Merge SSE and AVX instruction definitions for scalar forms of SQRT, RSQRT, and RCP.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171356 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Target/X86/X86InstrSSE.td b/lib/Target/X86/X86InstrSSE.td
index 661023e..ec7d20b 100644
--- a/lib/Target/X86/X86InstrSSE.td
+++ b/lib/Target/X86/X86InstrSSE.td
@@ -2936,6 +2936,26 @@
/// sse1_fp_unop_s - SSE1 unops in scalar form.
multiclass sse1_fp_unop_s<bits<8> opc, string OpcodeStr,
SDNode OpNode, Intrinsic F32Int, OpndItins itins> {
+let Predicates = [HasAVX], hasSideEffects = 0 in {
+ def V#NAME#SSr : SSI<opc, MRMSrcReg, (outs FR32:$dst),
+ (ins FR32:$src1, FR32:$src2),
+ !strconcat(!strconcat("v", OpcodeStr),
+ "ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ []>, VEX_4V, VEX_LIG;
+ let mayLoad = 1 in {
+ def V#NAME#SSm : SSI<opc, MRMSrcMem, (outs FR32:$dst),
+ (ins FR32:$src1,f32mem:$src2),
+ !strconcat(!strconcat("v", OpcodeStr),
+ "ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ []>, VEX_4V, VEX_LIG;
+ def V#NAME#SSm_Int : SSI<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, ssmem:$src2),
+ !strconcat(!strconcat("v", OpcodeStr),
+ "ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ []>, VEX_4V, VEX_LIG;
+ }
+}
+
def SSr : SSI<opc, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src),
!strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"),
[(set FR32:$dst, (OpNode FR32:$src))]>;
@@ -2955,19 +2975,50 @@
[(set VR128:$dst, (F32Int sse_load_f32:$src))], itins.rm>;
}
-/// sse1_fp_unop_s_avx - AVX SSE1 unops in scalar form.
-multiclass sse1_fp_unop_s_avx<bits<8> opc, string OpcodeStr> {
- def SSr : SSI<opc, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src1, FR32:$src2),
- !strconcat(OpcodeStr,
- "ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"), []>;
+/// sse1_fp_unop_s_rw - SSE1 unops where vector form has a read-write operand.
+multiclass sse1_fp_unop_rw<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ OpndItins itins> {
+let Predicates = [HasAVX], hasSideEffects = 0 in {
+ def V#NAME#SSr : SSI<opc, MRMSrcReg, (outs FR32:$dst),
+ (ins FR32:$src1, FR32:$src2),
+ !strconcat(!strconcat("v", OpcodeStr),
+ "ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ []>, VEX_4V, VEX_LIG;
let mayLoad = 1 in {
- def SSm : SSI<opc, MRMSrcMem, (outs FR32:$dst), (ins FR32:$src1,f32mem:$src2),
- !strconcat(OpcodeStr,
- "ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"), []>;
- def SSm_Int : SSI<opc, MRMSrcMem, (outs VR128:$dst),
- (ins VR128:$src1, ssmem:$src2),
- !strconcat(OpcodeStr,
- "ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"), []>;
+ def V#NAME#SSm : SSI<opc, MRMSrcMem, (outs FR32:$dst),
+ (ins FR32:$src1,f32mem:$src2),
+ !strconcat(!strconcat("v", OpcodeStr),
+ "ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ []>, VEX_4V, VEX_LIG;
+ def V#NAME#SSm_Int : SSI<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, ssmem:$src2),
+ !strconcat(!strconcat("v", OpcodeStr),
+ "ss\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ []>, VEX_4V, VEX_LIG;
+ }
+}
+
+ def SSr : SSI<opc, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src),
+ !strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"),
+ [(set FR32:$dst, (OpNode FR32:$src))]>;
+ // For scalar unary operations, fold a load into the operation
+ // only in OptForSize mode. It eliminates an instruction, but it also
+ // eliminates a whole-register clobber (the load), so it introduces a
+ // partial register update condition.
+ def SSm : I<opc, MRMSrcMem, (outs FR32:$dst), (ins f32mem:$src),
+ !strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"),
+ [(set FR32:$dst, (OpNode (load addr:$src)))], itins.rm>, XS,
+ Requires<[UseSSE1, OptForSize]>;
+ let Constraints = "$src1 = $dst" in {
+ def SSr_Int : SSI<opc, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2),
+ !strconcat(OpcodeStr, "ss\t{$src2, $dst|$dst, $src2}"),
+ [], itins.rr>;
+ let mayLoad = 1, hasSideEffects = 0 in
+ def SSm_Int : SSI<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, ssmem:$src2),
+ !strconcat(OpcodeStr, "ss\t{$src2, $dst|$dst, $src2}"),
+ [], itins.rm>;
}
}
@@ -3046,6 +3097,26 @@
/// sse2_fp_unop_s - SSE2 unops in scalar form.
multiclass sse2_fp_unop_s<bits<8> opc, string OpcodeStr,
SDNode OpNode, Intrinsic F64Int, OpndItins itins> {
+let Predicates = [HasAVX], hasSideEffects = 0 in {
+ def V#NAME#SDr : SDI<opc, MRMSrcReg, (outs FR64:$dst),
+ (ins FR64:$src1, FR64:$src2),
+ !strconcat(!strconcat("v", OpcodeStr),
+ "sd\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ []>, VEX_4V, VEX_LIG;
+ let mayLoad = 1 in {
+ def V#NAME#SDm : SDI<opc, MRMSrcMem, (outs FR64:$dst),
+ (ins FR64:$src1,f64mem:$src2),
+ !strconcat(!strconcat("v", OpcodeStr),
+ "sd\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ []>, VEX_4V, VEX_LIG;
+ def V#NAME#SDm_Int : SDI<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, sdmem:$src2),
+ !strconcat(!strconcat("v", OpcodeStr),
+ "sd\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ []>, VEX_4V, VEX_LIG;
+ }
+}
+
def SDr : SDI<opc, MRMSrcReg, (outs FR64:$dst), (ins FR64:$src),
!strconcat(OpcodeStr, "sd\t{$src, $dst|$dst, $src}"),
[(set FR64:$dst, (OpNode FR64:$src))], itins.rr>;
@@ -3062,24 +3133,7 @@
[(set VR128:$dst, (F64Int sse_load_f64:$src))], itins.rm>;
}
-/// sse2_fp_unop_s_avx - AVX SSE2 unops in scalar form.
-let hasSideEffects = 0 in
-multiclass sse2_fp_unop_s_avx<bits<8> opc, string OpcodeStr> {
- def SDr : SDI<opc, MRMSrcReg, (outs FR64:$dst), (ins FR64:$src1, FR64:$src2),
- !strconcat(OpcodeStr,
- "sd\t{$src2, $src1, $dst|$dst, $src1, $src2}"), []>;
- let mayLoad = 1 in {
- def SDm : SDI<opc, MRMSrcMem, (outs FR64:$dst), (ins FR64:$src1,f64mem:$src2),
- !strconcat(OpcodeStr,
- "sd\t{$src2, $src1, $dst|$dst, $src1, $src2}"), []>;
- def SDm_Int : SDI<opc, MRMSrcMem, (outs VR128:$dst),
- (ins VR128:$src1, sdmem:$src2),
- !strconcat(OpcodeStr,
- "sd\t{$src2, $src1, $dst|$dst, $src1, $src2}"), []>;
- }
-}
-
-/// sse2_fp_unop_p_new - SSE2 unops in vector forms.
+/// sse2_fp_unop_p - SSE2 unops in vector forms.
multiclass sse2_fp_unop_p<bits<8> opc, string OpcodeStr,
SDNode OpNode, OpndItins itins> {
let Predicates = [HasAVX] in {
@@ -3113,26 +3167,25 @@
[(set VR128:$dst, (OpNode (memopv2f64 addr:$src)))], itins.rm>;
}
-defm SQRT : sse1_fp_unop_p<0x51, "sqrt", fsqrt, SSE_SQRTP>,
+// Square root.
+defm SQRT : sse1_fp_unop_s<0x51, "sqrt", fsqrt, int_x86_sse_sqrt_ss,
+ SSE_SQRTS>,
+ sse1_fp_unop_p<0x51, "sqrt", fsqrt, SSE_SQRTP>,
+ sse2_fp_unop_s<0x51, "sqrt", fsqrt, int_x86_sse2_sqrt_sd,
+ SSE_SQRTS>,
sse2_fp_unop_p<0x51, "sqrt", fsqrt, SSE_SQRTP>;
-defm RSQRT : sse1_fp_unop_p<0x52, "rsqrt", X86frsqrt, SSE_SQRTP>,
+
+// Reciprocal approximations. Note that these typically require refinement
+// in order to obtain suitable precision.
+defm RSQRT : sse1_fp_unop_rw<0x52, "rsqrt", X86frsqrt, SSE_SQRTS>,
+ sse1_fp_unop_p<0x52, "rsqrt", X86frsqrt, SSE_SQRTP>,
sse1_fp_unop_p_int<0x52, "rsqrt", int_x86_sse_rsqrt_ps,
int_x86_avx_rsqrt_ps_256, SSE_SQRTP>;
-defm RCP : sse1_fp_unop_p<0x53, "rcp", X86frcp, SSE_RCPP>,
+defm RCP : sse1_fp_unop_rw<0x53, "rcp", X86frcp, SSE_RCPS>,
+ sse1_fp_unop_p<0x53, "rcp", X86frcp, SSE_RCPP>,
sse1_fp_unop_p_int<0x53, "rcp", int_x86_sse_rcp_ps,
int_x86_avx_rcp_ps_256, SSE_RCPP>;
-let Predicates = [HasAVX] in {
- // Square root.
- defm VSQRT : sse1_fp_unop_s_avx<0x51, "vsqrt">,
- sse2_fp_unop_s_avx<0x51, "vsqrt">, VEX_4V, VEX_LIG;
-
- // Reciprocal approximations. Note that these typically require refinement
- // in order to obtain suitable precision.
- defm VRSQRT : sse1_fp_unop_s_avx<0x52, "vrsqrt">, VEX_4V, VEX_LIG;
- defm VRCP : sse1_fp_unop_s_avx<0x53, "vrcp">, VEX_4V, VEX_LIG;
-}
-
def : Pat<(f32 (fsqrt FR32:$src)),
(VSQRTSSr (f32 (IMPLICIT_DEF)), FR32:$src)>, Requires<[HasAVX]>;
def : Pat<(f32 (fsqrt (load addr:$src))),
@@ -3186,49 +3239,11 @@
(VRCPSSm_Int (v4f32 (IMPLICIT_DEF)), sse_load_f32:$src)>;
}
-// Square root.
-defm SQRT : sse1_fp_unop_s<0x51, "sqrt", fsqrt, int_x86_sse_sqrt_ss,
- SSE_SQRTS>,
- sse2_fp_unop_s<0x51, "sqrt", fsqrt, int_x86_sse2_sqrt_sd,
- SSE_SQRTS>;
-
-/// sse1_fp_unop_s_rw - SSE1 unops where vector form has a read-write operand.
-multiclass sse1_fp_unop_rw<bits<8> opc, string OpcodeStr, SDNode OpNode,
- OpndItins itins> {
- def SSr : SSI<opc, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src),
- !strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"),
- [(set FR32:$dst, (OpNode FR32:$src))]>;
- // For scalar unary operations, fold a load into the operation
- // only in OptForSize mode. It eliminates an instruction, but it also
- // eliminates a whole-register clobber (the load), so it introduces a
- // partial register update condition.
- def SSm : I<opc, MRMSrcMem, (outs FR32:$dst), (ins f32mem:$src),
- !strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"),
- [(set FR32:$dst, (OpNode (load addr:$src)))], itins.rm>, XS,
- Requires<[UseSSE1, OptForSize]>;
- let Constraints = "$src1 = $dst" in {
- def SSr_Int : SSI<opc, MRMSrcReg, (outs VR128:$dst),
- (ins VR128:$src1, VR128:$src2),
- !strconcat(OpcodeStr, "ss\t{$src2, $dst|$dst, $src2}"),
- [], itins.rr>;
- let mayLoad = 1, hasSideEffects = 0 in
- def SSm_Int : SSI<opc, MRMSrcMem, (outs VR128:$dst),
- (ins VR128:$src1, ssmem:$src2),
- !strconcat(OpcodeStr, "ss\t{$src2, $dst|$dst, $src2}"),
- [], itins.rm>;
- }
-}
-
// Reciprocal approximations. Note that these typically require refinement
// in order to obtain suitable precision.
-defm RSQRT : sse1_fp_unop_rw<0x52, "rsqrt", X86frsqrt, SSE_SQRTS>;
let Predicates = [UseSSE1] in {
def : Pat<(int_x86_sse_rsqrt_ss VR128:$src),
(RSQRTSSr_Int VR128:$src, VR128:$src)>;
-}
-
-defm RCP : sse1_fp_unop_rw<0x53, "rcp", X86frcp, SSE_RCPS>;
-let Predicates = [UseSSE1] in {
def : Pat<(int_x86_sse_rcp_ss VR128:$src),
(RCPSSr_Int VR128:$src, VR128:$src)>;
}