| //===- RISCDisassemblerEmitter.cpp - Disassembler Generator ---------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // FIXME: document |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "risc-disassembler-emitter" |
| |
| #include "RISCDisassemblerEmitter.h" |
| #include "CodeGenTarget.h" |
| #include "Record.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| #include <iomanip> |
| #include <vector> |
| #include <cstdio> |
| #include <map> |
| #include <string> |
| #include <sstream> |
| |
| using namespace llvm; |
| |
| //////////////////////////////////// |
| // Utility classes / structures // |
| //////////////////////////////////// |
| |
| // LLVM coding style |
| #define INDENT_LEVEL 2 |
| |
| /// Indenter - A little helper class to keep track of the indentation depth, |
| /// while the instance object is being passed around. |
| class Indenter { |
| public: |
| Indenter() : depth(0) {} |
| |
| void push() { |
| depth += INDENT_LEVEL; |
| } |
| |
| void pop() { |
| if (depth >= INDENT_LEVEL) |
| depth -= INDENT_LEVEL; |
| } |
| |
| // Conversion operator. |
| operator int () { |
| return depth; |
| } |
| private: |
| uint8_t depth; |
| }; |
| |
| ///////////////////////// |
| // Utility functions // |
| ///////////////////////// |
| |
| static uint8_t byteFromBitsInit(BitsInit &init) { |
| int width = init.getNumBits(); |
| |
| assert(width <= 8 && "Field is too large for uint8_t!"); |
| |
| int index; |
| uint8_t mask = 0x01; |
| |
| uint8_t ret = 0; |
| |
| for (index = 0; index < width; index++) { |
| if (static_cast<BitInit*>(init.getBit(index))->getValue()) |
| ret |= mask; |
| |
| mask <<= 1; |
| } |
| |
| return ret; |
| } |
| |
| static uint8_t getByteField(const Record &def, const char *str) { |
| BitsInit *bits = def.getValueAsBitsInit(str); |
| return byteFromBitsInit(*bits); |
| } |
| |
| static BitsInit &getBitsField(const Record &def, const char *str) { |
| BitsInit *bits = def.getValueAsBitsInit(str); |
| return *bits; |
| } |
| |
| /// sameStringExceptEndingChar - Return true if the two strings differ only in |
| /// the ending char. ("VST4q8a", "VST4q8b", 'a', 'b') as input returns true. |
| static |
| bool sameStringExceptEndingChar(const std::string &LHS, const std::string &RHS, |
| char lhc, char rhc) { |
| |
| if (LHS.length() > 1 && RHS.length() > 1 && LHS.length() == RHS.length()) { |
| unsigned length = LHS.length(); |
| return LHS.substr(0, length - 1) == RHS.substr(0, length - 1) |
| && LHS[length - 1] == lhc && RHS[length - 1] == rhc; |
| } |
| |
| return false; |
| } |
| |
| /// thumbInstruction - Determine whether we have a Thumb instruction. |
| /// See also ARMInstrFormats.td. |
| static bool thumbInstruction(uint8_t Form) { |
| return Form == 23; |
| } |
| |
| // The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system |
| // for a bit value. |
| // |
| // BIT_UNFILTERED is used as the init value for a filter position. It is used |
| // only for filter processings. |
| typedef enum { |
| BIT_TRUE, // '1' |
| BIT_FALSE, // '0' |
| BIT_UNSET, // '?' |
| BIT_UNFILTERED // unfiltered |
| } bit_value_t; |
| |
| static bit_value_t bitFromBits(BitsInit &bits, unsigned index) { |
| if (BitInit *bit = dynamic_cast<BitInit*>(bits.getBit(index))) |
| return bit->getValue() ? BIT_TRUE : BIT_FALSE; |
| |
| // The bit is uninitialized. |
| return BIT_UNSET; |
| } |
| |
| static void dumpBits(raw_ostream &o, BitsInit &bits) { |
| unsigned index; |
| |
| for (index = bits.getNumBits(); index > 0; index--) { |
| switch (bitFromBits(bits, index - 1)) { |
| case BIT_TRUE: |
| o << "1"; |
| break; |
| case BIT_FALSE: |
| o << "0"; |
| break; |
| case BIT_UNSET: |
| o << "_"; |
| break; |
| default: |
| assert(0 && "unexpected return value from bitFromBits"); |
| } |
| } |
| } |
| |
| ///////////// |
| // Enums // |
| ///////////// |
| |
| #define ARM_FORMATS \ |
| ENTRY(ARM_FORMAT_PSEUDO, 0) \ |
| ENTRY(ARM_FORMAT_MULFRM, 1) \ |
| ENTRY(ARM_FORMAT_BRFRM, 2) \ |
| ENTRY(ARM_FORMAT_BRMISCFRM, 3) \ |
| ENTRY(ARM_FORMAT_DPFRM, 4) \ |
| ENTRY(ARM_FORMAT_DPSOREGFRM, 5) \ |
| ENTRY(ARM_FORMAT_LDFRM, 6) \ |
| ENTRY(ARM_FORMAT_STFRM, 7) \ |
| ENTRY(ARM_FORMAT_LDMISCFRM, 8) \ |
| ENTRY(ARM_FORMAT_STMISCFRM, 9) \ |
| ENTRY(ARM_FORMAT_LDSTMULFRM, 10) \ |
| ENTRY(ARM_FORMAT_ARITHMISCFRM, 11) \ |
| ENTRY(ARM_FORMAT_EXTFRM, 12) \ |
| ENTRY(ARM_FORMAT_VFPUNARYFRM, 13) \ |
| ENTRY(ARM_FORMAT_VFPBINARYFRM, 14) \ |
| ENTRY(ARM_FORMAT_VFPCONV1FRM, 15) \ |
| ENTRY(ARM_FORMAT_VFPCONV2FRM, 16) \ |
| ENTRY(ARM_FORMAT_VFPCONV3FRM, 17) \ |
| ENTRY(ARM_FORMAT_VFPCONV4FRM, 18) \ |
| ENTRY(ARM_FORMAT_VFPCONV5FRM, 19) \ |
| ENTRY(ARM_FORMAT_VFPLDSTFRM, 20) \ |
| ENTRY(ARM_FORMAT_VFPLDSTMULFRM, 21) \ |
| ENTRY(ARM_FORMAT_VFPMISCFRM, 22) \ |
| ENTRY(ARM_FORMAT_THUMBFRM, 23) \ |
| ENTRY(ARM_FORMAT_NEONFRM, 24) \ |
| ENTRY(ARM_FORMAT_NEONGETLNFRM, 25) \ |
| ENTRY(ARM_FORMAT_NEONSETLNFRM, 26) \ |
| ENTRY(ARM_FORMAT_NEONDUPFRM, 27) \ |
| ENTRY(ARM_FORMAT_LDSTEXFRM, 28) \ |
| ENTRY(ARM_FORMAT_MISCFRM, 29) \ |
| ENTRY(ARM_FORMAT_THUMBMISCFRM, 30) |
| |
| // ARM instruction format specifies the encoding used by the instruction. |
| #define ENTRY(n, v) n = v, |
| typedef enum { |
| ARM_FORMATS |
| ARM_FORMAT_NA |
| } ARMFormat; |
| #undef ENTRY |
| |
| // Converts enum to const char*. |
| static const char *stringForARMFormat(ARMFormat form) { |
| #define ENTRY(n, v) case n: return #n; |
| switch(form) { |
| ARM_FORMATS |
| case ARM_FORMAT_NA: |
| default: |
| return ""; |
| } |
| #undef ENTRY |
| } |
| |
| #define NS_FORMATS \ |
| ENTRY(NS_FORMAT_NONE, 0) \ |
| ENTRY(NS_FORMAT_VLDSTLane, 1) \ |
| ENTRY(NS_FORMAT_VLDSTLaneDbl, 2) \ |
| ENTRY(NS_FORMAT_VLDSTRQ, 3) \ |
| ENTRY(NS_FORMAT_NVdImm, 4) \ |
| ENTRY(NS_FORMAT_NVdVmImm, 5) \ |
| ENTRY(NS_FORMAT_NVdVmImmVCVT, 6) \ |
| ENTRY(NS_FORMAT_NVdVmImmVDupLane, 7) \ |
| ENTRY(NS_FORMAT_NVdVmImmVSHLL, 8) \ |
| ENTRY(NS_FORMAT_NVectorShuffle, 9) \ |
| ENTRY(NS_FORMAT_NVectorShift, 10) \ |
| ENTRY(NS_FORMAT_NVectorShift2, 11) \ |
| ENTRY(NS_FORMAT_NVdVnVmImm, 12) \ |
| ENTRY(NS_FORMAT_NVdVnVmImmVectorShift, 13) \ |
| ENTRY(NS_FORMAT_NVdVnVmImmVectorExtract, 14) \ |
| ENTRY(NS_FORMAT_NVdVnVmImmMulScalar, 15) \ |
| ENTRY(NS_FORMAT_VTBL, 16) |
| |
| // NEON instruction sub-format further classify the NEONFrm instruction. |
| #define ENTRY(n, v) n = v, |
| typedef enum { |
| NS_FORMATS |
| NS_FORMAT_NA |
| } NSFormat; |
| #undef ENTRY |
| |
| // Converts enum to const char*. |
| static const char *stringForNSFormat(NSFormat form) { |
| #define ENTRY(n, v) case n: return #n; |
| switch(form) { |
| NS_FORMATS |
| case NS_FORMAT_NA: |
| default: |
| return ""; |
| } |
| #undef ENTRY |
| } |
| |
| // Enums for the available target names. |
| typedef enum { |
| TARGET_ARM = 0, |
| TARGET_THUMB |
| } TARGET_NAME_t; |
| |
| class AbstractFilterChooser { |
| public: |
| static TARGET_NAME_t TargetName; |
| static void setTargetName(TARGET_NAME_t tn) { TargetName = tn; } |
| virtual ~AbstractFilterChooser() {} |
| virtual void emitTop(raw_ostream &o, Indenter &i) = 0; |
| virtual void emitBot(raw_ostream &o, Indenter &i) = 0; |
| }; |
| |
| // Define the symbol here. |
| TARGET_NAME_t AbstractFilterChooser::TargetName; |
| |
| template <unsigned tBitWidth> |
| class FilterChooser : public AbstractFilterChooser { |
| protected: |
| // Representation of the instruction to work on. |
| typedef bit_value_t insn_t[tBitWidth]; |
| |
| class Filter { |
| protected: |
| FilterChooser *Owner; // pointer without ownership |
| unsigned StartBit; // the starting bit position |
| unsigned NumBits; // number of bits to filter |
| bool Mixed; // a mixed region contains both set and unset bits |
| |
| // Map of well-known segment value to the set of uid's with that value. |
| std::map<uint64_t, std::vector<unsigned> > FilteredInstructions; |
| |
| // Set of uid's with non-constant segment values. |
| std::vector<unsigned> VariableInstructions; |
| |
| // Map of well-known segment value to its delegate. |
| std::map<unsigned, FilterChooser> FilterChooserMap; |
| |
| // Number of instructions which fall under FilteredInstructions category. |
| unsigned NumFiltered; |
| |
| // Keeps track of the last opcode in the filtered bucket. |
| unsigned LastOpcFiltered; |
| |
| // Number of instructions which fall under VariableInstructions category. |
| unsigned NumVariable; |
| |
| public: |
| unsigned getNumFiltered() { return NumFiltered; } |
| unsigned getNumVariable() { return NumVariable; } |
| unsigned getSingletonOpc() { |
| assert(NumFiltered == 1); |
| return LastOpcFiltered; |
| } |
| FilterChooser &getVariableFC() { |
| assert(NumFiltered == 1); |
| assert(FilterChooserMap.size() == 1); |
| return FilterChooserMap.find(-1)->second; |
| } |
| |
| Filter(const Filter &f) : |
| Owner(f.Owner), |
| StartBit(f.StartBit), |
| NumBits(f.NumBits), |
| Mixed(f.Mixed), |
| FilteredInstructions(f.FilteredInstructions), |
| VariableInstructions(f.VariableInstructions), |
| FilterChooserMap(f.FilterChooserMap), |
| NumFiltered(f.NumFiltered), |
| LastOpcFiltered(f.LastOpcFiltered), |
| NumVariable(f.NumVariable) { } |
| |
| Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, |
| bool mixed) : |
| Owner(&owner), |
| StartBit(startBit), |
| NumBits(numBits), |
| Mixed(mixed) |
| { |
| assert(StartBit + NumBits - 1 < tBitWidth); |
| |
| NumFiltered = 0; |
| LastOpcFiltered = 0; |
| NumVariable = 0; |
| |
| for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) { |
| insn_t Insn; |
| |
| // Populates the insn given the uid. |
| Owner->insnWithID(Insn, Owner->Opcodes[i]); |
| |
| uint64_t Field; |
| // Scans the segment for possibly well-specified encoding bits. |
| bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits); |
| |
| if (ok) { |
| // The encoding bits are well-known. Lets add the uid of the |
| // instruction into the bucket keyed off the constant field value. |
| LastOpcFiltered = Owner->Opcodes[i]; |
| FilteredInstructions[Field].push_back(LastOpcFiltered); |
| ++NumFiltered; |
| } else { |
| // Some of the encoding bit(s) are unspecfied. This contributes to |
| // one additional member of "Variable" instructions. |
| VariableInstructions.push_back(Owner->Opcodes[i]); |
| ++NumVariable; |
| } |
| } |
| |
| assert((FilteredInstructions.size() + VariableInstructions.size() > 0) |
| && "Filter returns no instruction categories"); |
| } |
| |
| // Divides the decoding task into sub tasks and delegates them to the |
| // inferior FilterChooser's. |
| // |
| // A special case arises when there's only one entry in the filtered |
| // instructions. In order to unambiguously decode the singleton, we need to |
| // match the remaining undecoded encoding bits against the singleton. |
| void recurse() { |
| std::map<uint64_t, std::vector<unsigned> >::const_iterator mapIterator; |
| |
| bit_value_t BitValueArray[tBitWidth]; |
| // Starts by inheriting our parent filter chooser's filter bit values. |
| memcpy(BitValueArray, Owner->FilterBitValues, sizeof(BitValueArray)); |
| |
| unsigned bitIndex; |
| |
| if (VariableInstructions.size()) { |
| // Conservatively marks each segment position as BIT_UNSET. |
| for (bitIndex = 0; bitIndex < NumBits; bitIndex++) |
| BitValueArray[StartBit + bitIndex] = BIT_UNSET; |
| |
| // Delegates to an inferior filter chooser for futher processing on this |
| // group of instructions whose segment values are variable. |
| FilterChooserMap.insert(std::pair<unsigned, FilterChooser>( |
| (unsigned)-1, |
| FilterChooser(Owner->AllInstructions, |
| VariableInstructions, |
| BitValueArray, |
| *Owner) |
| )); |
| } |
| |
| // No need to recurse for a singleton filtered instruction. |
| // See also Filter::emit(). |
| if (getNumFiltered() == 1) { |
| //Owner->SingletonExists(LastOpcFiltered); |
| assert(FilterChooserMap.size() == 1); |
| return; |
| } |
| |
| // Otherwise, create sub choosers. |
| for (mapIterator = FilteredInstructions.begin(); |
| mapIterator != FilteredInstructions.end(); |
| mapIterator++) { |
| |
| // Marks all the segment positions with either BIT_TRUE or BIT_FALSE. |
| for (bitIndex = 0; bitIndex < NumBits; bitIndex++) { |
| if (mapIterator->first & (1 << bitIndex)) |
| BitValueArray[StartBit + bitIndex] = BIT_TRUE; |
| else |
| BitValueArray[StartBit + bitIndex] = BIT_FALSE; |
| } |
| |
| // Delegates to an inferior filter chooser for futher processing on this |
| // category of instructions. |
| FilterChooserMap.insert(std::pair<unsigned, FilterChooser>( |
| mapIterator->first, |
| FilterChooser(Owner->AllInstructions, |
| mapIterator->second, |
| BitValueArray, |
| *Owner) |
| )); |
| } |
| } |
| |
| // Emit code to decode instructions given a segment or segments of bits. |
| void emit(raw_ostream &o, Indenter &i) { |
| o.indent(i) << "// Check Inst{"; |
| |
| if (NumBits > 1) |
| o << (StartBit + NumBits - 1) << '-'; |
| |
| o << StartBit << "} ...\n"; |
| |
| o.indent(i) << "switch (fieldFromInstruction(insn, " |
| << StartBit << ", " << NumBits << ")) {\n"; |
| |
| typename std::map<unsigned, FilterChooser>::iterator filterIterator; |
| |
| bool DefaultCase = false; |
| for (filterIterator = FilterChooserMap.begin(); |
| filterIterator != FilterChooserMap.end(); |
| filterIterator++) { |
| |
| // Field value -1 implies a non-empty set of variable instructions. |
| // See also recurse(). |
| if (filterIterator->first == (unsigned)-1) { |
| DefaultCase = true; |
| |
| o.indent(i) << "default:\n"; |
| o.indent(i) << " break; // fallthrough\n"; |
| |
| // Closing curly brace for the switch statement. |
| // This is unconventional because we want the default processing to be |
| // performed for the fallthrough cases as well, i.e., when the "cases" |
| // did not prove a decoded instruction. |
| o.indent(i) << "}\n"; |
| |
| } else { |
| o.indent(i) << "case " << filterIterator->first << ":\n"; |
| } |
| |
| // We arrive at a category of instructions with the same segment value. |
| // Now delegate to the sub filter chooser for further decodings. |
| // The case may fallthrough, which happens if the remaining well-known |
| // encoding bits do not match exactly. |
| if (!DefaultCase) i.push(); |
| { |
| bool finished = filterIterator->second.emit(o, i); |
| // For top level default case, there's no need for a break statement. |
| if (Owner->isTopLevel() && DefaultCase) |
| break; |
| if (!finished) |
| o.indent(i) << "break;\n"; |
| } |
| if (!DefaultCase) i.pop(); |
| } |
| |
| // If there is no default case, we still need to supply a closing brace. |
| if (!DefaultCase) { |
| // Closing curly brace for the switch statement. |
| o.indent(i) << "}\n"; |
| } |
| } |
| |
| // Returns the number of fanout produced by the filter. More fanout implies |
| // the filter distinguishes more categories of instructions. |
| unsigned usefulness() const { |
| if (VariableInstructions.size()) |
| return FilteredInstructions.size(); |
| else |
| return FilteredInstructions.size() + 1; |
| } |
| }; // End of inner class Filter |
| |
| friend class Filter; |
| |
| // Vector of codegen instructions to choose our filter. |
| const std::vector<const CodeGenInstruction*> &AllInstructions; |
| |
| // Vector of uid's for this filter chooser to work on. |
| const std::vector<unsigned> Opcodes; |
| |
| // Vector of candidate filters. |
| std::vector<Filter> Filters; |
| |
| // Array of bit values passed down from our parent. |
| // Set to all BIT_UNFILTERED's for Parent == NULL. |
| bit_value_t FilterBitValues[tBitWidth]; |
| |
| // Links to the FilterChooser above us in the decoding tree. |
| FilterChooser *Parent; |
| |
| // Index of the best filter from Filters. |
| int BestIndex; |
| |
| public: |
| FilterChooser(const FilterChooser &FC) : |
| AbstractFilterChooser(), |
| AllInstructions(FC.AllInstructions), |
| Opcodes(FC.Opcodes), |
| Filters(FC.Filters), |
| Parent(FC.Parent), |
| BestIndex(FC.BestIndex) |
| { |
| memcpy(FilterBitValues, FC.FilterBitValues, sizeof(FilterBitValues)); |
| } |
| |
| FilterChooser(const std::vector<const CodeGenInstruction*> &Insts, |
| const std::vector<unsigned> &IDs) : |
| AllInstructions(Insts), |
| Opcodes(IDs), |
| Filters(), |
| Parent(NULL), |
| BestIndex(-1) |
| { |
| for (unsigned i = 0; i < tBitWidth; ++i) |
| FilterBitValues[i] = BIT_UNFILTERED; |
| |
| doFilter(); |
| } |
| |
| FilterChooser(const std::vector<const CodeGenInstruction*> &Insts, |
| const std::vector<unsigned> &IDs, |
| bit_value_t (&ParentFilterBitValues)[tBitWidth], |
| FilterChooser &parent) : |
| AllInstructions(Insts), |
| Opcodes(IDs), |
| Filters(), |
| Parent(&parent), |
| BestIndex(-1) |
| { |
| for (unsigned i = 0; i < tBitWidth; ++i) |
| FilterBitValues[i] = ParentFilterBitValues[i]; |
| |
| doFilter(); |
| } |
| |
| // The top level filter chooser has NULL as its parent. |
| bool isTopLevel() { return Parent == NULL; } |
| |
| // This provides an opportunity for target specific code emission. |
| void emitTopHook(raw_ostream &o, Indenter &i) { |
| if (TargetName == TARGET_ARM) { |
| // Emit code that references the ARMFormat data type. |
| o << "static const ARMFormat ARMFormats[] = {\n"; |
| for (unsigned i = 0, e = AllInstructions.size(); i != e; ++i) { |
| const Record &Def = *(AllInstructions[i]->TheDef); |
| const std::string &Name = Def.getName(); |
| if (Def.isSubClassOf("InstARM") || Def.isSubClassOf("InstThumb")) |
| o.indent(2) << |
| stringForARMFormat((ARMFormat)getByteField(Def, "Form")); |
| else |
| o << " ARM_FORMAT_NA"; |
| |
| o << ",\t// Inst #" << i << " = " << Name << '\n'; |
| } |
| o << " ARM_FORMAT_NA\t// Unreachable.\n"; |
| o << "};\n\n"; |
| |
| // And emit code that references the NSFormat data type. |
| // This is meaningful only for NEONFrm instructions. |
| o << "static const NSFormat NSFormats[] = {\n"; |
| for (unsigned i = 0, e = AllInstructions.size(); i != e; ++i) { |
| const Record &Def = *(AllInstructions[i]->TheDef); |
| const std::string &Name = Def.getName(); |
| if (Def.isSubClassOf("NeonI") || Def.isSubClassOf("NeonXI")) |
| o.indent(2) << |
| stringForNSFormat((NSFormat)getByteField(Def, "NSForm")); |
| else |
| o << " NS_FORMAT_NA"; |
| |
| o << ",\t// Inst #" << i << " = " << Name << '\n'; |
| } |
| o << " NS_FORMAT_NA\t// Unreachable.\n"; |
| o << "};\n\n"; |
| } |
| } |
| |
| // Emit the top level typedef and decodeInstruction() function. |
| void emitTop(raw_ostream &o, Indenter &i) { |
| |
| // Run the target specific emit hook. |
| emitTopHook(o, i); |
| |
| switch(tBitWidth) { |
| case 8: |
| o.indent(i) << "typedef uint8_t field_t;\n"; |
| break; |
| case 16: |
| o.indent(i) << "typedef uint16_t field_t;\n"; |
| break; |
| case 32: |
| o.indent(i) << "typedef uint32_t field_t;\n"; |
| break; |
| case 64: |
| o.indent(i) << "typedef uint64_t field_t;\n"; |
| break; |
| default: |
| assert(0 && "Unexpected instruction size!"); |
| } |
| |
| o << '\n'; |
| |
| o.indent(i) << "static field_t " << |
| "fieldFromInstruction(field_t insn, unsigned startBit, unsigned numBits)\n"; |
| |
| o.indent(i) << "{\n"; |
| i.push(); |
| { |
| o.indent(i) << "assert(startBit + numBits <= " << tBitWidth |
| << " && \"Instruction field out of bounds!\");\n"; |
| o << '\n'; |
| o.indent(i) << "field_t fieldMask;\n"; |
| o << '\n'; |
| o.indent(i) << "if (numBits == " << tBitWidth << ")\n"; |
| |
| i.push(); |
| { |
| o.indent(i) << "fieldMask = (field_t)-1;\n"; |
| } |
| i.pop(); |
| |
| o.indent(i) << "else\n"; |
| |
| i.push(); |
| { |
| o.indent(i) << "fieldMask = ((1 << numBits) - 1) << startBit;\n"; |
| } |
| i.pop(); |
| |
| o << '\n'; |
| o.indent(i) << "return (insn & fieldMask) >> startBit;\n"; |
| } |
| i.pop(); |
| o.indent(i) << "}\n"; |
| |
| o << '\n'; |
| |
| o.indent(i) << "static uint16_t decodeInstruction(field_t insn) {\n"; |
| |
| i.push(); |
| { |
| // Emits code to decode the instructions. |
| emit(o, i); |
| |
| o << '\n'; |
| o.indent(i) << "return 0;\n"; |
| } |
| i.pop(); |
| |
| o.indent(i) << "}\n"; |
| |
| o << '\n'; |
| |
| } |
| |
| // This provides an opportunity for target specific code emission after |
| // emitTop(). |
| void emitBot(raw_ostream &o, Indenter &i) { |
| if (TargetName == TARGET_THUMB) { |
| // Emit code that decodes the Thumb ISA. |
| o.indent(i) |
| << "static uint16_t decodeThumbInstruction(field_t insn) {\n"; |
| |
| i.push(); |
| { |
| // Emits code to decode the instructions. |
| emit(o, i); |
| |
| o << '\n'; |
| o.indent(i) << "return 0;\n"; |
| } |
| i.pop(); |
| |
| o.indent(i) << "}\n"; |
| } |
| } |
| |
| protected: |
| // Populates the insn given the uid. |
| void insnWithID(insn_t &Insn, unsigned Opcode) const { |
| assert(Opcode > 10); |
| BitsInit &Bits = getBitsField(*AllInstructions[Opcode]->TheDef, "Inst"); |
| |
| for (unsigned i = 0; i < tBitWidth; ++i) |
| Insn[i] = bitFromBits(Bits, i); |
| } |
| |
| // Returns the record name. |
| const std::string &nameWithID(unsigned Opcode) const { |
| return AllInstructions[Opcode]->TheDef->getName(); |
| } |
| |
| // Populates the field of the insn given the start position and the number of |
| // consecutive bits to scan for. |
| // |
| // Returns false if and on the first uninitialized bit value encountered. |
| // Returns true, otherwise. |
| const bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit, |
| unsigned NumBits) const { |
| Field = 0; |
| |
| for (unsigned i = 0; i < NumBits; ++i) { |
| if (Insn[StartBit + i] == BIT_UNSET) |
| return false; |
| |
| if (Insn[StartBit + i] == BIT_TRUE) |
| Field = Field | (1 << i); |
| } |
| |
| return true; |
| } |
| |
| void dumpFilterArray(raw_ostream &o, bit_value_t (&filter)[tBitWidth]) { |
| unsigned bitIndex; |
| |
| for (bitIndex = tBitWidth; bitIndex > 0; bitIndex--) { |
| switch (filter[bitIndex - 1]) { |
| case BIT_UNFILTERED: |
| o << "."; |
| break; |
| case BIT_UNSET: |
| o << "_"; |
| break; |
| case BIT_TRUE: |
| o << "1"; |
| break; |
| case BIT_FALSE: |
| o << "0"; |
| break; |
| } |
| } |
| } |
| |
| void dumpStack(raw_ostream &o, const char *prefix) { |
| FilterChooser *current = this; |
| |
| while (current) { |
| o << prefix; |
| |
| dumpFilterArray(o, current->FilterBitValues); |
| |
| o << '\n'; |
| |
| current = current->Parent; |
| } |
| } |
| |
| Filter &bestFilter() { |
| assert(BestIndex != -1 && "BestIndex not set"); |
| return Filters[BestIndex]; |
| } |
| |
| // States of our finite state machines. |
| typedef enum { |
| ATTR_NONE, |
| ATTR_FILTERED, |
| ATTR_ALL_SET, |
| ATTR_ALL_UNSET, |
| ATTR_MIXED |
| } bitAttr_t; |
| |
| // Called from Filter::recurse() when singleton exists. For debug purpose. |
| void SingletonExists(unsigned Opc) { |
| |
| insn_t Insn0; |
| insnWithID(Insn0, Opc); |
| |
| errs() << "Singleton exists: " << nameWithID(Opc) |
| << " with its decoding dominating "; |
| for (unsigned i = 0; i < Opcodes.size(); ++i) { |
| if (Opcodes[i] == Opc) continue; |
| errs() << nameWithID(Opcodes[i]) << ' '; |
| } |
| errs() << '\n'; |
| |
| dumpStack(errs(), "\t\t"); |
| for (unsigned i = 0; i < Opcodes.size(); i++) { |
| const std::string &Name = nameWithID(Opcodes[i]); |
| |
| errs() << '\t' << Name << " "; |
| dumpBits(errs(), |
| getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst")); |
| errs() << '\n'; |
| } |
| } |
| |
| bool ValueSet(bit_value_t V) { |
| return (V == BIT_TRUE || V == BIT_FALSE); |
| } |
| bool ValueNotSet(bit_value_t V) { |
| return (V == BIT_UNSET); |
| } |
| int Value(bit_value_t V) { |
| return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1); |
| } |
| bool PositionFiltered(unsigned i) { |
| return ValueSet(FilterBitValues[i]); |
| } |
| |
| // Calculates the island(s) needed to decode the instruction. |
| unsigned getIslands(std::vector<unsigned> &StartBits, |
| std::vector<unsigned> &EndBits, |
| std::vector<uint64_t> &FieldVals, insn_t &Insn) |
| { |
| unsigned Num, BitNo; |
| Num = BitNo = 0; |
| |
| uint64_t FieldVal = 0; |
| |
| // 0: Init |
| // 1: Water |
| // 2: Island |
| int State = 0; |
| int Val = -1; |
| |
| for (unsigned i = 0; i < tBitWidth; ++i) { |
| Val = Value(Insn[i]); |
| bool Filtered = PositionFiltered(i); |
| switch (State) { |
| default: |
| assert(0 && "Unreachable code!"); |
| break; |
| case 0: |
| case 1: |
| if (Filtered || Val == -1) |
| State = 1; // Still in Water |
| else { |
| State = 2; // Into the Island |
| BitNo = 0; |
| StartBits.push_back(i); |
| FieldVal = Val; |
| } |
| break; |
| case 2: |
| if (Filtered || Val == -1) { |
| State = 1; // Into the Water |
| EndBits.push_back(i - 1); |
| FieldVals.push_back(FieldVal); |
| ++Num; |
| } else { |
| State = 2; // Still in Island |
| ++BitNo; |
| FieldVal = FieldVal | Val << BitNo; |
| } |
| break; |
| } |
| } |
| // If we are still in Island after the loop, do some housekeeping. |
| if (State == 2) { |
| EndBits.push_back(tBitWidth - 1); |
| FieldVals.push_back(FieldVal); |
| ++Num; |
| } |
| |
| /* |
| printf("StartBits.size()=%u,EndBits.size()=%u,FieldVals.size()=%u,Num=%u\n", |
| (unsigned)StartBits.size(), (unsigned)EndBits.size(), |
| (unsigned)FieldVals.size(), Num); |
| */ |
| |
| assert(StartBits.size() == Num && EndBits.size() == Num && |
| FieldVals.size() == Num); |
| |
| return Num; |
| } |
| |
| bool LdStCopEncoding1(unsigned Opc) { |
| const std::string &Name = nameWithID(Opc); |
| if (Name == "LDC_OFFSET" || Name == "LDC_OPTION" || |
| Name == "LDC_POST" || Name == "LDC_PRE" || |
| Name == "LDCL_OFFSET" || Name == "LDCL_OPTION" || |
| Name == "LDCL_POST" || Name == "LDCL_PRE" || |
| Name == "STC_OFFSET" || Name == "STC_OPTION" || |
| Name == "STC_POST" || Name == "STC_PRE" || |
| Name == "STCL_OFFSET" || Name == "STCL_OPTION" || |
| Name == "STCL_POST" || Name == "STCL_PRE") |
| return true; |
| else |
| return false; |
| } |
| |
| // Emits code to decode the singleton. Return true if we have matched all the |
| // well-known bits. |
| bool emitSingletonDecoder(raw_ostream &o, Indenter &i, unsigned Opc) { |
| |
| std::vector<unsigned> StartBits; |
| std::vector<unsigned> EndBits; |
| std::vector<uint64_t> FieldVals; |
| insn_t Insn; |
| insnWithID(Insn, Opc); |
| |
| if (TargetName == TARGET_ARM && LdStCopEncoding1(Opc)) { |
| o.indent(i); |
| // A8.6.51 & A8.6.188 |
| // If coproc = 0b101?, i.e, slice(insn, 11, 8) = 10 or 11, escape. |
| o << "if (fieldFromInstruction(insn, 9, 3) == 5) break; // fallthrough\n"; |
| } |
| |
| // Look for islands of undecoded bits of the singleton. |
| getIslands(StartBits, EndBits, FieldVals, Insn); |
| |
| unsigned Size = StartBits.size(); |
| unsigned I, NumBits; |
| |
| // If we have matched all the well-known bits, just issue a return. |
| if (Size == 0) { |
| o.indent(i) << "return " << Opc << "; // " << nameWithID(Opc) << '\n'; |
| return true; |
| } |
| |
| // Otherwise, there are more decodings to be done! |
| |
| // Emit code to match the island(s) for the singleton. |
| o.indent(i) << "// Check "; |
| |
| for (I = Size; I != 0; --I) { |
| o << "Inst{" << EndBits[I-1] << '-' << StartBits[I-1] << "} "; |
| if (I > 1) |
| o << "&& "; |
| else |
| o << "for singleton decoding...\n"; |
| } |
| |
| o.indent(i) << "if ("; |
| |
| for (I = Size; I != 0; --I) { |
| NumBits = EndBits[I-1] - StartBits[I-1] + 1; |
| o << "fieldFromInstruction(insn, " << StartBits[I-1] << ", " << NumBits |
| << ") == " << FieldVals[I-1]; |
| if (I > 1) |
| o << " && "; |
| else |
| o << ")\n"; |
| } |
| |
| o.indent(i) << " return " << Opc << "; // " << nameWithID(Opc) << '\n'; |
| |
| return false; |
| } |
| |
| // Emits code to decode the singleton, and then to decode the rest. |
| void emitSingletonDecoder(raw_ostream &o, Indenter &i, Filter & Best) { |
| |
| unsigned Opc = Best.getSingletonOpc(); |
| |
| emitSingletonDecoder(o, i, Opc); |
| |
| // Emit code for the rest. |
| o.indent(i) << "else\n"; |
| i.push(); |
| { |
| Best.getVariableFC().emit(o, i); |
| } |
| i.pop(); |
| } |
| |
| // Assign a single filter and run with it. |
| void runSingleFilter(FilterChooser &owner, unsigned startBit, unsigned numBit, |
| bool mixed) { |
| Filters.clear(); |
| Filter F(*this, startBit, numBit, true); |
| Filters.push_back(F); |
| BestIndex = 0; // Sole Filter instance to choose from. |
| bestFilter().recurse(); |
| } |
| |
| bool filterProcessor(bool AllowMixed, bool Greedy = true) { |
| Filters.clear(); |
| BestIndex = -1; |
| unsigned numInstructions = Opcodes.size(); |
| |
| assert(numInstructions && "Filter created with no instructions"); |
| |
| // No further filtering is necessary. |
| if (numInstructions == 1) |
| return true; |
| |
| // Heuristics. See also doFilter()'s "Heuristics" comment when num of |
| // instructions is 3. |
| if (AllowMixed && !Greedy) { |
| assert(numInstructions == 3); |
| |
| for (unsigned i = 0; i < Opcodes.size(); ++i) { |
| std::vector<unsigned> StartBits; |
| std::vector<unsigned> EndBits; |
| std::vector<uint64_t> FieldVals; |
| insn_t Insn; |
| |
| insnWithID(Insn, Opcodes[i]); |
| |
| // Look for islands of undecoded bits of any instruction. |
| if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) { |
| // Found an instruction with island(s). Now just assign a filter. |
| runSingleFilter(*this, StartBits[0], EndBits[0] - StartBits[0] + 1, |
| true); |
| return true; |
| } |
| } |
| } |
| |
| unsigned bitIndex, insnIndex; |
| |
| // We maintain tBitWidth copies of the bitAttrs automaton. |
| // The automaton consumes the corresponding bit from each |
| // instruction. |
| // |
| // Input symbols: 0, 1, and _ (unset). |
| // States: NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED. |
| // Initial state: NONE. |
| // |
| // (NONE) ------- [01] -> (ALL_SET) |
| // (NONE) ------- _ ----> (ALL_UNSET) |
| // (ALL_SET) ---- [01] -> (ALL_SET) |
| // (ALL_SET) ---- _ ----> (MIXED) |
| // (ALL_UNSET) -- [01] -> (MIXED) |
| // (ALL_UNSET) -- _ ----> (ALL_UNSET) |
| // (MIXED) ------ . ----> (MIXED) |
| // (FILTERED)---- . ----> (FILTERED) |
| |
| bitAttr_t bitAttrs[tBitWidth]; |
| |
| // FILTERED bit positions provide no entropy and are not worthy of pursuing. |
| // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position. |
| for (bitIndex = 0; bitIndex < tBitWidth; ++bitIndex) |
| if (FilterBitValues[bitIndex] == BIT_TRUE || |
| FilterBitValues[bitIndex] == BIT_FALSE) |
| bitAttrs[bitIndex] = ATTR_FILTERED; |
| else |
| bitAttrs[bitIndex] = ATTR_NONE; |
| |
| for (insnIndex = 0; insnIndex < numInstructions; ++insnIndex) { |
| insn_t insn; |
| |
| insnWithID(insn, Opcodes[insnIndex]); |
| |
| for (bitIndex = 0; bitIndex < tBitWidth; ++bitIndex) { |
| switch (bitAttrs[bitIndex]) { |
| case ATTR_NONE: |
| if (insn[bitIndex] == BIT_UNSET) |
| bitAttrs[bitIndex] = ATTR_ALL_UNSET; |
| else |
| bitAttrs[bitIndex] = ATTR_ALL_SET; |
| break; |
| case ATTR_ALL_SET: |
| if (insn[bitIndex] == BIT_UNSET) |
| bitAttrs[bitIndex] = ATTR_MIXED; |
| break; |
| case ATTR_ALL_UNSET: |
| if (insn[bitIndex] != BIT_UNSET) |
| bitAttrs[bitIndex] = ATTR_MIXED; |
| break; |
| case ATTR_MIXED: |
| case ATTR_FILTERED: |
| break; |
| } |
| } |
| } |
| |
| // The regionAttr automaton consumes the bitAttrs automatons' state, |
| // lowest-to-highest. |
| // |
| // Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed) |
| // States: NONE, ALL_SET, MIXED |
| // Initial state: NONE |
| // |
| // (NONE) ----- F --> (NONE) |
| // (NONE) ----- S --> (ALL_SET) ; and set region start |
| // (NONE) ----- U --> (NONE) |
| // (NONE) ----- M --> (MIXED) ; and set region start |
| // (ALL_SET) -- F --> (NONE) ; and report an ALL_SET region |
| // (ALL_SET) -- S --> (ALL_SET) |
| // (ALL_SET) -- U --> (NONE) ; and report an ALL_SET region |
| // (ALL_SET) -- M --> (MIXED) ; and report an ALL_SET region |
| // (MIXED) ---- F --> (NONE) ; and report a MIXED region |
| // (MIXED) ---- S --> (ALL_SET) ; and report a MIXED region |
| // (MIXED) ---- U --> (NONE) ; and report a MIXED region |
| // (MIXED) ---- M --> (MIXED) |
| |
| bitAttr_t regionAttr = ATTR_NONE; |
| unsigned startBit = 0; |
| |
| for (bitIndex = 0; bitIndex < tBitWidth; bitIndex++) { |
| bitAttr_t bitAttr = bitAttrs[bitIndex]; |
| |
| assert(bitAttr != ATTR_NONE && "Bit without attributes"); |
| |
| #define SET_START \ |
| startBit = bitIndex; |
| |
| #define REPORT_REGION \ |
| if (regionAttr == ATTR_MIXED && AllowMixed) \ |
| Filters.push_back(Filter(*this, startBit, bitIndex - startBit, true)); \ |
| else if (regionAttr == ATTR_ALL_SET && !AllowMixed) \ |
| Filters.push_back(Filter(*this, startBit, bitIndex - startBit, false)); |
| |
| switch (regionAttr) { |
| case ATTR_NONE: |
| switch (bitAttr) { |
| case ATTR_FILTERED: |
| break; |
| case ATTR_ALL_SET: |
| SET_START |
| regionAttr = ATTR_ALL_SET; |
| break; |
| case ATTR_ALL_UNSET: |
| break; |
| case ATTR_MIXED: |
| SET_START |
| regionAttr = ATTR_MIXED; |
| break; |
| default: |
| assert(0 && "Unexpected bitAttr!"); |
| } |
| break; |
| case ATTR_ALL_SET: |
| switch (bitAttr) { |
| case ATTR_FILTERED: |
| REPORT_REGION |
| regionAttr = ATTR_NONE; |
| break; |
| case ATTR_ALL_SET: |
| break; |
| case ATTR_ALL_UNSET: |
| REPORT_REGION |
| regionAttr = ATTR_NONE; |
| break; |
| case ATTR_MIXED: |
| REPORT_REGION |
| SET_START |
| regionAttr = ATTR_MIXED; |
| break; |
| default: |
| assert(0 && "Unexpected bitAttr!"); |
| } |
| break; |
| case ATTR_MIXED: |
| switch (bitAttr) { |
| case ATTR_FILTERED: |
| REPORT_REGION |
| SET_START |
| regionAttr = ATTR_NONE; |
| break; |
| case ATTR_ALL_SET: |
| REPORT_REGION |
| SET_START |
| regionAttr = ATTR_ALL_SET; |
| break; |
| case ATTR_ALL_UNSET: |
| REPORT_REGION |
| regionAttr = ATTR_NONE; |
| break; |
| case ATTR_MIXED: |
| break; |
| default: |
| assert(0 && "Unexpected bitAttr!"); |
| } |
| break; |
| case ATTR_ALL_UNSET: |
| assert(0 && "regionAttr state machine has no ATTR_UNSET state"); |
| case ATTR_FILTERED: |
| assert(0 && "regionAttr state machine has no ATTR_FILTERED state"); |
| } |
| } |
| |
| // At the end, if we're still in ALL_SET or MIXED states, report a region |
| |
| switch (regionAttr) { |
| case ATTR_NONE: |
| break; |
| case ATTR_FILTERED: |
| break; |
| case ATTR_ALL_SET: |
| REPORT_REGION |
| break; |
| case ATTR_ALL_UNSET: |
| break; |
| case ATTR_MIXED: |
| REPORT_REGION |
| break; |
| } |
| |
| #undef SET_START |
| #undef REPORT_REGION |
| |
| // We have finished with the filter processings. Now it's time to choose |
| // the best performing filter. |
| |
| BestIndex = 0; |
| bool AllUseless = true; |
| unsigned BestScore = 0; |
| |
| for (unsigned i = 0, e = Filters.size(); i != e; ++i) { |
| unsigned Usefulness = Filters[i].usefulness(); |
| |
| if (Usefulness) |
| AllUseless = false; |
| |
| if (Usefulness > BestScore) { |
| BestIndex = i; |
| BestScore = Usefulness; |
| } |
| } |
| |
| if (!AllUseless) { |
| bestFilter().recurse(); |
| } |
| |
| return !AllUseless; |
| } // end of filterProcessor(bool) |
| |
| // Decides on the best configuration of filter(s) to use in order to decode |
| // the instructions. A conflict of instructions may occur, in which case we |
| // dump the conflict set to the standard error. |
| void doFilter() { |
| unsigned Num = Opcodes.size(); |
| assert(Num && "FilterChooser created with no instructions"); |
| |
| // Heuristics: Use Inst{31-28} as the top level filter for ARM ISA. |
| if (TargetName == TARGET_ARM && Parent == NULL) { |
| runSingleFilter(*this, 28, 4, false); |
| return; |
| } |
| |
| if (filterProcessor(false)) |
| return; |
| |
| if (filterProcessor(true)) |
| return; |
| |
| // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where |
| // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a |
| // well-known encoding pattern. In such case, we backtrack and scan for the |
| // the very first consecutive ATTR_ALL_SET region and assign a filter to it. |
| if (Num == 3 && filterProcessor(true, false)) |
| return; |
| |
| // If we come to here, the instruction decoding has failed. |
| // Print out the instructions in the conflict set... |
| |
| BestIndex = -1; |
| |
| DEBUG({ |
| errs() << "Conflict:\n"; |
| |
| dumpStack(errs(), "\t\t"); |
| |
| for (unsigned i = 0; i < Num; i++) { |
| const std::string &Name = nameWithID(Opcodes[i]); |
| |
| errs() << '\t' << Name << " "; |
| dumpBits(errs(), |
| getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst")); |
| errs() << '\n'; |
| } |
| }); |
| } |
| |
| // Emits code to decode our share of instructions. Returns true if the |
| // emitted code causes a return, which occurs if we know how to decode |
| // the instruction at this level or the instruction is not decodeable. |
| bool emit(raw_ostream &o, Indenter &i) { |
| if (Opcodes.size() == 1) { |
| // There is only one instruction in the set, which is great! |
| // Call emitSingletonDecoder() to see whether there are any remaining |
| // encodings bits. |
| return emitSingletonDecoder(o, i, Opcodes[0]); |
| |
| } else if (BestIndex == -1) { |
| if (TargetName == TARGET_ARM && Opcodes.size() == 2) { |
| // Resolve the known conflict sets: |
| // |
| // 1. source registers are identical => VMOVDneon; otherwise => VORRd |
| // 2. source registers are identical => VMOVQ; otherwise => VORRq |
| // 3. LDR, LDRcp => return LDR for now. |
| // FIXME: How can we distinguish between LDR and LDRcp? Do we need to? |
| // 4. VLD[234]LN*a/VST[234]LN*a vs. VLD[234]LN*b/VST[234]LN*b conflicts |
| // are resolved returning the 'a' versions of the instructions. Note |
| // that the difference between a/b is that the former is for double- |
| // spaced even registers while the latter is for double-spaced odd |
| // registers. This is for codegen instruction selection purpose. |
| // For disassembly, it does not matter. |
| const std::string &name1 = nameWithID(Opcodes[0]); |
| const std::string &name2 = nameWithID(Opcodes[1]); |
| if ((name1 == "VMOVDneon" && name2 == "VORRd") || |
| (name1 == "VMOVQ" && name2 == "VORRq")) { |
| // Inserting the opening curly brace for this case block. |
| i.pop(); |
| o.indent(i) << "{\n"; |
| i.push(); |
| |
| o.indent(i) << "field_t N = fieldFromInstruction(insn, 7, 1), " |
| << "M = fieldFromInstruction(insn, 5, 1);\n"; |
| o.indent(i) << "field_t Vn = fieldFromInstruction(insn, 16, 4), " |
| << "Vm = fieldFromInstruction(insn, 0, 4);\n"; |
| o.indent(i) << "return (N == M && Vn == Vm) ? " |
| << Opcodes[0] << " /* " << name1 << " */ : " |
| << Opcodes[1] << " /* " << name2 << " */ ;\n"; |
| |
| // Inserting the closing curly brace for this case block. |
| i.pop(); |
| o.indent(i) << "}\n"; |
| i.push(); |
| |
| return true; |
| } |
| if (name1 == "LDR" && name2 == "LDRcp") { |
| o.indent(i) << "return " << Opcodes[0] |
| << "; // Returning LDR for {LDR, LDRcp}\n"; |
| return true; |
| } |
| if (sameStringExceptEndingChar(name1, name2, 'a', 'b')) { |
| o.indent(i) << "return " << Opcodes[0] << "; // Returning " << name1 |
| << " for {" << name1 << ", " << name2 << "}\n"; |
| return true; |
| } |
| |
| // Otherwise, it does not belong to the known conflict sets. |
| } |
| // We don't know how to decode these instructions! Dump the conflict set! |
| o.indent(i) << "return 0;" << " // Conflict set: "; |
| for (int i = 0, N = Opcodes.size(); i < N; ++i) { |
| o << nameWithID(Opcodes[i]); |
| if (i < (N - 1)) |
| o << ", "; |
| else |
| o << '\n'; |
| } |
| return true; |
| } else { |
| // Choose the best filter to do the decodings! |
| Filter &Best = bestFilter(); |
| if (Best.getNumFiltered() == 1) |
| emitSingletonDecoder(o, i, Best); |
| else |
| bestFilter().emit(o, i); |
| return false; |
| } |
| } |
| }; |
| |
| /////////////// |
| // Backend // |
| /////////////// |
| |
| class RISCDisassemblerEmitter::RISCDEBackend { |
| public: |
| RISCDEBackend(RISCDisassemblerEmitter &frontend) : |
| NumberedInstructions(), |
| Opcodes(), |
| Frontend(frontend), |
| Target(), |
| AFC(NULL) |
| { |
| populateInstructions(); |
| |
| if (Target.getName() == "ARM") { |
| TargetName = TARGET_ARM; |
| } else { |
| errs() << "Target name " << Target.getName() << " not recognized\n"; |
| assert(0 && "Unknown target"); |
| } |
| } |
| |
| ~RISCDEBackend() { |
| if (AFC) { |
| delete AFC; |
| AFC = NULL; |
| } |
| } |
| |
| void getInstructionsByEnumValue(std::vector<const CodeGenInstruction*> |
| &NumberedInstructions) { |
| // Dig down to the proper namespace. Code shamelessly stolen from |
| // InstrEnumEmitter.cpp |
| std::string Namespace; |
| CodeGenTarget::inst_iterator II, E; |
| |
| for (II = Target.inst_begin(), E = Target.inst_end(); II != E; ++II) |
| if (II->second.Namespace != "TargetInstrInfo") { |
| Namespace = II->second.Namespace; |
| break; |
| } |
| |
| assert(!Namespace.empty() && "No instructions defined."); |
| |
| Target.getInstructionsByEnumValue(NumberedInstructions); |
| } |
| |
| bool populateInstruction(const CodeGenInstruction &CGI, TARGET_NAME_t TN) { |
| const Record &Def = *CGI.TheDef; |
| const std::string &Name = Def.getName(); |
| uint8_t Form = getByteField(Def, "Form"); |
| BitsInit &Bits = getBitsField(Def, "Inst"); |
| |
| if (TN == TARGET_ARM) { |
| // FIXME: what about Int_MemBarrierV6 and Int_SyncBarrierV6? |
| if ((Name != "Int_MemBarrierV7" && Name != "Int_SyncBarrierV7") && |
| Form == ARM_FORMAT_PSEUDO) |
| return false; |
| if (thumbInstruction(Form)) |
| return false; |
| if (Name.find("CMPz") != std::string::npos /* || |
| Name.find("CMNz") != std::string::npos */) |
| return false; |
| |
| // Ignore pseudo instructions. |
| if (Name == "BXr9" || Name == "BMOVPCRX" || Name == "BMOVPCRXr9") |
| return false; |
| |
| // VLDRQ/VSTRQ can be hanlded with the more generic VLDMD/VSTMD. |
| if (Name == "VLDRQ" || Name == "VSTRQ") |
| return false; |
| |
| // |
| // The following special cases are for conflict resolutions. |
| // |
| |
| // RSCSri and RSCSrs set the 's' bit, but are not predicated. We are |
| // better off using the generic RSCri and RSCrs instructions. |
| if (Name == "RSCSri" || Name == "RSCSrs") return false; |
| |
| // MOVCCr, MOVCCs, MOVCCi, FCYPScc, FCYPDcc, FNEGScc, and FNEGDcc are used |
| // in the compiler to implement conditional moves. We can ignore them in |
| // favor of their more generic versions of instructions. |
| // See also SDNode *ARMDAGToDAGISel::Select(SDValue Op). |
| if (Name == "MOVCCr" || Name == "MOVCCs" || Name == "MOVCCi" || |
| Name == "FCPYScc" || Name == "FCPYDcc" || |
| Name == "FNEGScc" || Name == "FNEGDcc") |
| return false; |
| |
| // Ditto for VMOVDcc, VMOVScc, VNEGDcc, and VNEGScc. |
| if (Name == "VMOVDcc" || Name == "VMOVScc" || Name == "VNEGDcc" || |
| Name == "VNEGScc") |
| return false; |
| |
| // Ignore the *_sfp instructions when decoding. They are used by the |
| // compiler to implement scalar floating point operations using vector |
| // operations in order to work around some performance issues. |
| if (Name.find("_sfp") != std::string::npos) return false; |
| |
| // LLVM added LDM/STM_UPD which conflicts with LDM/STM. |
| // Ditto for VLDMS_UPD, VLDMD_UPD, VSTMS_UPD, VSTMD_UPD. |
| if (Name == "LDM_UPD" || Name == "STM_UPD" || Name == "VLDMS_UPD" || |
| Name == "VLDMD_UPD" || Name == "VSTMS_UPD" || Name == "VSTMD_UPD") |
| return false; |
| |
| // LDM_RET is a special case of LDM (Load Multiple) where the registers |
| // loaded include the PC, causing a branch to a loaded address. Ignore |
| // the LDM_RET instruction when decoding. |
| if (Name == "LDM_RET") return false; |
| |
| // Bcc is in a more generic form than B. Ignore B when decoding. |
| if (Name == "B") return false; |
| |
| // Ignore the non-Darwin BL instructions and the TPsoft (TLS) instruction. |
| if (Name == "BL" || Name == "BL_pred" || Name == "BLX" || Name == "BX" || |
| Name == "TPsoft") |
| return false; |
| |
| // Ignore VDUPf[d|q] instructions known to conflict with VDUP32[d-q] for |
| // decoding. The instruction duplicates an element from an ARM core |
| // register into every element of the destination vector. There is no |
| // distinction between data types. |
| if (Name == "VDUPfd" || Name == "VDUPfq") return false; |
| |
| // A8-598: VEXT |
| // Vector Extract extracts elements from the bottom end of the second |
| // operand vector and the top end of the first, concatenates them and |
| // places the result in the destination vector. The elements of the |
| // vectors are treated as being 8-bit bitfields. There is no distinction |
| // between data types. The size of the operation can be specified in |
| // assembler as vext.size. If the value is 16, 32, or 64, the syntax is |
| // a pseudo-instruction for a VEXT instruction specifying the equivalent |
| // number of bytes. |
| // |
| // Variants VEXTd16, VEXTd32, VEXTd8, and VEXTdf are reduced to VEXTd8; |
| // variants VEXTq16, VEXTq32, VEXTq8, and VEXTqf are reduced to VEXTq8. |
| if (Name == "VEXTd16" || Name == "VEXTd32" || Name == "VEXTdf" || |
| Name == "VEXTq16" || Name == "VEXTq32" || Name == "VEXTqf") |
| return false; |
| |
| // Vector Reverse is similar to Vector Extract. There is no distinction |
| // between data types, other than size. |
| // |
| // VREV64df is equivalent to VREV64d32. |
| // VREV64qf is equivalent to VREV64q32. |
| if (Name == "VREV64df" || Name == "VREV64qf") return false; |
| |
| // VDUPLNfd is equivalent to VDUPLN32d; VDUPfdf is specialized VDUPLN32d. |
| // VDUPLNfq is equivalent to VDUPLN32q; VDUPfqf is specialized VDUPLN32q. |
| // VLD1df is equivalent to VLD1d32. |
| // VLD1qf is equivalent to VLD1q32. |
| // VLD2d64 is equivalent to VLD1q64. |
| // VST1df is equivalent to VST1d32. |
| // VST1qf is equivalent to VST1q32. |
| // VST2d64 is equivalent to VST1q64. |
| if (Name == "VDUPLNfd" || Name == "VDUPfdf" || |
| Name == "VDUPLNfq" || Name == "VDUPfqf" || |
| Name == "VLD1df" || Name == "VLD1qf" || Name == "VLD2d64" || |
| Name == "VST1df" || Name == "VST1qf" || Name == "VST2d64") |
| return false; |
| } else if (TN == TARGET_THUMB) { |
| if (!thumbInstruction(Form)) |
| return false; |
| |
| // Ignore pseudo instructions. |
| if (Name == "tInt_eh_sjlj_setjmp" || Name == "t2Int_eh_sjlj_setjmp" || |
| Name == "t2MOVi32imm" || Name == "tBX" || Name == "tBXr9") |
| return false; |
| |
| // LLVM added tLDM_UPD which conflicts with tLDM. |
| if (Name == "tLDM_UPD") |
| return false; |
| |
| // On Darwin R9 is call-clobbered. Ignore the non-Darwin counterparts. |
| if (Name == "tBL" || Name == "tBLXi" || Name == "tBLXr") |
| return false; |
| |
| // Ignore the TPsoft (TLS) instructions, which conflict with tBLr9. |
| if (Name == "tTPsoft" || Name == "t2TPsoft") |
| return false; |
| |
| // Ignore tLEApcrel and tLEApcrelJT, prefer tADDrPCi. |
| if (Name == "tLEApcrel" || Name == "tLEApcrelJT") |
| return false; |
| |
| // Ignore t2LEApcrel, prefer the generic t2ADD* for disassembly printing. |
| if (Name == "t2LEApcrel") |
| return false; |
| |
| // Ignore tADDrSP, tADDspr, and tPICADD, prefer the generic tADDhirr. |
| // Ignore t2SUBrSPs, prefer the t2SUB[S]r[r|s]. |
| // Ignore t2ADDrSPs, prefer the t2ADD[S]r[r|s]. |
| if (Name == "tADDrSP" || Name == "tADDspr" || Name == "tPICADD" || |
| Name == "t2SUBrSPs" || Name == "t2ADDrSPs") |
| return false; |
| |
| // Ignore t2LDRDpci, prefer the generic t2LDRDi8, t2LDRD_PRE, t2LDRD_POST. |
| if (Name == "t2LDRDpci") |
| return false; |
| |
| // Ignore t2TBB, t2TBH and prefer the generic t2TBBgen, t2TBHgen. |
| if (Name == "t2TBB" || Name == "t2TBH") |
| return false; |
| |
| // Resolve conflicts: |
| // |
| // tBfar conflicts with tBLr9 |
| // tCMNz conflicts with tCMN (with assembly format strings being equal) |
| // tPOP_RET/t2LDM_RET conflict with tPOP/t2LDM (ditto) |
| // tMOVCCi conflicts with tMOVi8 |
| // tMOVCCr conflicts with tMOVgpr2gpr |
| // tBR_JTr conflicts with tBRIND |
| // tSpill conflicts with tSTRspi |
| // tLDRcp conflicts with tLDRspi |
| // tRestore conflicts with tLDRspi |
| // t2LEApcrelJT conflicts with t2LEApcrel |
| // t2ADDrSPi/t2SUBrSPi have more generic couterparts |
| if (Name == "tBfar" || |
| /* Name == "tCMNz" || */ Name == "tCMPzi8" || Name == "tCMPzr" || |
| Name == "tCMPzhir" || /* Name == "t2CMNzrr" || Name == "t2CMNzrs" || |
| Name == "t2CMNzri" || */ Name == "t2CMPzrr" || Name == "t2CMPzrs" || |
| Name == "t2CMPzri" || Name == "tPOP_RET" || Name == "t2LDM_RET" || |
| Name == "tMOVCCi" || Name == "tMOVCCr" || Name == "tBR_JTr" || |
| Name == "tSpill" || Name == "tLDRcp" || Name == "tRestore" || |
| Name == "t2LEApcrelJT" || Name == "t2ADDrSPi" || Name == "t2SUBrSPi") |
| return false; |
| } |
| |
| // Dumps the instruction encoding format. |
| switch (TargetName) { |
| case TARGET_ARM: |
| case TARGET_THUMB: |
| DEBUG(errs() << Name << " " << stringForARMFormat((ARMFormat)Form)); |
| break; |
| } |
| |
| DEBUG({ |
| errs() << " "; |
| |
| // Dumps the instruction encoding bits. |
| dumpBits(errs(), Bits); |
| |
| errs() << '\n'; |
| |
| // Dumps the list of operand info. |
| for (unsigned i = 0, e = CGI.OperandList.size(); i != e; ++i) { |
| CodeGenInstruction::OperandInfo Info = CGI.OperandList[i]; |
| const std::string &OperandName = Info.Name; |
| const Record &OperandDef = *Info.Rec; |
| |
| errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n"; |
| } |
| }); |
| |
| return true; |
| } |
| |
| void populateInstructions() { |
| getInstructionsByEnumValue(NumberedInstructions); |
| |
| uint16_t numUIDs = NumberedInstructions.size(); |
| uint16_t uid; |
| |
| const char *instClass = NULL; |
| |
| switch (TargetName) { |
| case TARGET_ARM: |
| instClass = "InstARM"; |
| break; |
| default: |
| assert(0 && "Unreachable code!"); |
| } |
| |
| for (uid = 0; uid < numUIDs; uid++) { |
| // filter out intrinsics |
| if (!NumberedInstructions[uid]->TheDef->isSubClassOf(instClass)) |
| continue; |
| |
| if (populateInstruction(*NumberedInstructions[uid], TargetName)) |
| Opcodes.push_back(uid); |
| } |
| |
| // Special handling for the ARM chip, which supports two modes of execution. |
| // This branch handles the Thumb opcodes. |
| if (TargetName == TARGET_ARM) { |
| for (uid = 0; uid < numUIDs; uid++) { |
| // filter out intrinsics |
| if (!NumberedInstructions[uid]->TheDef->isSubClassOf("InstARM") |
| && !NumberedInstructions[uid]->TheDef->isSubClassOf("InstThumb")) |
| continue; |
| |
| if (populateInstruction(*NumberedInstructions[uid], TARGET_THUMB)) |
| Opcodes2.push_back(uid); |
| } |
| } |
| } |
| |
| // Emits disassembler code for instruction decoding. This delegates to the |
| // FilterChooser instance to do the heavy lifting. |
| void emit(raw_ostream &o) { |
| Indenter i; |
| std::string s; |
| raw_string_ostream ro(s); |
| |
| switch (TargetName) { |
| case TARGET_ARM: |
| Frontend.EmitSourceFileHeader("ARM Disassembler", ro); |
| break; |
| default: |
| assert(0 && "Unreachable code!"); |
| } |
| |
| ro.flush(); |
| o << s; |
| |
| o.indent(i) << "#include <inttypes.h>\n"; |
| o.indent(i) << "#include <assert.h>\n"; |
| o << '\n'; |
| o << "namespace llvm {\n\n"; |
| |
| AbstractFilterChooser::setTargetName(TargetName); |
| |
| switch (TargetName) { |
| case TARGET_ARM: { |
| // Emit common utility and ARM ISA decoder. |
| AFC = new FilterChooser<32>(NumberedInstructions, Opcodes); |
| AFC->emitTop(o, i); |
| delete AFC; |
| |
| // Emit Thumb ISA decoder as well. |
| AbstractFilterChooser::setTargetName(TARGET_THUMB); |
| AFC = new FilterChooser<32>(NumberedInstructions, Opcodes2); |
| AFC->emitBot(o, i); |
| break; |
| } |
| default: |
| assert(0 && "Unreachable code!"); |
| } |
| |
| o << "\n} // End llvm namespace \n"; |
| } |
| |
| protected: |
| std::vector<const CodeGenInstruction*> NumberedInstructions; |
| std::vector<unsigned> Opcodes; |
| // Special case for the ARM chip, which supports ARM and Thumb ISAs. |
| // Opcodes2 will be populated with the Thumb opcodes. |
| std::vector<unsigned> Opcodes2; |
| RISCDisassemblerEmitter &Frontend; |
| CodeGenTarget Target; |
| AbstractFilterChooser *AFC; |
| |
| TARGET_NAME_t TargetName; |
| }; |
| |
| ///////////////////////// |
| // Backend interface // |
| ///////////////////////// |
| |
| void RISCDisassemblerEmitter::initBackend() |
| { |
| Backend = new RISCDEBackend(*this); |
| } |
| |
| void RISCDisassemblerEmitter::run(raw_ostream &o) |
| { |
| Backend->emit(o); |
| } |
| |
| void RISCDisassemblerEmitter::shutdownBackend() |
| { |
| delete Backend; |
| Backend = NULL; |
| } |