Update aosp/master LLVM for rebase to r222494.

Change-Id: Ic787f5e0124df789bd26f3f24680f45e678eef2d
diff --git a/lib/CodeGen/AtomicExpandPass.cpp b/lib/CodeGen/AtomicExpandPass.cpp
new file mode 100644
index 0000000..12f6bd7
--- /dev/null
+++ b/lib/CodeGen/AtomicExpandPass.cpp
@@ -0,0 +1,563 @@
+//===-- AtomicExpandPass.cpp - Expand atomic instructions -------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains a pass (at IR level) to replace atomic instructions with
+// either (intrinsic-based) load-linked/store-conditional loops or AtomicCmpXchg.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InstIterator.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "atomic-expand"
+
+namespace {
+  class AtomicExpand: public FunctionPass {
+    const TargetMachine *TM;
+  public:
+    static char ID; // Pass identification, replacement for typeid
+    explicit AtomicExpand(const TargetMachine *TM = nullptr)
+      : FunctionPass(ID), TM(TM) {
+      initializeAtomicExpandPass(*PassRegistry::getPassRegistry());
+    }
+
+    bool runOnFunction(Function &F) override;
+
+  private:
+    bool bracketInstWithFences(Instruction *I, AtomicOrdering Order,
+                               bool IsStore, bool IsLoad);
+    bool expandAtomicLoad(LoadInst *LI);
+    bool expandAtomicLoadToLL(LoadInst *LI);
+    bool expandAtomicLoadToCmpXchg(LoadInst *LI);
+    bool expandAtomicStore(StoreInst *SI);
+    bool expandAtomicRMW(AtomicRMWInst *AI);
+    bool expandAtomicRMWToLLSC(AtomicRMWInst *AI);
+    bool expandAtomicRMWToCmpXchg(AtomicRMWInst *AI);
+    bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI);
+    bool isIdempotentRMW(AtomicRMWInst *AI);
+    bool simplifyIdempotentRMW(AtomicRMWInst *AI);
+  };
+}
+
+char AtomicExpand::ID = 0;
+char &llvm::AtomicExpandID = AtomicExpand::ID;
+INITIALIZE_TM_PASS(AtomicExpand, "atomic-expand",
+    "Expand Atomic calls in terms of either load-linked & store-conditional or cmpxchg",
+    false, false)
+
+FunctionPass *llvm::createAtomicExpandPass(const TargetMachine *TM) {
+  return new AtomicExpand(TM);
+}
+
+bool AtomicExpand::runOnFunction(Function &F) {
+  if (!TM || !TM->getSubtargetImpl()->enableAtomicExpand())
+    return false;
+  auto TargetLowering = TM->getSubtargetImpl()->getTargetLowering();
+
+  SmallVector<Instruction *, 1> AtomicInsts;
+
+  // Changing control-flow while iterating through it is a bad idea, so gather a
+  // list of all atomic instructions before we start.
+  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) {
+    if (I->isAtomic())
+      AtomicInsts.push_back(&*I);
+  }
+
+  bool MadeChange = false;
+  for (auto I : AtomicInsts) {
+    auto LI = dyn_cast<LoadInst>(I);
+    auto SI = dyn_cast<StoreInst>(I);
+    auto RMWI = dyn_cast<AtomicRMWInst>(I);
+    auto CASI = dyn_cast<AtomicCmpXchgInst>(I);
+    assert((LI || SI || RMWI || CASI || isa<FenceInst>(I)) &&
+           "Unknown atomic instruction");
+
+    auto FenceOrdering = Monotonic;
+    bool IsStore, IsLoad;
+    if (TargetLowering->getInsertFencesForAtomic()) {
+      if (LI && isAtLeastAcquire(LI->getOrdering())) {
+        FenceOrdering = LI->getOrdering();
+        LI->setOrdering(Monotonic);
+        IsStore = false;
+        IsLoad = true;
+      } else if (SI && isAtLeastRelease(SI->getOrdering())) {
+        FenceOrdering = SI->getOrdering();
+        SI->setOrdering(Monotonic);
+        IsStore = true;
+        IsLoad = false;
+      } else if (RMWI && (isAtLeastRelease(RMWI->getOrdering()) ||
+                          isAtLeastAcquire(RMWI->getOrdering()))) {
+        FenceOrdering = RMWI->getOrdering();
+        RMWI->setOrdering(Monotonic);
+        IsStore = IsLoad = true;
+      } else if (CASI && !TargetLowering->hasLoadLinkedStoreConditional() &&
+                    (isAtLeastRelease(CASI->getSuccessOrdering()) ||
+                     isAtLeastAcquire(CASI->getSuccessOrdering()))) {
+        // If a compare and swap is lowered to LL/SC, we can do smarter fence
+        // insertion, with a stronger one on the success path than on the
+        // failure path. As a result, fence insertion is directly done by
+        // expandAtomicCmpXchg in that case.
+        FenceOrdering = CASI->getSuccessOrdering();
+        CASI->setSuccessOrdering(Monotonic);
+        CASI->setFailureOrdering(Monotonic);
+        IsStore = IsLoad = true;
+      }
+
+      if (FenceOrdering != Monotonic) {
+        MadeChange |= bracketInstWithFences(I, FenceOrdering, IsStore, IsLoad);
+      }
+    }
+
+    if (LI && TargetLowering->shouldExpandAtomicLoadInIR(LI)) {
+      MadeChange |= expandAtomicLoad(LI);
+    } else if (SI && TargetLowering->shouldExpandAtomicStoreInIR(SI)) {
+      MadeChange |= expandAtomicStore(SI);
+    } else if (RMWI) {
+      // There are two different ways of expanding RMW instructions:
+      // - into a load if it is idempotent
+      // - into a Cmpxchg/LL-SC loop otherwise
+      // we try them in that order.
+      MadeChange |= (isIdempotentRMW(RMWI) &&
+                        simplifyIdempotentRMW(RMWI)) ||
+                    (TargetLowering->shouldExpandAtomicRMWInIR(RMWI) &&
+                        expandAtomicRMW(RMWI));
+    } else if (CASI && TargetLowering->hasLoadLinkedStoreConditional()) {
+      MadeChange |= expandAtomicCmpXchg(CASI);
+    }
+  }
+  return MadeChange;
+}
+
+bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order,
+                                         bool IsStore, bool IsLoad) {
+  IRBuilder<> Builder(I);
+
+  auto LeadingFence =
+      TM->getSubtargetImpl()->getTargetLowering()->emitLeadingFence(
+      Builder, Order, IsStore, IsLoad);
+
+  auto TrailingFence =
+      TM->getSubtargetImpl()->getTargetLowering()->emitTrailingFence(
+      Builder, Order, IsStore, IsLoad);
+  // The trailing fence is emitted before the instruction instead of after
+  // because there is no easy way of setting Builder insertion point after
+  // an instruction. So we must erase it from the BB, and insert it back
+  // in the right place.
+  // We have a guard here because not every atomic operation generates a
+  // trailing fence.
+  if (TrailingFence) {
+    TrailingFence->removeFromParent();
+    TrailingFence->insertAfter(I);
+  }
+
+  return (LeadingFence || TrailingFence);
+}
+
+bool AtomicExpand::expandAtomicLoad(LoadInst *LI) {
+   if (TM->getSubtargetImpl()
+          ->getTargetLowering()
+          ->hasLoadLinkedStoreConditional())
+    return expandAtomicLoadToLL(LI);
+  else
+    return expandAtomicLoadToCmpXchg(LI);
+}
+
+bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) {
+  auto TLI = TM->getSubtargetImpl()->getTargetLowering();
+  IRBuilder<> Builder(LI);
+
+  // On some architectures, load-linked instructions are atomic for larger
+  // sizes than normal loads. For example, the only 64-bit load guaranteed
+  // to be single-copy atomic by ARM is an ldrexd (A3.5.3).
+  Value *Val =
+      TLI->emitLoadLinked(Builder, LI->getPointerOperand(), LI->getOrdering());
+
+  LI->replaceAllUsesWith(Val);
+  LI->eraseFromParent();
+
+  return true;
+}
+
+bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) {
+  IRBuilder<> Builder(LI);
+  AtomicOrdering Order = LI->getOrdering();
+  Value *Addr = LI->getPointerOperand();
+  Type *Ty = cast<PointerType>(Addr->getType())->getElementType();
+  Constant *DummyVal = Constant::getNullValue(Ty);
+
+  Value *Pair = Builder.CreateAtomicCmpXchg(
+      Addr, DummyVal, DummyVal, Order,
+      AtomicCmpXchgInst::getStrongestFailureOrdering(Order));
+  Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded");
+
+  LI->replaceAllUsesWith(Loaded);
+  LI->eraseFromParent();
+
+  return true;
+}
+
+bool AtomicExpand::expandAtomicStore(StoreInst *SI) {
+  // This function is only called on atomic stores that are too large to be
+  // atomic if implemented as a native store. So we replace them by an
+  // atomic swap, that can be implemented for example as a ldrex/strex on ARM
+  // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes.
+  // It is the responsibility of the target to only return true in
+  // shouldExpandAtomicRMW in cases where this is required and possible.
+  IRBuilder<> Builder(SI);
+  AtomicRMWInst *AI =
+      Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(),
+                              SI->getValueOperand(), SI->getOrdering());
+  SI->eraseFromParent();
+
+  // Now we have an appropriate swap instruction, lower it as usual.
+  return expandAtomicRMW(AI);
+}
+
+bool AtomicExpand::expandAtomicRMW(AtomicRMWInst *AI) {
+  if (TM->getSubtargetImpl()
+          ->getTargetLowering()
+          ->hasLoadLinkedStoreConditional())
+    return expandAtomicRMWToLLSC(AI);
+  else
+    return expandAtomicRMWToCmpXchg(AI);
+}
+
+/// Emit IR to implement the given atomicrmw operation on values in registers,
+/// returning the new value.
+static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder,
+                              Value *Loaded, Value *Inc) {
+  Value *NewVal;
+  switch (Op) {
+  case AtomicRMWInst::Xchg:
+    return Inc;
+  case AtomicRMWInst::Add:
+    return Builder.CreateAdd(Loaded, Inc, "new");
+  case AtomicRMWInst::Sub:
+    return Builder.CreateSub(Loaded, Inc, "new");
+  case AtomicRMWInst::And:
+    return Builder.CreateAnd(Loaded, Inc, "new");
+  case AtomicRMWInst::Nand:
+    return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new");
+  case AtomicRMWInst::Or:
+    return Builder.CreateOr(Loaded, Inc, "new");
+  case AtomicRMWInst::Xor:
+    return Builder.CreateXor(Loaded, Inc, "new");
+  case AtomicRMWInst::Max:
+    NewVal = Builder.CreateICmpSGT(Loaded, Inc);
+    return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
+  case AtomicRMWInst::Min:
+    NewVal = Builder.CreateICmpSLE(Loaded, Inc);
+    return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
+  case AtomicRMWInst::UMax:
+    NewVal = Builder.CreateICmpUGT(Loaded, Inc);
+    return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
+  case AtomicRMWInst::UMin:
+    NewVal = Builder.CreateICmpULE(Loaded, Inc);
+    return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
+  default:
+    llvm_unreachable("Unknown atomic op");
+  }
+}
+
+bool AtomicExpand::expandAtomicRMWToLLSC(AtomicRMWInst *AI) {
+  auto TLI = TM->getSubtargetImpl()->getTargetLowering();
+  AtomicOrdering MemOpOrder = AI->getOrdering();
+  Value *Addr = AI->getPointerOperand();
+  BasicBlock *BB = AI->getParent();
+  Function *F = BB->getParent();
+  LLVMContext &Ctx = F->getContext();
+
+  // Given: atomicrmw some_op iN* %addr, iN %incr ordering
+  //
+  // The standard expansion we produce is:
+  //     [...]
+  //     fence?
+  // atomicrmw.start:
+  //     %loaded = @load.linked(%addr)
+  //     %new = some_op iN %loaded, %incr
+  //     %stored = @store_conditional(%new, %addr)
+  //     %try_again = icmp i32 ne %stored, 0
+  //     br i1 %try_again, label %loop, label %atomicrmw.end
+  // atomicrmw.end:
+  //     fence?
+  //     [...]
+  BasicBlock *ExitBB = BB->splitBasicBlock(AI, "atomicrmw.end");
+  BasicBlock *LoopBB =  BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
+
+  // This grabs the DebugLoc from AI.
+  IRBuilder<> Builder(AI);
+
+  // The split call above "helpfully" added a branch at the end of BB (to the
+  // wrong place), but we might want a fence too. It's easiest to just remove
+  // the branch entirely.
+  std::prev(BB->end())->eraseFromParent();
+  Builder.SetInsertPoint(BB);
+  Builder.CreateBr(LoopBB);
+
+  // Start the main loop block now that we've taken care of the preliminaries.
+  Builder.SetInsertPoint(LoopBB);
+  Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder);
+
+  Value *NewVal =
+      performAtomicOp(AI->getOperation(), Builder, Loaded, AI->getValOperand());
+
+  Value *StoreSuccess =
+      TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder);
+  Value *TryAgain = Builder.CreateICmpNE(
+      StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain");
+  Builder.CreateCondBr(TryAgain, LoopBB, ExitBB);
+
+  Builder.SetInsertPoint(ExitBB, ExitBB->begin());
+
+  AI->replaceAllUsesWith(Loaded);
+  AI->eraseFromParent();
+
+  return true;
+}
+
+bool AtomicExpand::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI) {
+  AtomicOrdering MemOpOrder =
+      AI->getOrdering() == Unordered ? Monotonic : AI->getOrdering();
+  Value *Addr = AI->getPointerOperand();
+  BasicBlock *BB = AI->getParent();
+  Function *F = BB->getParent();
+  LLVMContext &Ctx = F->getContext();
+
+  // Given: atomicrmw some_op iN* %addr, iN %incr ordering
+  //
+  // The standard expansion we produce is:
+  //     [...]
+  //     %init_loaded = load atomic iN* %addr
+  //     br label %loop
+  // loop:
+  //     %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ]
+  //     %new = some_op iN %loaded, %incr
+  //     %pair = cmpxchg iN* %addr, iN %loaded, iN %new
+  //     %new_loaded = extractvalue { iN, i1 } %pair, 0
+  //     %success = extractvalue { iN, i1 } %pair, 1
+  //     br i1 %success, label %atomicrmw.end, label %loop
+  // atomicrmw.end:
+  //     [...]
+  BasicBlock *ExitBB = BB->splitBasicBlock(AI, "atomicrmw.end");
+  BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
+
+  // This grabs the DebugLoc from AI.
+  IRBuilder<> Builder(AI);
+
+  // The split call above "helpfully" added a branch at the end of BB (to the
+  // wrong place), but we want a load. It's easiest to just remove
+  // the branch entirely.
+  std::prev(BB->end())->eraseFromParent();
+  Builder.SetInsertPoint(BB);
+  LoadInst *InitLoaded = Builder.CreateLoad(Addr);
+  // Atomics require at least natural alignment.
+  InitLoaded->setAlignment(AI->getType()->getPrimitiveSizeInBits());
+  Builder.CreateBr(LoopBB);
+
+  // Start the main loop block now that we've taken care of the preliminaries.
+  Builder.SetInsertPoint(LoopBB);
+  PHINode *Loaded = Builder.CreatePHI(AI->getType(), 2, "loaded");
+  Loaded->addIncoming(InitLoaded, BB);
+
+  Value *NewVal =
+      performAtomicOp(AI->getOperation(), Builder, Loaded, AI->getValOperand());
+
+  Value *Pair = Builder.CreateAtomicCmpXchg(
+      Addr, Loaded, NewVal, MemOpOrder,
+      AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder));
+  Value *NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
+  Loaded->addIncoming(NewLoaded, LoopBB);
+
+  Value *Success = Builder.CreateExtractValue(Pair, 1, "success");
+  Builder.CreateCondBr(Success, ExitBB, LoopBB);
+
+  Builder.SetInsertPoint(ExitBB, ExitBB->begin());
+
+  AI->replaceAllUsesWith(NewLoaded);
+  AI->eraseFromParent();
+
+  return true;
+}
+
+bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
+  auto TLI = TM->getSubtargetImpl()->getTargetLowering();
+  AtomicOrdering SuccessOrder = CI->getSuccessOrdering();
+  AtomicOrdering FailureOrder = CI->getFailureOrdering();
+  Value *Addr = CI->getPointerOperand();
+  BasicBlock *BB = CI->getParent();
+  Function *F = BB->getParent();
+  LLVMContext &Ctx = F->getContext();
+  // If getInsertFencesForAtomic() returns true, then the target does not want
+  // to deal with memory orders, and emitLeading/TrailingFence should take care
+  // of everything. Otherwise, emitLeading/TrailingFence are no-op and we
+  // should preserve the ordering.
+  AtomicOrdering MemOpOrder =
+      TLI->getInsertFencesForAtomic() ? Monotonic : SuccessOrder;
+
+  // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord
+  //
+  // The full expansion we produce is:
+  //     [...]
+  //     fence?
+  // cmpxchg.start:
+  //     %loaded = @load.linked(%addr)
+  //     %should_store = icmp eq %loaded, %desired
+  //     br i1 %should_store, label %cmpxchg.trystore,
+  //                          label %cmpxchg.failure
+  // cmpxchg.trystore:
+  //     %stored = @store_conditional(%new, %addr)
+  //     %success = icmp eq i32 %stored, 0
+  //     br i1 %success, label %cmpxchg.success, label %loop/%cmpxchg.failure
+  // cmpxchg.success:
+  //     fence?
+  //     br label %cmpxchg.end
+  // cmpxchg.failure:
+  //     fence?
+  //     br label %cmpxchg.end
+  // cmpxchg.end:
+  //     %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure]
+  //     %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0
+  //     %res = insertvalue { iN, i1 } %restmp, i1 %success, 1
+  //     [...]
+  BasicBlock *ExitBB = BB->splitBasicBlock(CI, "cmpxchg.end");
+  auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB);
+  auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, FailureBB);
+  auto TryStoreBB = BasicBlock::Create(Ctx, "cmpxchg.trystore", F, SuccessBB);
+  auto LoopBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, TryStoreBB);
+
+  // This grabs the DebugLoc from CI
+  IRBuilder<> Builder(CI);
+
+  // The split call above "helpfully" added a branch at the end of BB (to the
+  // wrong place), but we might want a fence too. It's easiest to just remove
+  // the branch entirely.
+  std::prev(BB->end())->eraseFromParent();
+  Builder.SetInsertPoint(BB);
+  TLI->emitLeadingFence(Builder, SuccessOrder, /*IsStore=*/true,
+                        /*IsLoad=*/true);
+  Builder.CreateBr(LoopBB);
+
+  // Start the main loop block now that we've taken care of the preliminaries.
+  Builder.SetInsertPoint(LoopBB);
+  Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder);
+  Value *ShouldStore =
+      Builder.CreateICmpEQ(Loaded, CI->getCompareOperand(), "should_store");
+
+  // If the the cmpxchg doesn't actually need any ordering when it fails, we can
+  // jump straight past that fence instruction (if it exists).
+  Builder.CreateCondBr(ShouldStore, TryStoreBB, FailureBB);
+
+  Builder.SetInsertPoint(TryStoreBB);
+  Value *StoreSuccess = TLI->emitStoreConditional(
+      Builder, CI->getNewValOperand(), Addr, MemOpOrder);
+  StoreSuccess = Builder.CreateICmpEQ(
+      StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success");
+  Builder.CreateCondBr(StoreSuccess, SuccessBB,
+                       CI->isWeak() ? FailureBB : LoopBB);
+
+  // Make sure later instructions don't get reordered with a fence if necessary.
+  Builder.SetInsertPoint(SuccessBB);
+  TLI->emitTrailingFence(Builder, SuccessOrder, /*IsStore=*/true,
+                         /*IsLoad=*/true);
+  Builder.CreateBr(ExitBB);
+
+  Builder.SetInsertPoint(FailureBB);
+  TLI->emitTrailingFence(Builder, FailureOrder, /*IsStore=*/true,
+                         /*IsLoad=*/true);
+  Builder.CreateBr(ExitBB);
+
+  // Finally, we have control-flow based knowledge of whether the cmpxchg
+  // succeeded or not. We expose this to later passes by converting any
+  // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate PHI.
+
+  // Setup the builder so we can create any PHIs we need.
+  Builder.SetInsertPoint(ExitBB, ExitBB->begin());
+  PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2);
+  Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB);
+  Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB);
+
+  // Look for any users of the cmpxchg that are just comparing the loaded value
+  // against the desired one, and replace them with the CFG-derived version.
+  SmallVector<ExtractValueInst *, 2> PrunedInsts;
+  for (auto User : CI->users()) {
+    ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User);
+    if (!EV)
+      continue;
+
+    assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 &&
+           "weird extraction from { iN, i1 }");
+
+    if (EV->getIndices()[0] == 0)
+      EV->replaceAllUsesWith(Loaded);
+    else
+      EV->replaceAllUsesWith(Success);
+
+    PrunedInsts.push_back(EV);
+  }
+
+  // We can remove the instructions now we're no longer iterating through them.
+  for (auto EV : PrunedInsts)
+    EV->eraseFromParent();
+
+  if (!CI->use_empty()) {
+    // Some use of the full struct return that we don't understand has happened,
+    // so we've got to reconstruct it properly.
+    Value *Res;
+    Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0);
+    Res = Builder.CreateInsertValue(Res, Success, 1);
+
+    CI->replaceAllUsesWith(Res);
+  }
+
+  CI->eraseFromParent();
+  return true;
+}
+
+bool AtomicExpand::isIdempotentRMW(AtomicRMWInst* RMWI) {
+  auto C = dyn_cast<ConstantInt>(RMWI->getValOperand());
+  if(!C)
+    return false;
+
+  AtomicRMWInst::BinOp Op = RMWI->getOperation();
+  switch(Op) {
+    case AtomicRMWInst::Add:
+    case AtomicRMWInst::Sub:
+    case AtomicRMWInst::Or:
+    case AtomicRMWInst::Xor:
+      return C->isZero();
+    case AtomicRMWInst::And:
+      return C->isMinusOne();
+    // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/...
+    default:
+      return false;
+  }
+}
+
+bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) {
+  auto TLI = TM->getSubtargetImpl()->getTargetLowering();
+
+  if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) {
+    if (TLI->shouldExpandAtomicLoadInIR(ResultingLoad))
+      expandAtomicLoad(ResultingLoad);
+    return true;
+  }
+
+  return false;
+}