| //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the SplitAnalysis class as well as mutator functions for |
| // live range splitting. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "regalloc" |
| #include "SplitKit.h" |
| #include "LiveRangeEdit.h" |
| #include "VirtRegMap.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/CodeGen/CalcSpillWeights.h" |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h" |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| |
| using namespace llvm; |
| |
| static cl::opt<bool> |
| AllowSplit("spiller-splits-edges", |
| cl::desc("Allow critical edge splitting during spilling")); |
| |
| STATISTIC(NumFinished, "Number of splits finished"); |
| STATISTIC(NumSimple, "Number of splits that were simple"); |
| |
| //===----------------------------------------------------------------------===// |
| // Split Analysis |
| //===----------------------------------------------------------------------===// |
| |
| SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, |
| const LiveIntervals &lis, |
| const MachineLoopInfo &mli) |
| : MF(vrm.getMachineFunction()), |
| VRM(vrm), |
| LIS(lis), |
| Loops(mli), |
| TII(*MF.getTarget().getInstrInfo()), |
| CurLI(0) {} |
| |
| void SplitAnalysis::clear() { |
| UseSlots.clear(); |
| UsingInstrs.clear(); |
| UsingBlocks.clear(); |
| LiveBlocks.clear(); |
| CurLI = 0; |
| } |
| |
| bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) { |
| MachineBasicBlock *T, *F; |
| SmallVector<MachineOperand, 4> Cond; |
| return !TII.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond); |
| } |
| |
| /// analyzeUses - Count instructions, basic blocks, and loops using CurLI. |
| void SplitAnalysis::analyzeUses() { |
| const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(CurLI->reg), |
| E = MRI.reg_end(); I != E; ++I) { |
| MachineOperand &MO = I.getOperand(); |
| if (MO.isUse() && MO.isUndef()) |
| continue; |
| MachineInstr *MI = MO.getParent(); |
| if (MI->isDebugValue() || !UsingInstrs.insert(MI)) |
| continue; |
| UseSlots.push_back(LIS.getInstructionIndex(MI).getDefIndex()); |
| MachineBasicBlock *MBB = MI->getParent(); |
| UsingBlocks[MBB]++; |
| } |
| array_pod_sort(UseSlots.begin(), UseSlots.end()); |
| |
| // Compute per-live block info. |
| if (!calcLiveBlockInfo()) { |
| // FIXME: calcLiveBlockInfo found inconsistencies in the live range. |
| // I am looking at you, SimpleRegisterCoalescing! |
| DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n"); |
| const_cast<LiveIntervals&>(LIS) |
| .shrinkToUses(const_cast<LiveInterval*>(CurLI)); |
| LiveBlocks.clear(); |
| bool fixed = calcLiveBlockInfo(); |
| (void)fixed; |
| assert(fixed && "Couldn't fix broken live interval"); |
| } |
| |
| DEBUG(dbgs() << " counted " |
| << UsingInstrs.size() << " instrs, " |
| << UsingBlocks.size() << " blocks.\n"); |
| } |
| |
| /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks |
| /// where CurLI is live. |
| bool SplitAnalysis::calcLiveBlockInfo() { |
| if (CurLI->empty()) |
| return true; |
| |
| LiveInterval::const_iterator LVI = CurLI->begin(); |
| LiveInterval::const_iterator LVE = CurLI->end(); |
| |
| SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE; |
| UseI = UseSlots.begin(); |
| UseE = UseSlots.end(); |
| |
| // Loop over basic blocks where CurLI is live. |
| MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start); |
| for (;;) { |
| BlockInfo BI; |
| BI.MBB = MFI; |
| tie(BI.Start, BI.Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); |
| |
| // The last split point is the latest possible insertion point that dominates |
| // all successor blocks. If interference reaches LastSplitPoint, it is not |
| // possible to insert a split or reload that makes CurLI live in the |
| // outgoing bundle. |
| MachineBasicBlock::iterator LSP = LIS.getLastSplitPoint(*CurLI, BI.MBB); |
| if (LSP == BI.MBB->end()) |
| BI.LastSplitPoint = BI.Stop; |
| else |
| BI.LastSplitPoint = LIS.getInstructionIndex(LSP); |
| |
| // LVI is the first live segment overlapping MBB. |
| BI.LiveIn = LVI->start <= BI.Start; |
| if (!BI.LiveIn) |
| BI.Def = LVI->start; |
| |
| // Find the first and last uses in the block. |
| BI.Uses = hasUses(MFI); |
| if (BI.Uses && UseI != UseE) { |
| BI.FirstUse = *UseI; |
| assert(BI.FirstUse >= BI.Start); |
| do ++UseI; |
| while (UseI != UseE && *UseI < BI.Stop); |
| BI.LastUse = UseI[-1]; |
| assert(BI.LastUse < BI.Stop); |
| } |
| |
| // Look for gaps in the live range. |
| bool hasGap = false; |
| BI.LiveOut = true; |
| while (LVI->end < BI.Stop) { |
| SlotIndex LastStop = LVI->end; |
| if (++LVI == LVE || LVI->start >= BI.Stop) { |
| BI.Kill = LastStop; |
| BI.LiveOut = false; |
| break; |
| } |
| if (LastStop < LVI->start) { |
| hasGap = true; |
| BI.Kill = LastStop; |
| BI.Def = LVI->start; |
| } |
| } |
| |
| // Don't set LiveThrough when the block has a gap. |
| BI.LiveThrough = !hasGap && BI.LiveIn && BI.LiveOut; |
| LiveBlocks.push_back(BI); |
| |
| // FIXME: This should never happen. The live range stops or starts without a |
| // corresponding use. An earlier pass did something wrong. |
| if (!BI.LiveThrough && !BI.Uses) |
| return false; |
| |
| // LVI is now at LVE or LVI->end >= Stop. |
| if (LVI == LVE) |
| break; |
| |
| // Live segment ends exactly at Stop. Move to the next segment. |
| if (LVI->end == BI.Stop && ++LVI == LVE) |
| break; |
| |
| // Pick the next basic block. |
| if (LVI->start < BI.Stop) |
| ++MFI; |
| else |
| MFI = LIS.getMBBFromIndex(LVI->start); |
| } |
| return true; |
| } |
| |
| bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const { |
| unsigned OrigReg = VRM.getOriginal(CurLI->reg); |
| const LiveInterval &Orig = LIS.getInterval(OrigReg); |
| assert(!Orig.empty() && "Splitting empty interval?"); |
| LiveInterval::const_iterator I = Orig.find(Idx); |
| |
| // Range containing Idx should begin at Idx. |
| if (I != Orig.end() && I->start <= Idx) |
| return I->start == Idx; |
| |
| // Range does not contain Idx, previous must end at Idx. |
| return I != Orig.begin() && (--I)->end == Idx; |
| } |
| |
| void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const { |
| for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) { |
| unsigned count = UsingBlocks.lookup(*I); |
| OS << " BB#" << (*I)->getNumber(); |
| if (count) |
| OS << '(' << count << ')'; |
| } |
| } |
| |
| void SplitAnalysis::analyze(const LiveInterval *li) { |
| clear(); |
| CurLI = li; |
| analyzeUses(); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Split Editor |
| //===----------------------------------------------------------------------===// |
| |
| /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. |
| SplitEditor::SplitEditor(SplitAnalysis &sa, |
| LiveIntervals &lis, |
| VirtRegMap &vrm, |
| MachineDominatorTree &mdt) |
| : SA(sa), LIS(lis), VRM(vrm), |
| MRI(vrm.getMachineFunction().getRegInfo()), |
| MDT(mdt), |
| TII(*vrm.getMachineFunction().getTarget().getInstrInfo()), |
| TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()), |
| Edit(0), |
| OpenIdx(0), |
| RegAssign(Allocator) |
| {} |
| |
| void SplitEditor::reset(LiveRangeEdit &lre) { |
| Edit = &lre; |
| OpenIdx = 0; |
| RegAssign.clear(); |
| Values.clear(); |
| |
| // We don't need to clear LiveOutCache, only LiveOutSeen entries are read. |
| LiveOutSeen.clear(); |
| |
| // We don't need an AliasAnalysis since we will only be performing |
| // cheap-as-a-copy remats anyway. |
| Edit->anyRematerializable(LIS, TII, 0); |
| } |
| |
| void SplitEditor::dump() const { |
| if (RegAssign.empty()) { |
| dbgs() << " empty\n"; |
| return; |
| } |
| |
| for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) |
| dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); |
| dbgs() << '\n'; |
| } |
| |
| VNInfo *SplitEditor::defValue(unsigned RegIdx, |
| const VNInfo *ParentVNI, |
| SlotIndex Idx) { |
| assert(ParentVNI && "Mapping NULL value"); |
| assert(Idx.isValid() && "Invalid SlotIndex"); |
| assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI"); |
| LiveInterval *LI = Edit->get(RegIdx); |
| |
| // Create a new value. |
| VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator()); |
| |
| // Use insert for lookup, so we can add missing values with a second lookup. |
| std::pair<ValueMap::iterator, bool> InsP = |
| Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), VNI)); |
| |
| // This was the first time (RegIdx, ParentVNI) was mapped. |
| // Keep it as a simple def without any liveness. |
| if (InsP.second) |
| return VNI; |
| |
| // If the previous value was a simple mapping, add liveness for it now. |
| if (VNInfo *OldVNI = InsP.first->second) { |
| SlotIndex Def = OldVNI->def; |
| LI->addRange(LiveRange(Def, Def.getNextSlot(), OldVNI)); |
| // No longer a simple mapping. |
| InsP.first->second = 0; |
| } |
| |
| // This is a complex mapping, add liveness for VNI |
| SlotIndex Def = VNI->def; |
| LI->addRange(LiveRange(Def, Def.getNextSlot(), VNI)); |
| |
| return VNI; |
| } |
| |
| void SplitEditor::markComplexMapped(unsigned RegIdx, const VNInfo *ParentVNI) { |
| assert(ParentVNI && "Mapping NULL value"); |
| VNInfo *&VNI = Values[std::make_pair(RegIdx, ParentVNI->id)]; |
| |
| // ParentVNI was either unmapped or already complex mapped. Either way. |
| if (!VNI) |
| return; |
| |
| // This was previously a single mapping. Make sure the old def is represented |
| // by a trivial live range. |
| SlotIndex Def = VNI->def; |
| Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI)); |
| VNI = 0; |
| } |
| |
| // extendRange - Extend the live range to reach Idx. |
| // Potentially create phi-def values. |
| void SplitEditor::extendRange(unsigned RegIdx, SlotIndex Idx) { |
| assert(Idx.isValid() && "Invalid SlotIndex"); |
| MachineBasicBlock *IdxMBB = LIS.getMBBFromIndex(Idx); |
| assert(IdxMBB && "No MBB at Idx"); |
| LiveInterval *LI = Edit->get(RegIdx); |
| |
| // Is there a def in the same MBB we can extend? |
| if (LI->extendInBlock(LIS.getMBBStartIdx(IdxMBB), Idx)) |
| return; |
| |
| // Now for the fun part. We know that ParentVNI potentially has multiple defs, |
| // and we may need to create even more phi-defs to preserve VNInfo SSA form. |
| // Perform a search for all predecessor blocks where we know the dominating |
| // VNInfo. Insert phi-def VNInfos along the path back to IdxMBB. |
| |
| // Initialize the live-out cache the first time it is needed. |
| if (LiveOutSeen.empty()) { |
| unsigned N = VRM.getMachineFunction().getNumBlockIDs(); |
| LiveOutSeen.resize(N); |
| LiveOutCache.resize(N); |
| } |
| |
| // Blocks where LI should be live-in. |
| SmallVector<MachineDomTreeNode*, 16> LiveIn; |
| LiveIn.push_back(MDT[IdxMBB]); |
| |
| // Remember if we have seen more than one value. |
| bool UniqueVNI = true; |
| VNInfo *IdxVNI = 0; |
| |
| // Using LiveOutCache as a visited set, perform a BFS for all reaching defs. |
| for (unsigned i = 0; i != LiveIn.size(); ++i) { |
| MachineBasicBlock *MBB = LiveIn[i]->getBlock(); |
| assert(!MBB->pred_empty() && "Value live-in to entry block?"); |
| for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), |
| PE = MBB->pred_end(); PI != PE; ++PI) { |
| MachineBasicBlock *Pred = *PI; |
| LiveOutPair &LOP = LiveOutCache[Pred]; |
| |
| // Is this a known live-out block? |
| if (LiveOutSeen.test(Pred->getNumber())) { |
| if (VNInfo *VNI = LOP.first) { |
| if (IdxVNI && IdxVNI != VNI) |
| UniqueVNI = false; |
| IdxVNI = VNI; |
| } |
| continue; |
| } |
| |
| // First time. LOP is garbage and must be cleared below. |
| LiveOutSeen.set(Pred->getNumber()); |
| |
| // Does Pred provide a live-out value? |
| SlotIndex Start, Last; |
| tie(Start, Last) = LIS.getSlotIndexes()->getMBBRange(Pred); |
| Last = Last.getPrevSlot(); |
| VNInfo *VNI = LI->extendInBlock(Start, Last); |
| LOP.first = VNI; |
| if (VNI) { |
| LOP.second = MDT[LIS.getMBBFromIndex(VNI->def)]; |
| if (IdxVNI && IdxVNI != VNI) |
| UniqueVNI = false; |
| IdxVNI = VNI; |
| continue; |
| } |
| LOP.second = 0; |
| |
| // No, we need a live-in value for Pred as well |
| if (Pred != IdxMBB) |
| LiveIn.push_back(MDT[Pred]); |
| else |
| UniqueVNI = false; // Loopback to IdxMBB, ask updateSSA() for help. |
| } |
| } |
| |
| // We may need to add phi-def values to preserve the SSA form. |
| if (UniqueVNI) { |
| LiveOutPair LOP(IdxVNI, MDT[LIS.getMBBFromIndex(IdxVNI->def)]); |
| // Update LiveOutCache, but skip IdxMBB at LiveIn[0]. |
| for (unsigned i = 1, e = LiveIn.size(); i != e; ++i) |
| LiveOutCache[LiveIn[i]->getBlock()] = LOP; |
| } else |
| IdxVNI = updateSSA(RegIdx, LiveIn, Idx, IdxMBB); |
| |
| // Since we went through the trouble of a full BFS visiting all reaching defs, |
| // the values in LiveIn are now accurate. No more phi-defs are needed |
| // for these blocks, so we can color the live ranges. |
| for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) { |
| MachineBasicBlock *MBB = LiveIn[i]->getBlock(); |
| SlotIndex Start = LIS.getMBBStartIdx(MBB); |
| VNInfo *VNI = LiveOutCache[MBB].first; |
| |
| // Anything in LiveIn other than IdxMBB is live-through. |
| // In IdxMBB, we should stop at Idx unless the same value is live-out. |
| if (MBB == IdxMBB && IdxVNI != VNI) |
| LI->addRange(LiveRange(Start, Idx.getNextSlot(), IdxVNI)); |
| else |
| LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI)); |
| } |
| } |
| |
| VNInfo *SplitEditor::updateSSA(unsigned RegIdx, |
| SmallVectorImpl<MachineDomTreeNode*> &LiveIn, |
| SlotIndex Idx, |
| const MachineBasicBlock *IdxMBB) { |
| // This is essentially the same iterative algorithm that SSAUpdater uses, |
| // except we already have a dominator tree, so we don't have to recompute it. |
| LiveInterval *LI = Edit->get(RegIdx); |
| VNInfo *IdxVNI = 0; |
| unsigned Changes; |
| do { |
| Changes = 0; |
| // Propagate live-out values down the dominator tree, inserting phi-defs |
| // when necessary. Since LiveIn was created by a BFS, going backwards makes |
| // it more likely for us to visit immediate dominators before their |
| // children. |
| for (unsigned i = LiveIn.size(); i; --i) { |
| MachineDomTreeNode *Node = LiveIn[i-1]; |
| MachineBasicBlock *MBB = Node->getBlock(); |
| MachineDomTreeNode *IDom = Node->getIDom(); |
| LiveOutPair IDomValue; |
| |
| // We need a live-in value to a block with no immediate dominator? |
| // This is probably an unreachable block that has survived somehow. |
| bool needPHI = !IDom || !LiveOutSeen.test(IDom->getBlock()->getNumber()); |
| |
| // IDom dominates all of our predecessors, but it may not be the immediate |
| // dominator. Check if any of them have live-out values that are properly |
| // dominated by IDom. If so, we need a phi-def here. |
| if (!needPHI) { |
| IDomValue = LiveOutCache[IDom->getBlock()]; |
| for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), |
| PE = MBB->pred_end(); PI != PE; ++PI) { |
| LiveOutPair Value = LiveOutCache[*PI]; |
| if (!Value.first || Value.first == IDomValue.first) |
| continue; |
| // This predecessor is carrying something other than IDomValue. |
| // It could be because IDomValue hasn't propagated yet, or it could be |
| // because MBB is in the dominance frontier of that value. |
| if (MDT.dominates(IDom, Value.second)) { |
| needPHI = true; |
| break; |
| } |
| } |
| } |
| |
| // Create a phi-def if required. |
| if (needPHI) { |
| ++Changes; |
| SlotIndex Start = LIS.getMBBStartIdx(MBB); |
| VNInfo *VNI = LI->getNextValue(Start, 0, LIS.getVNInfoAllocator()); |
| VNI->setIsPHIDef(true); |
| // We no longer need LI to be live-in. |
| LiveIn.erase(LiveIn.begin()+(i-1)); |
| // Blocks in LiveIn are either IdxMBB, or have a value live-through. |
| if (MBB == IdxMBB) |
| IdxVNI = VNI; |
| // Check if we need to update live-out info. |
| LiveOutPair &LOP = LiveOutCache[MBB]; |
| if (LOP.second == Node || !LiveOutSeen.test(MBB->getNumber())) { |
| // We already have a live-out defined in MBB, so this must be IdxMBB. |
| assert(MBB == IdxMBB && "Adding phi-def to known live-out"); |
| LI->addRange(LiveRange(Start, Idx.getNextSlot(), VNI)); |
| } else { |
| // This phi-def is also live-out, so color the whole block. |
| LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI)); |
| LOP = LiveOutPair(VNI, Node); |
| } |
| } else if (IDomValue.first) { |
| // No phi-def here. Remember incoming value for IdxMBB. |
| if (MBB == IdxMBB) { |
| IdxVNI = IDomValue.first; |
| // IdxMBB need not be live-out. |
| if (!LiveOutSeen.test(MBB->getNumber())) |
| continue; |
| } |
| assert(LiveOutSeen.test(MBB->getNumber()) && "Expected live-out block"); |
| // Propagate IDomValue if needed: |
| // MBB is live-out and doesn't define its own value. |
| LiveOutPair &LOP = LiveOutCache[MBB]; |
| if (LOP.second != Node && LOP.first != IDomValue.first) { |
| ++Changes; |
| LOP = IDomValue; |
| } |
| } |
| } |
| } while (Changes); |
| |
| assert(IdxVNI && "Didn't find value for Idx"); |
| return IdxVNI; |
| } |
| |
| VNInfo *SplitEditor::defFromParent(unsigned RegIdx, |
| VNInfo *ParentVNI, |
| SlotIndex UseIdx, |
| MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator I) { |
| MachineInstr *CopyMI = 0; |
| SlotIndex Def; |
| LiveInterval *LI = Edit->get(RegIdx); |
| |
| // Attempt cheap-as-a-copy rematerialization. |
| LiveRangeEdit::Remat RM(ParentVNI); |
| if (Edit->canRematerializeAt(RM, UseIdx, true, LIS)) { |
| Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI); |
| } else { |
| // Can't remat, just insert a copy from parent. |
| CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg) |
| .addReg(Edit->getReg()); |
| Def = LIS.InsertMachineInstrInMaps(CopyMI).getDefIndex(); |
| } |
| |
| // Define the value in Reg. |
| VNInfo *VNI = defValue(RegIdx, ParentVNI, Def); |
| VNI->setCopy(CopyMI); |
| return VNI; |
| } |
| |
| /// Create a new virtual register and live interval. |
| void SplitEditor::openIntv() { |
| assert(!OpenIdx && "Previous LI not closed before openIntv"); |
| |
| // Create the complement as index 0. |
| if (Edit->empty()) |
| Edit->create(LIS, VRM); |
| |
| // Create the open interval. |
| OpenIdx = Edit->size(); |
| Edit->create(LIS, VRM); |
| } |
| |
| SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { |
| assert(OpenIdx && "openIntv not called before enterIntvBefore"); |
| DEBUG(dbgs() << " enterIntvBefore " << Idx); |
| Idx = Idx.getBaseIndex(); |
| VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); |
| if (!ParentVNI) { |
| DEBUG(dbgs() << ": not live\n"); |
| return Idx; |
| } |
| DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); |
| MachineInstr *MI = LIS.getInstructionFromIndex(Idx); |
| assert(MI && "enterIntvBefore called with invalid index"); |
| |
| VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); |
| return VNI->def; |
| } |
| |
| SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { |
| assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); |
| SlotIndex End = LIS.getMBBEndIdx(&MBB); |
| SlotIndex Last = End.getPrevSlot(); |
| DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last); |
| VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last); |
| if (!ParentVNI) { |
| DEBUG(dbgs() << ": not live\n"); |
| return End; |
| } |
| DEBUG(dbgs() << ": valno " << ParentVNI->id); |
| VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, |
| LIS.getLastSplitPoint(Edit->getParent(), &MBB)); |
| RegAssign.insert(VNI->def, End, OpenIdx); |
| DEBUG(dump()); |
| return VNI->def; |
| } |
| |
| /// useIntv - indicate that all instructions in MBB should use OpenLI. |
| void SplitEditor::useIntv(const MachineBasicBlock &MBB) { |
| useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); |
| } |
| |
| void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { |
| assert(OpenIdx && "openIntv not called before useIntv"); |
| DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); |
| RegAssign.insert(Start, End, OpenIdx); |
| DEBUG(dump()); |
| } |
| |
| SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { |
| assert(OpenIdx && "openIntv not called before leaveIntvAfter"); |
| DEBUG(dbgs() << " leaveIntvAfter " << Idx); |
| |
| // The interval must be live beyond the instruction at Idx. |
| Idx = Idx.getBoundaryIndex(); |
| VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); |
| if (!ParentVNI) { |
| DEBUG(dbgs() << ": not live\n"); |
| return Idx.getNextSlot(); |
| } |
| DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); |
| |
| MachineInstr *MI = LIS.getInstructionFromIndex(Idx); |
| assert(MI && "No instruction at index"); |
| VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), |
| llvm::next(MachineBasicBlock::iterator(MI))); |
| return VNI->def; |
| } |
| |
| SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { |
| assert(OpenIdx && "openIntv not called before leaveIntvBefore"); |
| DEBUG(dbgs() << " leaveIntvBefore " << Idx); |
| |
| // The interval must be live into the instruction at Idx. |
| Idx = Idx.getBoundaryIndex(); |
| VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); |
| if (!ParentVNI) { |
| DEBUG(dbgs() << ": not live\n"); |
| return Idx.getNextSlot(); |
| } |
| DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); |
| |
| MachineInstr *MI = LIS.getInstructionFromIndex(Idx); |
| assert(MI && "No instruction at index"); |
| VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); |
| return VNI->def; |
| } |
| |
| SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { |
| assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); |
| SlotIndex Start = LIS.getMBBStartIdx(&MBB); |
| DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); |
| |
| VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); |
| if (!ParentVNI) { |
| DEBUG(dbgs() << ": not live\n"); |
| return Start; |
| } |
| |
| VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB, |
| MBB.SkipPHIsAndLabels(MBB.begin())); |
| RegAssign.insert(Start, VNI->def, OpenIdx); |
| DEBUG(dump()); |
| return VNI->def; |
| } |
| |
| void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { |
| assert(OpenIdx && "openIntv not called before overlapIntv"); |
| const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); |
| assert(ParentVNI == Edit->getParent().getVNInfoAt(End.getPrevSlot()) && |
| "Parent changes value in extended range"); |
| assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && |
| "Range cannot span basic blocks"); |
| |
| // The complement interval will be extended as needed by extendRange(). |
| markComplexMapped(0, ParentVNI); |
| DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); |
| RegAssign.insert(Start, End, OpenIdx); |
| DEBUG(dump()); |
| } |
| |
| /// closeIntv - Indicate that we are done editing the currently open |
| /// LiveInterval, and ranges can be trimmed. |
| void SplitEditor::closeIntv() { |
| assert(OpenIdx && "openIntv not called before closeIntv"); |
| OpenIdx = 0; |
| } |
| |
| /// transferSimpleValues - Transfer all simply defined values to the new live |
| /// ranges. |
| /// Values that were rematerialized or that have multiple defs are left alone. |
| bool SplitEditor::transferSimpleValues() { |
| bool Skipped = false; |
| RegAssignMap::const_iterator AssignI = RegAssign.begin(); |
| for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(), |
| ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) { |
| DEBUG(dbgs() << " blit " << *ParentI << ':'); |
| VNInfo *ParentVNI = ParentI->valno; |
| // RegAssign has holes where RegIdx 0 should be used. |
| SlotIndex Start = ParentI->start; |
| AssignI.advanceTo(Start); |
| do { |
| unsigned RegIdx; |
| SlotIndex End = ParentI->end; |
| if (!AssignI.valid()) { |
| RegIdx = 0; |
| } else if (AssignI.start() <= Start) { |
| RegIdx = AssignI.value(); |
| if (AssignI.stop() < End) { |
| End = AssignI.stop(); |
| ++AssignI; |
| } |
| } else { |
| RegIdx = 0; |
| End = std::min(End, AssignI.start()); |
| } |
| DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx); |
| if (VNInfo *VNI = Values.lookup(std::make_pair(RegIdx, ParentVNI->id))) { |
| DEBUG(dbgs() << ':' << VNI->id); |
| Edit->get(RegIdx)->addRange(LiveRange(Start, End, VNI)); |
| } else |
| Skipped = true; |
| Start = End; |
| } while (Start != ParentI->end); |
| DEBUG(dbgs() << '\n'); |
| } |
| return Skipped; |
| } |
| |
| void SplitEditor::extendPHIKillRanges() { |
| // Extend live ranges to be live-out for successor PHI values. |
| for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), |
| E = Edit->getParent().vni_end(); I != E; ++I) { |
| const VNInfo *PHIVNI = *I; |
| if (PHIVNI->isUnused() || !PHIVNI->isPHIDef()) |
| continue; |
| unsigned RegIdx = RegAssign.lookup(PHIVNI->def); |
| MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def); |
| for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), |
| PE = MBB->pred_end(); PI != PE; ++PI) { |
| SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot(); |
| // The predecessor may not have a live-out value. That is OK, like an |
| // undef PHI operand. |
| if (Edit->getParent().liveAt(End)) { |
| assert(RegAssign.lookup(End) == RegIdx && |
| "Different register assignment in phi predecessor"); |
| extendRange(RegIdx, End); |
| } |
| } |
| } |
| } |
| |
| /// rewriteAssigned - Rewrite all uses of Edit->getReg(). |
| void SplitEditor::rewriteAssigned(bool ExtendRanges) { |
| for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()), |
| RE = MRI.reg_end(); RI != RE;) { |
| MachineOperand &MO = RI.getOperand(); |
| MachineInstr *MI = MO.getParent(); |
| ++RI; |
| // LiveDebugVariables should have handled all DBG_VALUE instructions. |
| if (MI->isDebugValue()) { |
| DEBUG(dbgs() << "Zapping " << *MI); |
| MO.setReg(0); |
| continue; |
| } |
| |
| // <undef> operands don't really read the register, so just assign them to |
| // the complement. |
| if (MO.isUse() && MO.isUndef()) { |
| MO.setReg(Edit->get(0)->reg); |
| continue; |
| } |
| |
| SlotIndex Idx = LIS.getInstructionIndex(MI); |
| if (MO.isDef()) |
| Idx = MO.isEarlyClobber() ? Idx.getUseIndex() : Idx.getDefIndex(); |
| |
| // Rewrite to the mapped register at Idx. |
| unsigned RegIdx = RegAssign.lookup(Idx); |
| MO.setReg(Edit->get(RegIdx)->reg); |
| DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t' |
| << Idx << ':' << RegIdx << '\t' << *MI); |
| |
| // Extend liveness to Idx if the instruction reads reg. |
| if (!ExtendRanges) |
| continue; |
| |
| // Skip instructions that don't read Reg. |
| if (MO.isDef()) { |
| if (!MO.getSubReg() && !MO.isEarlyClobber()) |
| continue; |
| // We may wan't to extend a live range for a partial redef, or for a use |
| // tied to an early clobber. |
| Idx = Idx.getPrevSlot(); |
| if (!Edit->getParent().liveAt(Idx)) |
| continue; |
| } else |
| Idx = Idx.getUseIndex(); |
| |
| extendRange(RegIdx, Idx); |
| } |
| } |
| |
| void SplitEditor::deleteRematVictims() { |
| SmallVector<MachineInstr*, 8> Dead; |
| for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), |
| E = Edit->getParent().vni_end(); I != E; ++I) { |
| const VNInfo *VNI = *I; |
| // Was VNI rematted anywhere? |
| if (VNI->isUnused() || VNI->isPHIDef() || !Edit->didRematerialize(VNI)) |
| continue; |
| unsigned RegIdx = RegAssign.lookup(VNI->def); |
| LiveInterval *LI = Edit->get(RegIdx); |
| LiveInterval::const_iterator LII = LI->FindLiveRangeContaining(VNI->def); |
| assert(LII != LI->end() && "Missing live range for rematted def"); |
| |
| // Is this a dead def? |
| if (LII->end != VNI->def.getNextSlot()) |
| continue; |
| |
| MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); |
| assert(MI && "Missing instruction for dead def"); |
| MI->addRegisterDead(LI->reg, &TRI); |
| |
| if (!MI->allDefsAreDead()) |
| continue; |
| |
| DEBUG(dbgs() << "All defs dead: " << *MI); |
| Dead.push_back(MI); |
| } |
| |
| if (Dead.empty()) |
| return; |
| |
| Edit->eliminateDeadDefs(Dead, LIS, VRM, TII); |
| } |
| |
| void SplitEditor::finish() { |
| assert(OpenIdx == 0 && "Previous LI not closed before rewrite"); |
| ++NumFinished; |
| |
| // At this point, the live intervals in Edit contain VNInfos corresponding to |
| // the inserted copies. |
| |
| // Add the original defs from the parent interval. |
| for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), |
| E = Edit->getParent().vni_end(); I != E; ++I) { |
| const VNInfo *ParentVNI = *I; |
| if (ParentVNI->isUnused()) |
| continue; |
| unsigned RegIdx = RegAssign.lookup(ParentVNI->def); |
| VNInfo *VNI = defValue(RegIdx, ParentVNI, ParentVNI->def); |
| VNI->setIsPHIDef(ParentVNI->isPHIDef()); |
| VNI->setCopy(ParentVNI->getCopy()); |
| |
| // Mark rematted values as complex everywhere to force liveness computation. |
| // The new live ranges may be truncated. |
| if (Edit->didRematerialize(ParentVNI)) |
| for (unsigned i = 0, e = Edit->size(); i != e; ++i) |
| markComplexMapped(i, ParentVNI); |
| } |
| |
| #ifndef NDEBUG |
| // Every new interval must have a def by now, otherwise the split is bogus. |
| for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) |
| assert((*I)->hasAtLeastOneValue() && "Split interval has no value"); |
| #endif |
| |
| // Transfer the simply mapped values, check if any are complex. |
| bool Complex = transferSimpleValues(); |
| if (Complex) |
| extendPHIKillRanges(); |
| else |
| ++NumSimple; |
| |
| // Rewrite virtual registers, possibly extending ranges. |
| rewriteAssigned(Complex); |
| |
| // Delete defs that were rematted everywhere. |
| if (Complex) |
| deleteRematVictims(); |
| |
| // Get rid of unused values and set phi-kill flags. |
| for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) |
| (*I)->RenumberValues(LIS); |
| |
| // Now check if any registers were separated into multiple components. |
| ConnectedVNInfoEqClasses ConEQ(LIS); |
| for (unsigned i = 0, e = Edit->size(); i != e; ++i) { |
| // Don't use iterators, they are invalidated by create() below. |
| LiveInterval *li = Edit->get(i); |
| unsigned NumComp = ConEQ.Classify(li); |
| if (NumComp <= 1) |
| continue; |
| DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n'); |
| SmallVector<LiveInterval*, 8> dups; |
| dups.push_back(li); |
| for (unsigned i = 1; i != NumComp; ++i) |
| dups.push_back(&Edit->create(LIS, VRM)); |
| ConEQ.Distribute(&dups[0], MRI); |
| } |
| |
| // Calculate spill weight and allocation hints for new intervals. |
| VirtRegAuxInfo vrai(VRM.getMachineFunction(), LIS, SA.Loops); |
| for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){ |
| LiveInterval &li = **I; |
| vrai.CalculateRegClass(li.reg); |
| vrai.CalculateWeightAndHint(li); |
| DEBUG(dbgs() << " new interval " << MRI.getRegClass(li.reg)->getName() |
| << ":" << li << '\n'); |
| } |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Single Block Splitting |
| //===----------------------------------------------------------------------===// |
| |
| /// getMultiUseBlocks - if CurLI has more than one use in a basic block, it |
| /// may be an advantage to split CurLI for the duration of the block. |
| bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) { |
| // If CurLI is local to one block, there is no point to splitting it. |
| if (LiveBlocks.size() <= 1) |
| return false; |
| // Add blocks with multiple uses. |
| for (unsigned i = 0, e = LiveBlocks.size(); i != e; ++i) { |
| const BlockInfo &BI = LiveBlocks[i]; |
| if (!BI.Uses) |
| continue; |
| unsigned Instrs = UsingBlocks.lookup(BI.MBB); |
| if (Instrs <= 1) |
| continue; |
| if (Instrs == 2 && BI.LiveIn && BI.LiveOut && !BI.LiveThrough) |
| continue; |
| Blocks.insert(BI.MBB); |
| } |
| return !Blocks.empty(); |
| } |
| |
| /// splitSingleBlocks - Split CurLI into a separate live interval inside each |
| /// basic block in Blocks. |
| void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) { |
| DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n"); |
| |
| for (unsigned i = 0, e = SA.LiveBlocks.size(); i != e; ++i) { |
| const SplitAnalysis::BlockInfo &BI = SA.LiveBlocks[i]; |
| if (!BI.Uses || !Blocks.count(BI.MBB)) |
| continue; |
| |
| openIntv(); |
| SlotIndex SegStart = enterIntvBefore(BI.FirstUse); |
| if (!BI.LiveOut || BI.LastUse < BI.LastSplitPoint) { |
| useIntv(SegStart, leaveIntvAfter(BI.LastUse)); |
| } else { |
| // The last use is after the last valid split point. |
| SlotIndex SegStop = leaveIntvBefore(BI.LastSplitPoint); |
| useIntv(SegStart, SegStop); |
| overlapIntv(SegStop, BI.LastUse); |
| } |
| closeIntv(); |
| } |
| finish(); |
| } |