;
+
+      // Emit the branch.
+      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::Bcc))
+          .addImm(CC)
+          .addMBB(TBB);
+      FuncInfo.MBB->addSuccessor(TBB);
+
+      FastEmitBranch(FBB, DbgLoc);
+      return true;
+    }
+  } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
+    MVT SrcVT;
+    if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
+        (isLoadStoreTypeLegal(TI->getOperand(0)->getType(), SrcVT))) {
+      unsigned CondReg = getRegForValue(TI->getOperand(0));
+      if (CondReg == 0)
+        return false;
+
+      // Issue an extract_subreg to get the lower 32-bits.
+      if (SrcVT == MVT::i64)
+        CondReg = FastEmitInst_extractsubreg(MVT::i32, CondReg, /*Kill=*/true,
+                                             ARM64::sub_32);
+
+      unsigned ANDReg = createResultReg(&ARM64::GPR32RegClass);
+      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::ANDWri),
+              ANDReg)
+          .addReg(CondReg)
+          .addImm(ARM64_AM::encodeLogicalImmediate(1, 32));
+      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::SUBSWri))
+          .addReg(ANDReg)
+          .addReg(ANDReg)
+          .addImm(0)
+          .addImm(0);
+
+      unsigned CC = ARM64CC::NE;
+      if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
+        std::swap(TBB, FBB);
+        CC = ARM64CC::EQ;
+      }
+      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::Bcc))
+          .addImm(CC)
+          .addMBB(TBB);
+      FuncInfo.MBB->addSuccessor(TBB);
+      FastEmitBranch(FBB, DbgLoc);
+      return true;
+    }
+  } else if (const ConstantInt *CI =
+                 dyn_cast<ConstantInt>(BI->getCondition())) {
+    uint64_t Imm = CI->getZExtValue();
+    MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
+    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::B))
+        .addMBB(Target);
+    FuncInfo.MBB->addSuccessor(Target);
+    return true;
+  }
+
+  unsigned CondReg = getRegForValue(BI->getCondition());
+  if (CondReg == 0)
+    return false;
+
+  // We've been divorced from our compare!  Our block was split, and
+  // now our compare lives in a predecessor block.  We musn't
+  // re-compare here, as the children of the compare aren't guaranteed
+  // live across the block boundary (we *could* check for this).
+  // Regardless, the compare has been done in the predecessor block,
+  // and it left a value for us in a virtual register.  Ergo, we test
+  // the one-bit value left in the virtual register.
+  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::SUBSWri),
+          ARM64::WZR)
+      .addReg(CondReg)
+      .addImm(0)
+      .addImm(0);
+
+  unsigned CC = ARM64CC::NE;
+  if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
+    std::swap(TBB, FBB);
+    CC = ARM64CC::EQ;
+  }
+
+  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::Bcc))
+      .addImm(CC)
+      .addMBB(TBB);
+  FuncInfo.MBB->addSuccessor(TBB);
+  FastEmitBranch(FBB, DbgLoc);
+  return true;
+}
+
+bool ARM64FastISel::SelectIndirectBr(const Instruction *I) {
+  const IndirectBrInst *BI = cast<IndirectBrInst>(I);
+  unsigned AddrReg = getRegForValue(BI->getOperand(0));
+  if (AddrReg == 0)
+    return false;
+
+  // Emit the indirect branch.
+  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::BR))
+      .addReg(AddrReg);
+
+  // Make sure the CFG is up-to-date.
+  for (unsigned i = 0, e = BI->getNumSuccessors(); i != e; ++i)
+    FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[BI->getSuccessor(i)]);
+
+  return true;
+}
+
+bool ARM64FastISel::EmitCmp(Value *Src1Value, Value *Src2Value, bool isZExt) {
+  Type *Ty = Src1Value->getType();
+  EVT SrcEVT = TLI.getValueType(Ty, true);
+  if (!SrcEVT.isSimple())
+    return false;
+  MVT SrcVT = SrcEVT.getSimpleVT();
+
+  // Check to see if the 2nd operand is a constant that we can encode directly
+  // in the compare.
+  uint64_t Imm;
+  bool UseImm = false;
+  bool isNegativeImm = false;
+  if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
+    if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 ||
+        SrcVT == MVT::i8 || SrcVT == MVT::i1) {
+      const APInt &CIVal = ConstInt->getValue();
+
+      Imm = (isZExt) ? CIVal.getZExtValue() : CIVal.getSExtValue();
+      if (CIVal.isNegative()) {
+        isNegativeImm = true;
+        Imm = -Imm;
+      }
+      // FIXME: We can handle more immediates using shifts.
+      UseImm = ((Imm & 0xfff) == Imm);
+    }
+  } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
+    if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
+      if (ConstFP->isZero() && !ConstFP->isNegative())
+        UseImm = true;
+  }
+
+  unsigned ZReg;
+  unsigned CmpOpc;
+  bool isICmp = true;
+  bool needsExt = false;
+  switch (SrcVT.SimpleTy) {
+  default:
+    return false;
+  case MVT::i1:
+  case MVT::i8:
+  case MVT::i16:
+    needsExt = true;
+  // Intentional fall-through.
+  case MVT::i32:
+    ZReg = ARM64::WZR;
+    if (UseImm)
+      CmpOpc = isNegativeImm ? ARM64::ADDSWri : ARM64::SUBSWri;
+    else
+      CmpOpc = ARM64::SUBSWrr;
+    break;
+  case MVT::i64:
+    ZReg = ARM64::XZR;
+    if (UseImm)
+      CmpOpc = isNegativeImm ? ARM64::ADDSXri : ARM64::SUBSXri;
+    else
+      CmpOpc = ARM64::SUBSXrr;
+    break;
+  case MVT::f32:
+    isICmp = false;
+    CmpOpc = UseImm ? ARM64::FCMPSri : ARM64::FCMPSrr;
+    break;
+  case MVT::f64:
+    isICmp = false;
+    CmpOpc = UseImm ? ARM64::FCMPDri : ARM64::FCMPDrr;
+    break;
+  }
+
+  unsigned SrcReg1 = getRegForValue(Src1Value);
+  if (SrcReg1 == 0)
+    return false;
+
+  unsigned SrcReg2;
+  if (!UseImm) {
+    SrcReg2 = getRegForValue(Src2Value);
+    if (SrcReg2 == 0)
+      return false;
+  }
+
+  // We have i1, i8, or i16, we need to either zero extend or sign extend.
+  if (needsExt) {
+    SrcReg1 = EmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
+    if (SrcReg1 == 0)
+      return false;
+    if (!UseImm) {
+      SrcReg2 = EmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
+      if (SrcReg2 == 0)
+        return false;
+    }
+  }
+
+  if (isICmp) {
+    if (UseImm)
+      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc))
+          .addReg(ZReg)
+          .addReg(SrcReg1)
+          .addImm(Imm)
+          .addImm(0);
+    else
+      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc))
+          .addReg(ZReg)
+          .addReg(SrcReg1)
+          .addReg(SrcReg2);
+  } else {
+    if (UseImm)
+      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc))
+          .addReg(SrcReg1);
+    else
+      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc))
+          .addReg(SrcReg1)
+          .addReg(SrcReg2);
+  }
+  return true;
+}
+
+bool ARM64FastISel::SelectCmp(const Instruction *I) {
+  const CmpInst *CI = cast<CmpInst>(I);
+
+  // We may not handle every CC for now.
+  ARM64CC::CondCode CC = getCompareCC(CI->getPredicate());
+  if (CC == ARM64CC::AL)
+    return false;
+
+  // Emit the cmp.
+  if (!EmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
+    return false;
+
+  // Now set a register based on the comparison.
+  ARM64CC::CondCode invertedCC = getInvertedCondCode(CC);
+  unsigned ResultReg = createResultReg(&ARM64::GPR32RegClass);
+  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::CSINCWr),
+          ResultReg)
+      .addReg(ARM64::WZR)
+      .addReg(ARM64::WZR)
+      .addImm(invertedCC);
+
+  UpdateValueMap(I, ResultReg);
+  return true;
+}
+
+bool ARM64FastISel::SelectSelect(const Instruction *I) {
+  const SelectInst *SI = cast<SelectInst>(I);
+
+  EVT DestEVT = TLI.getValueType(SI->getType(), true);
+  if (!DestEVT.isSimple())
+    return false;
+
+  MVT DestVT = DestEVT.getSimpleVT();
+  if (DestVT != MVT::i32 && DestVT != MVT::i64 && DestVT != MVT::f32 &&
+      DestVT != MVT::f64)
+    return false;
+
+  unsigned CondReg = getRegForValue(SI->getCondition());
+  if (CondReg == 0)
+    return false;
+  unsigned TrueReg = getRegForValue(SI->getTrueValue());
+  if (TrueReg == 0)
+    return false;
+  unsigned FalseReg = getRegForValue(SI->getFalseValue());
+  if (FalseReg == 0)
+    return false;
+
+  unsigned ANDReg = createResultReg(&ARM64::GPR32RegClass);
+  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::ANDWri),
+          ANDReg)
+      .addReg(CondReg)
+      .addImm(ARM64_AM::encodeLogicalImmediate(1, 32));
+
+  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::SUBSWri))
+      .addReg(ANDReg)
+      .addReg(ANDReg)
+      .addImm(0)
+      .addImm(0);
+
+  unsigned SelectOpc;
+  switch (DestVT.SimpleTy) {
+  default:
+    return false;
+  case MVT::i32:
+    SelectOpc = ARM64::CSELWr;
+    break;
+  case MVT::i64:
+    SelectOpc = ARM64::CSELXr;
+    break;
+  case MVT::f32:
+    SelectOpc = ARM64::FCSELSrrr;
+    break;
+  case MVT::f64:
+    SelectOpc = ARM64::FCSELDrrr;
+    break;
+  }
+
+  unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT));
+  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SelectOpc),
+          ResultReg)
+      .addReg(TrueReg)
+      .addReg(FalseReg)
+      .addImm(ARM64CC::NE);
+
+  UpdateValueMap(I, ResultReg);
+  return true;
+}
+
+bool ARM64FastISel::SelectFPExt(const Instruction *I) {
+  Value *V = I->getOperand(0);
+  if (!I->getType()->isDoubleTy() || !V->getType()->isFloatTy())
+    return false;
+
+  unsigned Op = getRegForValue(V);
+  if (Op == 0)
+    return false;
+
+  unsigned ResultReg = createResultReg(&ARM64::FPR64RegClass);
+  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::FCVTDSr),
+          ResultReg).addReg(Op);
+  UpdateValueMap(I, ResultReg);
+  return true;
+}
+
+bool ARM64FastISel::SelectFPTrunc(const Instruction *I) {
+  Value *V = I->getOperand(0);
+  if (!I->getType()->isFloatTy() || !V->getType()->isDoubleTy())
+    return false;
+
+  unsigned Op = getRegForValue(V);
+  if (Op == 0)
+    return false;
+
+  unsigned ResultReg = createResultReg(&ARM64::FPR32RegClass);
+  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::FCVTSDr),
+          ResultReg).addReg(Op);
+  UpdateValueMap(I, ResultReg);
+  return true;
+}
+
+// FPToUI and FPToSI
+bool ARM64FastISel::SelectFPToInt(const Instruction *I, bool Signed) {
+  MVT DestVT;
+  if (!isTypeLegal(I->getType(), DestVT) || DestVT.isVector())
+    return false;
+
+  unsigned SrcReg = getRegForValue(I->getOperand(0));
+  if (SrcReg == 0)
+    return false;
+
+  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType(), true);
+
+  unsigned Opc;
+  if (SrcVT == MVT::f64) {
+    if (Signed)
+      Opc = (DestVT == MVT::i32) ? ARM64::FCVTZSUWDr : ARM64::FCVTZSUXDr;
+    else
+      Opc = (DestVT == MVT::i32) ? ARM64::FCVTZUUWDr : ARM64::FCVTZUUXDr;
+  } else {
+    if (Signed)
+      Opc = (DestVT == MVT::i32) ? ARM64::FCVTZSUWSr : ARM64::FCVTZSUXSr;
+    else
+      Opc = (DestVT == MVT::i32) ? ARM64::FCVTZUUWSr : ARM64::FCVTZUUXSr;
+  }
+  unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT));
+  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
+      .addReg(SrcReg);
+  UpdateValueMap(I, ResultReg);
+  return true;
+}
+
+bool ARM64FastISel::SelectIntToFP(const Instruction *I, bool Signed) {
+  MVT DestVT;
+  if (!isTypeLegal(I->getType(), DestVT) || DestVT.isVector())
+    return false;
+
+  unsigned SrcReg = getRegForValue(I->getOperand(0));
+  if (SrcReg == 0)
+    return false;
+
+  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType(), true);
+
+  // Handle sign-extension.
+  if (SrcVT == MVT::i16 || SrcVT == MVT::i8 || SrcVT == MVT::i1) {
+    SrcReg =
+        EmitIntExt(SrcVT.getSimpleVT(), SrcReg, MVT::i32, /*isZExt*/ !Signed);
+    if (SrcReg == 0)
+      return false;
+  }
+
+  unsigned Opc;
+  if (SrcVT == MVT::i64) {
+    if (Signed)
+      Opc = (DestVT == MVT::f32) ? ARM64::SCVTFUXSri : ARM64::SCVTFUXDri;
+    else
+      Opc = (DestVT == MVT::f32) ? ARM64::UCVTFUXSri : ARM64::UCVTFUXDri;
+  } else {
+    if (Signed)
+      Opc = (DestVT == MVT::f32) ? ARM64::SCVTFUWSri : ARM64::SCVTFUWDri;
+    else
+      Opc = (DestVT == MVT::f32) ? ARM64::UCVTFUWSri : ARM64::UCVTFUWDri;
+  }
+
+  unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT));
+  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
+      .addReg(SrcReg);
+  UpdateValueMap(I, ResultReg);
+  return true;
+}
+
+bool ARM64FastISel::ProcessCallArgs(SmallVectorImpl<Value *> &Args,
+                                    SmallVectorImpl<unsigned> &ArgRegs,
+                                    SmallVectorImpl<MVT> &ArgVTs,
+                                    SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
+                                    SmallVectorImpl<unsigned> &RegArgs,
+                                    CallingConv::ID CC, unsigned &NumBytes) {
+  SmallVector<CCValAssign, 16> ArgLocs;
+  CCState CCInfo(CC, false, *FuncInfo.MF, TM, ArgLocs, *Context);
+  CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC));
+
+  // Get a count of how many bytes are to be pushed on the stack.
+  NumBytes = CCInfo.getNextStackOffset();
+
+  // Issue CALLSEQ_START
+  unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
+  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
+      .addImm(NumBytes);
+
+  // Process the args.
+  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+    CCValAssign &VA = ArgLocs[i];
+    unsigned Arg = ArgRegs[VA.getValNo()];
+    MVT ArgVT = ArgVTs[VA.getValNo()];
+
+    // Handle arg promotion: SExt, ZExt, AExt.
+    switch (VA.getLocInfo()) {
+    case CCValAssign::Full:
+      break;
+    case CCValAssign::SExt: {
+      MVT DestVT = VA.getLocVT();
+      MVT SrcVT = ArgVT;
+      Arg = EmitIntExt(SrcVT, Arg, DestVT, /*isZExt*/ false);
+      if (Arg == 0)
+        return false;
+      ArgVT = DestVT;
+      break;
+    }
+    case CCValAssign::AExt:
+    // Intentional fall-through.
+    case CCValAssign::ZExt: {
+      MVT DestVT = VA.getLocVT();
+      MVT SrcVT = ArgVT;
+      Arg = EmitIntExt(SrcVT, Arg, DestVT, /*isZExt*/ true);
+      if (Arg == 0)
+        return false;
+      ArgVT = DestVT;
+      break;
+    }
+    default:
+      llvm_unreachable("Unknown arg promotion!");
+    }
+
+    // Now copy/store arg to correct locations.
+    if (VA.isRegLoc() && !VA.needsCustom()) {
+      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+              TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg);
+      RegArgs.push_back(VA.getLocReg());
+    } else if (VA.needsCustom()) {
+      // FIXME: Handle custom args.
+      return false;
+    } else {
+      assert(VA.isMemLoc() && "Assuming store on stack.");
+
+      // Need to store on the stack.
+      Address Addr;
+      Addr.setKind(Address::RegBase);
+      Addr.setReg(ARM64::SP);
+      Addr.setOffset(VA.getLocMemOffset());
+
+      if (!EmitStore(ArgVT, Arg, Addr))
+        return false;
+    }
+  }
+  return true;
+}
+
+bool ARM64FastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
+                               const Instruction *I, CallingConv::ID CC,
+                               unsigned &NumBytes) {
+  // Issue CALLSEQ_END
+  unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
+  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
+      .addImm(NumBytes)
+      .addImm(0);
+
+  // Now the return value.
+  if (RetVT != MVT::isVoid) {
+    SmallVector<CCValAssign, 16> RVLocs;
+    CCState CCInfo(CC, false, *FuncInfo.MF, TM, RVLocs, *Context);
+    CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC));
+
+    // Only handle a single return value.
+    if (RVLocs.size() != 1)
+      return false;
+
+    // Copy all of the result registers out of their specified physreg.
+    MVT CopyVT = RVLocs[0].getValVT();
+    unsigned ResultReg = createResultReg(TLI.getRegClassFor(CopyVT));
+    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+            TII.get(TargetOpcode::COPY),
+            ResultReg).addReg(RVLocs[0].getLocReg());
+    UsedRegs.push_back(RVLocs[0].getLocReg());
+
+    // Finally update the result.
+    UpdateValueMap(I, ResultReg);
+  }
+
+  return true;
+}
+
+bool ARM64FastISel::SelectCall(const Instruction *I,
+                               const char *IntrMemName = 0) {
+  const CallInst *CI = cast<CallInst>(I);
+  const Value *Callee = CI->getCalledValue();
+
+  // Don't handle inline asm or intrinsics.
+  if (isa<InlineAsm>(Callee))
+    return false;
+
+  // Only handle global variable Callees.
+  const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
+  if (!GV)
+    return false;
+
+  // Check the calling convention.
+  ImmutableCallSite CS(CI);
+  CallingConv::ID CC = CS.getCallingConv();
+
+  // Let SDISel handle vararg functions.
+  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
+  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
+  if (FTy->isVarArg())
+    return false;
+
+  // Handle *simple* calls for now.
+  MVT RetVT;
+  Type *RetTy = I->getType();
+  if (RetTy->isVoidTy())
+    RetVT = MVT::isVoid;
+  else if (!isTypeLegal(RetTy, RetVT))
+    return false;
+
+  // Set up the argument vectors.
+  SmallVector<Value *, 8> Args;
+  SmallVector<unsigned, 8> ArgRegs;
+  SmallVector<MVT, 8> ArgVTs;
+  SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
+  Args.reserve(CS.arg_size());
+  ArgRegs.reserve(CS.arg_size());
+  ArgVTs.reserve(CS.arg_size());
+  ArgFlags.reserve(CS.arg_size());
+
+  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
+       i != e; ++i) {
+    // If we're lowering a memory intrinsic instead of a regular call, skip the
+    // last two arguments, which shouldn't be passed to the underlying function.
+    if (IntrMemName && e - i <= 2)
+      break;
+
+    unsigned Arg = getRegForValue(*i);
+    if (Arg == 0)
+      return false;
+
+    ISD::ArgFlagsTy Flags;
+    unsigned AttrInd = i - CS.arg_begin() + 1;
+    if (CS.paramHasAttr(AttrInd, Attribute::SExt))
+      Flags.setSExt();
+    if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
+      Flags.setZExt();
+
+    // FIXME: Only handle *easy* calls for now.
+    if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
+        CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
+        CS.paramHasAttr(AttrInd, Attribute::Nest) ||
+        CS.paramHasAttr(AttrInd, Attribute::ByVal))
+      return false;
+
+    MVT ArgVT;
+    Type *ArgTy = (*i)->getType();
+    if (!isTypeLegal(ArgTy, ArgVT) &&
+        !(ArgVT == MVT::i1 || ArgVT == MVT::i8 || ArgVT == MVT::i16))
+      return false;
+
+    // We don't handle vector parameters yet.
+    if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
+      return false;
+
+    unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
+    Flags.setOrigAlign(OriginalAlignment);
+
+    Args.push_back(*i);
+    ArgRegs.push_back(Arg);
+    ArgVTs.push_back(ArgVT);
+    ArgFlags.push_back(Flags);
+  }
+
+  // Handle the arguments now that we've gotten them.
+  SmallVector<unsigned, 4> RegArgs;
+  unsigned NumBytes;
+  if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
+    return false;
+
+  // Issue the call.
+  MachineInstrBuilder MIB;
+  MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::BL));
+  if (!IntrMemName)
+    MIB.addGlobalAddress(GV, 0, 0);
+  else
+    MIB.addExternalSymbol(IntrMemName, 0);
+
+  // Add implicit physical register uses to the call.
+  for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
+    MIB.addReg(RegArgs[i], RegState::Implicit);
+
+  // Add a register mask with the call-preserved registers.
+  // Proper defs for return values will be added by setPhysRegsDeadExcept().
+  MIB.addRegMask(TRI.getCallPreservedMask(CS.getCallingConv()));
+
+  // Finish off the call including any return values.
+  SmallVector<unsigned, 4> UsedRegs;
+  if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes))
+    return false;
+
+  // Set all unused physreg defs as dead.
+  static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
+
+  return true;
+}
+
+bool ARM64FastISel::IsMemCpySmall(uint64_t Len, unsigned Alignment) {
+  if (Alignment)
+    return Len / Alignment <= 4;
+  else
+    return Len < 32;
+}
+
+bool ARM64FastISel::TryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
+                                       unsigned Alignment) {
+  // Make sure we don't bloat code by inlining very large memcpy's.
+  if (!IsMemCpySmall(Len, Alignment))
+    return false;
+
+  int64_t UnscaledOffset = 0;
+  Address OrigDest = Dest;
+  Address OrigSrc = Src;
+
+  while (Len) {
+    MVT VT;
+    if (!Alignment || Alignment >= 8) {
+      if (Len >= 8)
+        VT = MVT::i64;
+      else if (Len >= 4)
+        VT = MVT::i32;
+      else if (Len >= 2)
+        VT = MVT::i16;
+      else {
+        VT = MVT::i8;
+      }
+    } else {
+      // Bound based on alignment.
+      if (Len >= 4 && Alignment == 4)
+        VT = MVT::i32;
+      else if (Len >= 2 && Alignment == 2)
+        VT = MVT::i16;
+      else {
+        VT = MVT::i8;
+      }
+    }
+
+    bool RV;
+    unsigned ResultReg;
+    RV = EmitLoad(VT, ResultReg, Src);
+    assert(RV == true && "Should be able to handle this load.");
+    RV = EmitStore(VT, ResultReg, Dest);
+    assert(RV == true && "Should be able to handle this store.");
+    (void)RV;
+
+    int64_t Size = VT.getSizeInBits() / 8;
+    Len -= Size;
+    UnscaledOffset += Size;
+
+    // We need to recompute the unscaled offset for each iteration.
+    Dest.setOffset(OrigDest.getOffset() + UnscaledOffset);
+    Src.setOffset(OrigSrc.getOffset() + UnscaledOffset);
+  }
+
+  return true;
+}
+
+bool ARM64FastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
+  // FIXME: Handle more intrinsics.
+  switch (I.getIntrinsicID()) {
+  default:
+    return false;
+  case Intrinsic::memcpy:
+  case Intrinsic::memmove: {
+    const MemTransferInst &MTI = cast<MemTransferInst>(I);
+    // Don't handle volatile.
+    if (MTI.isVolatile())
+      return false;
+
+    // Disable inlining for memmove before calls to ComputeAddress.  Otherwise,
+    // we would emit dead code because we don't currently handle memmoves.
+    bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy);
+    if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) {
+      // Small memcpy's are common enough that we want to do them without a call
+      // if possible.
+      uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue();
+      unsigned Alignment = MTI.getAlignment();
+      if (IsMemCpySmall(Len, Alignment)) {
+        Address Dest, Src;
+        if (!ComputeAddress(MTI.getRawDest(), Dest) ||
+            !ComputeAddress(MTI.getRawSource(), Src))
+          return false;
+        if (TryEmitSmallMemCpy(Dest, Src, Len, Alignment))
+          return true;
+      }
+    }
+
+    if (!MTI.getLength()->getType()->isIntegerTy(64))
+      return false;
+
+    if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255)
+      // Fast instruction selection doesn't support the special
+      // address spaces.
+      return false;
+
+    const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove";
+    return SelectCall(&I, IntrMemName);
+  }
+  case Intrinsic::memset: {
+    const MemSetInst &MSI = cast<MemSetInst>(I);
+    // Don't handle volatile.
+    if (MSI.isVolatile())
+      return false;
+
+    if (!MSI.getLength()->getType()->isIntegerTy(64))
+      return false;
+
+    if (MSI.getDestAddressSpace() > 255)
+      // Fast instruction selection doesn't support the special
+      // address spaces.
+      return false;
+
+    return SelectCall(&I, "memset");
+  }
+  case Intrinsic::trap: {
+    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::BRK))
+        .addImm(1);
+    return true;
+  }
+  }
+  return false;
+}
+
+bool ARM64FastISel::SelectRet(const Instruction *I) {
+  const ReturnInst *Ret = cast<ReturnInst>(I);
+  const Function &F = *I->getParent()->getParent();
+
+  if (!FuncInfo.CanLowerReturn)
+    return false;
+
+  if (F.isVarArg())
+    return false;
+
+  // Build a list of return value registers.
+  SmallVector<unsigned, 4> RetRegs;
+
+  if (Ret->getNumOperands() > 0) {
+    CallingConv::ID CC = F.getCallingConv();
+    SmallVector<ISD::OutputArg, 4> Outs;
+    GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI);
+
+    // Analyze operands of the call, assigning locations to each operand.
+    SmallVector<CCValAssign, 16> ValLocs;
+    CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,
+                   I->getContext());
+    CCAssignFn *RetCC = CC == CallingConv::WebKit_JS ? RetCC_ARM64_WebKit_JS
+                                                     : RetCC_ARM64_AAPCS;
+    CCInfo.AnalyzeReturn(Outs, RetCC);
+
+    // Only handle a single return value for now.
+    if (ValLocs.size() != 1)
+      return false;
+
+    CCValAssign &VA = ValLocs[0];
+    const Value *RV = Ret->getOperand(0);
+
+    // Don't bother handling odd stuff for now.
+    if (VA.getLocInfo() != CCValAssign::Full)
+      return false;
+    // Only handle register returns for now.
+    if (!VA.isRegLoc())
+      return false;
+    unsigned Reg = getRegForValue(RV);
+    if (Reg == 0)
+      return false;
+
+    unsigned SrcReg = Reg + VA.getValNo();
+    unsigned DestReg = VA.getLocReg();
+    // Avoid a cross-class copy. This is very unlikely.
+    if (!MRI.getRegClass(SrcReg)->contains(DestReg))
+      return false;
+
+    EVT RVEVT = TLI.getValueType(RV->getType());
+    if (!RVEVT.isSimple())
+      return false;
+    MVT RVVT = RVEVT.getSimpleVT();
+    MVT DestVT = VA.getValVT();
+    // Special handling for extended integers.
+    if (RVVT != DestVT) {
+      if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
+        return false;
+
+      if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
+        return false;
+
+      bool isZExt = Outs[0].Flags.isZExt();
+      SrcReg = EmitIntExt(RVVT, SrcReg, DestVT, isZExt);
+      if (SrcReg == 0)
+        return false;
+    }
+
+    // Make the copy.
+    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+            TII.get(TargetOpcode::COPY), DestReg).addReg(SrcReg);
+
+    // Add register to return instruction.
+    RetRegs.push_back(VA.getLocReg());
+  }
+
+  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+                                    TII.get(ARM64::RET_ReallyLR));
+  for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
+    MIB.addReg(RetRegs[i], RegState::Implicit);
+  return true;
+}
+
+bool ARM64FastISel::SelectTrunc(const Instruction *I) {
+  Type *DestTy = I->getType();
+  Value *Op = I->getOperand(0);
+  Type *SrcTy = Op->getType();
+
+  EVT SrcEVT = TLI.getValueType(SrcTy, true);
+  EVT DestEVT = TLI.getValueType(DestTy, true);
+  if (!SrcEVT.isSimple())
+    return false;
+  if (!DestEVT.isSimple())
+    return false;
+
+  MVT SrcVT = SrcEVT.getSimpleVT();
+  MVT DestVT = DestEVT.getSimpleVT();
+
+  if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16 &&
+      SrcVT != MVT::i8)
+    return false;
+  if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8 &&
+      DestVT != MVT::i1)
+    return false;
+
+  unsigned SrcReg = getRegForValue(Op);
+  if (!SrcReg)
+    return false;
+
+  // If we're truncating from i64 to a smaller non-legal type then generate an
+  // AND.  Otherwise, we know the high bits are undefined and a truncate doesn't
+  // generate any code.
+  if (SrcVT == MVT::i64) {
+    uint64_t Mask = 0;
+    switch (DestVT.SimpleTy) {
+    default:
+      // Trunc i64 to i32 is handled by the target-independent fast-isel.
+      return false;
+    case MVT::i1:
+      Mask = 0x1;
+      break;
+    case MVT::i8:
+      Mask = 0xff;
+      break;
+    case MVT::i16:
+      Mask = 0xffff;
+      break;
+    }
+    // Issue an extract_subreg to get the lower 32-bits.
+    unsigned Reg32 = FastEmitInst_extractsubreg(MVT::i32, SrcReg, /*Kill=*/true,
+                                                ARM64::sub_32);
+    // Create the AND instruction which performs the actual truncation.
+    unsigned ANDReg = createResultReg(&ARM64::GPR32RegClass);
+    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::ANDWri),
+            ANDReg)
+        .addReg(Reg32)
+        .addImm(ARM64_AM::encodeLogicalImmediate(Mask, 32));
+    SrcReg = ANDReg;
+  }
+
+  UpdateValueMap(I, SrcReg);
+  return true;
+}
+
+unsigned ARM64FastISel::Emiti1Ext(unsigned SrcReg, MVT DestVT, bool isZExt) {
+  assert((DestVT == MVT::i8 || DestVT == MVT::i16 || DestVT == MVT::i32 ||
+          DestVT == MVT::i64) &&
+         "Unexpected value type.");
+  // Handle i8 and i16 as i32.
+  if (DestVT == MVT::i8 || DestVT == MVT::i16)
+    DestVT = MVT::i32;
+
+  if (isZExt) {
+    unsigned ResultReg = createResultReg(&ARM64::GPR32RegClass);
+    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::ANDWri),
+            ResultReg)
+        .addReg(SrcReg)
+        .addImm(ARM64_AM::encodeLogicalImmediate(1, 32));
+
+    if (DestVT == MVT::i64) {
+      // We're ZExt i1 to i64.  The ANDWri Wd, Ws, #1 implicitly clears the
+      // upper 32 bits.  Emit a SUBREG_TO_REG to extend from Wd to Xd.
+      unsigned Reg64 = MRI.createVirtualRegister(&ARM64::GPR64RegClass);
+      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
+              TII.get(ARM64::SUBREG_TO_REG), Reg64)
+          .addImm(0)
+          .addReg(ResultReg)
+          .addImm(ARM64::sub_32);
+      ResultReg = Reg64;
+    }
+    return ResultReg;
+  } else {
+    if (DestVT == MVT::i64) {
+      // FIXME: We're SExt i1 to i64.
+      return 0;
+    }
+    unsigned ResultReg = createResultReg(&ARM64::GPR32RegClass);
+    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(ARM64::SBFMWri),
+            ResultReg)
+        .addReg(SrcReg)
+        .addImm(0)
+        .addImm(0);
+    return ResultReg;
+  }
+}
+
+unsigned ARM64FastISel::EmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
+                                   bool isZExt) {
+  assert(DestVT != MVT::i1 && "ZeroExt/SignExt an i1?");
+  unsigned Opc;
+  unsigned Imm = 0;
+
+  switch (SrcVT.SimpleTy) {
+  default:
+    return 0;
+  case MVT::i1:
+    return Emiti1Ext(SrcReg, DestVT, isZExt);
+  case MVT::i8:
+    if (DestVT == MVT::i64)
+      Opc = isZExt ? ARM64::UBFMXri : ARM64::SBFMXri;
+    else
+      Opc = isZExt ? ARM64::UBFMWri : ARM64::SBFMWri;
+    Imm = 7;
+    break;
+  case MVT::i16:
+    if (DestVT == MVT::i64)
+      Opc = isZExt ? ARM64::UBFMXri : ARM64::SBFMXri;
+    else
+      Opc = isZExt ? ARM64::UBFMWri : ARM64::SBFMWri;
+    Imm = 15;
+    break;
+  case MVT::i32:
+    assert(DestVT == MVT::i64 && "IntExt i32 to i32?!?");
+    Opc = isZExt ? ARM64::UBFMXri : ARM64::SBFMXri;
+    Imm = 31;
+    break;
+  }
+
+  // Handle i8 and i16 as i32.
+  if (DestVT == MVT::i8 || DestVT == MVT::i16)
+    DestVT = MVT::i32;
+
+  unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT));
+  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
+      .addReg(SrcReg)
+      .addImm(0)
+      .addImm(Imm);
+
+  return ResultReg;
+}
+
+bool ARM64FastISel::SelectIntExt(const Instruction *I) {
+  // On ARM, in general, integer casts don't involve legal types; this code
+  // handles promotable integers.  The high bits for a type smaller than
+  // the register size are assumed to be undefined.
+  Type *DestTy = I->getType();
+  Value *Src = I->getOperand(0);
+  Type *SrcTy = Src->getType();
+
+  bool isZExt = isa<ZExtInst>(I);
+  unsigned SrcReg = getRegForValue(Src);
+  if (!SrcReg)
+    return false;
+
+  EVT SrcEVT = TLI.getValueType(SrcTy, true);
+  EVT DestEVT = TLI.getValueType(DestTy, true);
+  if (!SrcEVT.isSimple())
+    return false;
+  if (!DestEVT.isSimple())
+    return false;
+
+  MVT SrcVT = SrcEVT.getSimpleVT();
+  MVT DestVT = DestEVT.getSimpleVT();
+  unsigned ResultReg = EmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
+  if (ResultReg == 0)
+    return false;
+  UpdateValueMap(I, ResultReg);
+  return true;
+}
+
+bool ARM64FastISel::SelectRem(const Instruction *I, unsigned ISDOpcode) {
+  EVT DestEVT = TLI.getValueType(I->getType(), true);
+  if (!DestEVT.isSimple())
+    return false;
+
+  MVT DestVT = DestEVT.getSimpleVT();
+  if (DestVT != MVT::i64 && DestVT != MVT::i32)
+    return false;
+
+  unsigned DivOpc;
+  bool is64bit = (DestVT == MVT::i64);
+  switch (ISDOpcode) {
+  default:
+    return false;
+  case ISD::SREM:
+    DivOpc = is64bit ? ARM64::SDIVXr : ARM64::SDIVWr;
+    break;
+  case ISD::UREM:
+    DivOpc = is64bit ? ARM64::UDIVXr : ARM64::UDIVWr;
+    break;
+  }
+  unsigned MSubOpc = is64bit ? ARM64::MSUBXrrr : ARM64::MSUBWrrr;
+  unsigned Src0Reg = getRegForValue(I->getOperand(0));
+  if (!Src0Reg)
+    return false;
+
+  unsigned Src1Reg = getRegForValue(I->getOperand(1));
+  if (!Src1Reg)
+    return false;
+
+  unsigned ResultReg = createResultReg(TLI.getRegClassFor(DestVT));
+  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(DivOpc), ResultReg)
+      .addReg(Src0Reg)
+      .addReg(Src1Reg);
+  // The remainder is computed as numerator – (quotient * denominator) using the
+  // MSUB instruction.
+  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MSubOpc), ResultReg)
+      .addReg(ResultReg)
+      .addReg(Src1Reg)
+      .addReg(Src0Reg);
+  UpdateValueMap(I, ResultReg);
+  return true;
+}
+
+bool ARM64FastISel::SelectMul(const Instruction *I) {
+  EVT SrcEVT = TLI.getValueType(I->getOperand(0)->getType(), true);
+  if (!SrcEVT.isSimple())
+    return false;
+  MVT SrcVT = SrcEVT.getSimpleVT();
+
+  // Must be simple value type.  Don't handle vectors.
+  if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16 &&
+      SrcVT != MVT::i8)
+    return false;
+
+  unsigned Opc;
+  unsigned ZReg;
+  switch (SrcVT.SimpleTy) {
+  default:
+    return false;
+  case MVT::i8:
+  case MVT::i16:
+  case MVT::i32:
+    ZReg = ARM64::WZR;
+    Opc = ARM64::MADDWrrr;
+    break;
+  case MVT::i64:
+    ZReg = ARM64::XZR;
+    Opc = ARM64::MADDXrrr;
+    break;
+  }
+
+  unsigned Src0Reg = getRegForValue(I->getOperand(0));
+  if (!Src0Reg)
+    return false;
+
+  unsigned Src1Reg = getRegForValue(I->getOperand(1));
+  if (!Src1Reg)
+    return false;
+
+  // Create the base instruction, then add the operands.
+  unsigned ResultReg = createResultReg(TLI.getRegClassFor(SrcVT));
+  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
+      .addReg(Src0Reg)
+      .addReg(Src1Reg)
+      .addReg(ZReg);
+  UpdateValueMap(I, ResultReg);
+  return true;
+}
+
+bool ARM64FastISel::TargetSelectInstruction(const Instruction *I) {
+  switch (I->getOpcode()) {
+  default:
+    break;
+  case Instruction::Load:
+    return SelectLoad(I);
+  case Instruction::Store:
+    return SelectStore(I);
+  case Instruction::Br:
+    return SelectBranch(I);
+  case Instruction::IndirectBr:
+    return SelectIndirectBr(I);
+  case Instruction::FCmp:
+  case Instruction::ICmp:
+    return SelectCmp(I);
+  case Instruction::Select:
+    return SelectSelect(I);
+  case Instruction::FPExt:
+    return SelectFPExt(I);
+  case Instruction::FPTrunc:
+    return SelectFPTrunc(I);
+  case Instruction::FPToSI:
+    return SelectFPToInt(I, /*Signed=*/true);
+  case Instruction::FPToUI:
+    return SelectFPToInt(I, /*Signed=*/false);
+  case Instruction::SIToFP:
+    return SelectIntToFP(I, /*Signed=*/true);
+  case Instruction::UIToFP:
+    return SelectIntToFP(I, /*Signed=*/false);
+  case Instruction::SRem:
+    return SelectRem(I, ISD::SREM);
+  case Instruction::URem:
+    return SelectRem(I, ISD::UREM);
+  case Instruction::Call:
+    if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
+      return SelectIntrinsicCall(*II);
+    return SelectCall(I);
+  case Instruction::Ret:
+    return SelectRet(I);
+  case Instruction::Trunc:
+    return SelectTrunc(I);
+  case Instruction::ZExt:
+  case Instruction::SExt:
+    return SelectIntExt(I);
+  case Instruction::Mul:
+    // FIXME: This really should be handled by the target-independent selector.
+    return SelectMul(I);
+  }
+  return false;
+  // Silence warnings.
+  (void)&CC_ARM64_DarwinPCS_VarArg;
+}
+
+namespace llvm {
+llvm::FastISel *ARM64::createFastISel(FunctionLoweringInfo &funcInfo,
+                                      const TargetLibraryInfo *libInfo) {
+  return new ARM64FastISel(funcInfo, libInfo);
+}
+}