| //===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the LiveVariable analysis pass. For each machine |
| // instruction in the function, this pass calculates the set of registers that |
| // are immediately dead after the instruction (i.e., the instruction calculates |
| // the value, but it is never used) and the set of registers that are used by |
| // the instruction, but are never used after the instruction (i.e., they are |
| // killed). |
| // |
| // This class computes live variables using are sparse implementation based on |
| // the machine code SSA form. This class computes live variable information for |
| // each virtual and _register allocatable_ physical register in a function. It |
| // uses the dominance properties of SSA form to efficiently compute live |
| // variables for virtual registers, and assumes that physical registers are only |
| // live within a single basic block (allowing it to do a single local analysis |
| // to resolve physical register lifetimes in each basic block). If a physical |
| // register is not register allocatable, it is not tracked. This is useful for |
| // things like the stack pointer and condition codes. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/LiveVariables.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/Target/MRegisterInfo.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/ADT/DepthFirstIterator.h" |
| #include "llvm/ADT/STLExtras.h" |
| using namespace llvm; |
| |
| static RegisterAnalysis<LiveVariables> X("livevars", "Live Variable Analysis"); |
| |
| LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) { |
| assert(MRegisterInfo::isVirtualRegister(RegIdx) && |
| "getVarInfo: not a virtual register!"); |
| RegIdx -= MRegisterInfo::FirstVirtualRegister; |
| if (RegIdx >= VirtRegInfo.size()) { |
| if (RegIdx >= 2*VirtRegInfo.size()) |
| VirtRegInfo.resize(RegIdx*2); |
| else |
| VirtRegInfo.resize(2*VirtRegInfo.size()); |
| } |
| return VirtRegInfo[RegIdx]; |
| } |
| |
| |
| |
| void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo, |
| MachineBasicBlock *MBB) { |
| unsigned BBNum = MBB->getNumber(); |
| |
| // Check to see if this basic block is one of the killing blocks. If so, |
| // remove it... |
| for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) |
| if (VRInfo.Kills[i]->getParent() == MBB) { |
| VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry |
| break; |
| } |
| |
| if (MBB == VRInfo.DefInst->getParent()) return; // Terminate recursion |
| |
| if (VRInfo.AliveBlocks.size() <= BBNum) |
| VRInfo.AliveBlocks.resize(BBNum+1); // Make space... |
| |
| if (VRInfo.AliveBlocks[BBNum]) |
| return; // We already know the block is live |
| |
| // Mark the variable known alive in this bb |
| VRInfo.AliveBlocks[BBNum] = true; |
| |
| for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), |
| E = MBB->pred_end(); PI != E; ++PI) |
| MarkVirtRegAliveInBlock(VRInfo, *PI); |
| } |
| |
| void LiveVariables::HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB, |
| MachineInstr *MI) { |
| assert(VRInfo.DefInst && "Register use before def!"); |
| |
| // Check to see if this basic block is already a kill block... |
| if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) { |
| // Yes, this register is killed in this basic block already. Increase the |
| // live range by updating the kill instruction. |
| VRInfo.Kills.back() = MI; |
| return; |
| } |
| |
| #ifndef NDEBUG |
| for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) |
| assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!"); |
| #endif |
| |
| assert(MBB != VRInfo.DefInst->getParent() && |
| "Should have kill for defblock!"); |
| |
| // Add a new kill entry for this basic block. |
| VRInfo.Kills.push_back(MI); |
| |
| // Update all dominating blocks to mark them known live. |
| for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), |
| E = MBB->pred_end(); PI != E; ++PI) |
| MarkVirtRegAliveInBlock(VRInfo, *PI); |
| } |
| |
| void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) { |
| PhysRegInfo[Reg] = MI; |
| PhysRegUsed[Reg] = true; |
| |
| for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg); |
| unsigned Alias = *AliasSet; ++AliasSet) { |
| PhysRegInfo[Alias] = MI; |
| PhysRegUsed[Alias] = true; |
| } |
| } |
| |
| void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) { |
| // Does this kill a previous version of this register? |
| if (MachineInstr *LastUse = PhysRegInfo[Reg]) { |
| if (PhysRegUsed[Reg]) |
| RegistersKilled.insert(std::make_pair(LastUse, Reg)); |
| else |
| RegistersDead.insert(std::make_pair(LastUse, Reg)); |
| } |
| PhysRegInfo[Reg] = MI; |
| PhysRegUsed[Reg] = false; |
| |
| for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg); |
| unsigned Alias = *AliasSet; ++AliasSet) { |
| if (MachineInstr *LastUse = PhysRegInfo[Alias]) { |
| if (PhysRegUsed[Alias]) |
| RegistersKilled.insert(std::make_pair(LastUse, Alias)); |
| else |
| RegistersDead.insert(std::make_pair(LastUse, Alias)); |
| } |
| PhysRegInfo[Alias] = MI; |
| PhysRegUsed[Alias] = false; |
| } |
| } |
| |
| bool LiveVariables::runOnMachineFunction(MachineFunction &MF) { |
| const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo(); |
| RegInfo = MF.getTarget().getRegisterInfo(); |
| assert(RegInfo && "Target doesn't have register information?"); |
| |
| AllocatablePhysicalRegisters = RegInfo->getAllocatableSet(MF); |
| |
| // PhysRegInfo - Keep track of which instruction was the last use of a |
| // physical register. This is a purely local property, because all physical |
| // register references as presumed dead across basic blocks. |
| // |
| MachineInstr *PhysRegInfoA[RegInfo->getNumRegs()]; |
| bool PhysRegUsedA[RegInfo->getNumRegs()]; |
| std::fill(PhysRegInfoA, PhysRegInfoA+RegInfo->getNumRegs(), (MachineInstr*)0); |
| PhysRegInfo = PhysRegInfoA; |
| PhysRegUsed = PhysRegUsedA; |
| |
| /// Get some space for a respectable number of registers... |
| VirtRegInfo.resize(64); |
| |
| // Calculate live variable information in depth first order on the CFG of the |
| // function. This guarantees that we will see the definition of a virtual |
| // register before its uses due to dominance properties of SSA (except for PHI |
| // nodes, which are treated as a special case). |
| // |
| MachineBasicBlock *Entry = MF.begin(); |
| std::set<MachineBasicBlock*> Visited; |
| for (df_ext_iterator<MachineBasicBlock*> DFI = df_ext_begin(Entry, Visited), |
| E = df_ext_end(Entry, Visited); DFI != E; ++DFI) { |
| MachineBasicBlock *MBB = *DFI; |
| unsigned BBNum = MBB->getNumber(); |
| |
| // Loop over all of the instructions, processing them. |
| for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); |
| I != E; ++I) { |
| MachineInstr *MI = I; |
| const TargetInstrDescriptor &MID = TII.get(MI->getOpcode()); |
| |
| // Process all of the operands of the instruction... |
| unsigned NumOperandsToProcess = MI->getNumOperands(); |
| |
| // Unless it is a PHI node. In this case, ONLY process the DEF, not any |
| // of the uses. They will be handled in other basic blocks. |
| if (MI->getOpcode() == TargetInstrInfo::PHI) |
| NumOperandsToProcess = 1; |
| |
| // Loop over implicit uses, using them. |
| for (const unsigned *ImplicitUses = MID.ImplicitUses; |
| *ImplicitUses; ++ImplicitUses) |
| HandlePhysRegUse(*ImplicitUses, MI); |
| |
| // Process all explicit uses... |
| for (unsigned i = 0; i != NumOperandsToProcess; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (MO.isUse() && MO.isRegister() && MO.getReg()) { |
| if (MRegisterInfo::isVirtualRegister(MO.getReg())){ |
| HandleVirtRegUse(getVarInfo(MO.getReg()), MBB, MI); |
| } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) && |
| AllocatablePhysicalRegisters[MO.getReg()]) { |
| HandlePhysRegUse(MO.getReg(), MI); |
| } |
| } |
| } |
| |
| // Loop over implicit defs, defining them. |
| for (const unsigned *ImplicitDefs = MID.ImplicitDefs; |
| *ImplicitDefs; ++ImplicitDefs) |
| HandlePhysRegDef(*ImplicitDefs, MI); |
| |
| // Process all explicit defs... |
| for (unsigned i = 0; i != NumOperandsToProcess; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (MO.isDef() && MO.isRegister() && MO.getReg()) { |
| if (MRegisterInfo::isVirtualRegister(MO.getReg())) { |
| VarInfo &VRInfo = getVarInfo(MO.getReg()); |
| |
| assert(VRInfo.DefInst == 0 && "Variable multiply defined!"); |
| VRInfo.DefInst = MI; |
| // Defaults to dead |
| VRInfo.Kills.push_back(MI); |
| } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) && |
| AllocatablePhysicalRegisters[MO.getReg()]) { |
| HandlePhysRegDef(MO.getReg(), MI); |
| } |
| } |
| } |
| } |
| |
| // Handle any virtual assignments from PHI nodes which might be at the |
| // bottom of this basic block. We check all of our successor blocks to see |
| // if they have PHI nodes, and if so, we simulate an assignment at the end |
| // of the current block. |
| for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), |
| E = MBB->succ_end(); SI != E; ++SI) { |
| MachineBasicBlock *Succ = *SI; |
| |
| // PHI nodes are guaranteed to be at the top of the block... |
| for (MachineBasicBlock::iterator MI = Succ->begin(), ME = Succ->end(); |
| MI != ME && MI->getOpcode() == TargetInstrInfo::PHI; ++MI) { |
| for (unsigned i = 1; ; i += 2) { |
| assert(MI->getNumOperands() > i+1 && |
| "Didn't find an entry for our predecessor??"); |
| if (MI->getOperand(i+1).getMachineBasicBlock() == MBB) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (!MO.getVRegValueOrNull()) { |
| VarInfo &VRInfo = getVarInfo(MO.getReg()); |
| |
| // Only mark it alive only in the block we are representing... |
| MarkVirtRegAliveInBlock(VRInfo, MBB); |
| break; // Found the PHI entry for this block... |
| } |
| } |
| } |
| } |
| } |
| |
| // Loop over PhysRegInfo, killing any registers that are available at the |
| // end of the basic block. This also resets the PhysRegInfo map. |
| for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i) |
| if (PhysRegInfo[i]) |
| HandlePhysRegDef(i, 0); |
| } |
| |
| // Convert the information we have gathered into VirtRegInfo and transform it |
| // into a form usable by RegistersKilled. |
| // |
| for (unsigned i = 0, e = VirtRegInfo.size(); i != e; ++i) |
| for (unsigned j = 0, e = VirtRegInfo[i].Kills.size(); j != e; ++j) { |
| if (VirtRegInfo[i].Kills[j] == VirtRegInfo[i].DefInst) |
| RegistersDead.insert(std::make_pair(VirtRegInfo[i].Kills[j], |
| i + MRegisterInfo::FirstVirtualRegister)); |
| |
| else |
| RegistersKilled.insert(std::make_pair(VirtRegInfo[i].Kills[j], |
| i + MRegisterInfo::FirstVirtualRegister)); |
| } |
| |
| // Check to make sure there are no unreachable blocks in the MC CFG for the |
| // function. If so, it is due to a bug in the instruction selector or some |
| // other part of the code generator if this happens. |
| #ifndef NDEBUG |
| for(MachineFunction::iterator i = MF.begin(), e = MF.end(); i != e; ++i) |
| assert(Visited.count(&*i) != 0 && "unreachable basic block found"); |
| #endif |
| |
| return false; |
| } |
| |
| /// instructionChanged - When the address of an instruction changes, this |
| /// method should be called so that live variables can update its internal |
| /// data structures. This removes the records for OldMI, transfering them to |
| /// the records for NewMI. |
| void LiveVariables::instructionChanged(MachineInstr *OldMI, |
| MachineInstr *NewMI) { |
| // If the instruction defines any virtual registers, update the VarInfo for |
| // the instruction. |
| for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = OldMI->getOperand(i); |
| if (MO.isRegister() && MO.isDef() && MO.getReg() && |
| MRegisterInfo::isVirtualRegister(MO.getReg())) { |
| unsigned Reg = MO.getReg(); |
| VarInfo &VI = getVarInfo(Reg); |
| if (VI.DefInst == OldMI) |
| VI.DefInst = NewMI; |
| } |
| } |
| |
| // Move the killed information over... |
| killed_iterator I, E; |
| tie(I, E) = killed_range(OldMI); |
| std::vector<unsigned> Regs; |
| for (killed_iterator A = I; A != E; ++A) |
| Regs.push_back(A->second); |
| RegistersKilled.erase(I, E); |
| |
| for (unsigned i = 0, e = Regs.size(); i != e; ++i) |
| RegistersKilled.insert(std::make_pair(NewMI, Regs[i])); |
| Regs.clear(); |
| |
| // Move the dead information over... |
| tie(I, E) = dead_range(OldMI); |
| for (killed_iterator A = I; A != E; ++A) |
| Regs.push_back(A->second); |
| RegistersDead.erase(I, E); |
| |
| for (unsigned i = 0, e = Regs.size(); i != e; ++i) |
| RegistersDead.insert(std::make_pair(NewMI, Regs[i])); |
| } |