blob: 35ad22a9dc620222149cc87395934a7362be99b7 [file] [log] [blame]
//===- RISCDisassemblerEmitter.cpp - Disassembler Generator ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// FIXME: document
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "risc-disassembler-emitter"
#include "RISCDisassemblerEmitter.h"
#include "CodeGenTarget.h"
#include "Record.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <iomanip>
#include <vector>
#include <cstdio>
#include <map>
#include <string>
#include <sstream>
using namespace llvm;
////////////////////////////////////
// Utility classes / structures //
////////////////////////////////////
// LLVM coding style
#define INDENT_LEVEL 2
/// Indenter - A little helper class to keep track of the indentation depth,
/// while the instance object is being passed around.
class Indenter {
public:
Indenter() : depth(0) {}
void push() {
depth += INDENT_LEVEL;
}
void pop() {
if (depth >= INDENT_LEVEL)
depth -= INDENT_LEVEL;
}
// Conversion operator.
operator int () {
return depth;
}
private:
uint8_t depth;
};
/////////////////////////
// Utility functions //
/////////////////////////
static uint8_t byteFromBitsInit(BitsInit &init) {
int width = init.getNumBits();
assert(width <= 8 && "Field is too large for uint8_t!");
int index;
uint8_t mask = 0x01;
uint8_t ret = 0;
for (index = 0; index < width; index++) {
if (static_cast<BitInit*>(init.getBit(index))->getValue())
ret |= mask;
mask <<= 1;
}
return ret;
}
static uint8_t getByteField(const Record &def, const char *str) {
BitsInit *bits = def.getValueAsBitsInit(str);
return byteFromBitsInit(*bits);
}
static BitsInit &getBitsField(const Record &def, const char *str) {
BitsInit *bits = def.getValueAsBitsInit(str);
return *bits;
}
/// sameStringExceptEndingChar - Return true if the two strings differ only in
/// the ending char. ("VST4q8a", "VST4q8b", 'a', 'b') as input returns true.
static
bool sameStringExceptEndingChar(const std::string &LHS, const std::string &RHS,
char lhc, char rhc) {
if (LHS.length() > 1 && RHS.length() > 1 && LHS.length() == RHS.length()) {
unsigned length = LHS.length();
return LHS.substr(0, length - 1) == RHS.substr(0, length - 1)
&& LHS[length - 1] == lhc && RHS[length - 1] == rhc;
}
return false;
}
/// thumbInstruction - Determine whether we have a Thumb instruction.
/// See also ARMInstrFormats.td.
static bool thumbInstruction(uint8_t Form) {
return Form == 23;
}
// The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system
// for a bit value.
//
// BIT_UNFILTERED is used as the init value for a filter position. It is used
// only for filter processings.
typedef enum {
BIT_TRUE, // '1'
BIT_FALSE, // '0'
BIT_UNSET, // '?'
BIT_UNFILTERED // unfiltered
} bit_value_t;
static bit_value_t bitFromBits(BitsInit &bits, unsigned index) {
if (BitInit *bit = dynamic_cast<BitInit*>(bits.getBit(index)))
return bit->getValue() ? BIT_TRUE : BIT_FALSE;
// The bit is uninitialized.
return BIT_UNSET;
}
static void dumpBits(raw_ostream &o, BitsInit &bits) {
unsigned index;
for (index = bits.getNumBits(); index > 0; index--) {
switch (bitFromBits(bits, index - 1)) {
case BIT_TRUE:
o << "1";
break;
case BIT_FALSE:
o << "0";
break;
case BIT_UNSET:
o << "_";
break;
default:
assert(0 && "unexpected return value from bitFromBits");
}
}
}
/////////////
// Enums //
/////////////
#define ARM_FORMATS \
ENTRY(ARM_FORMAT_PSEUDO, 0) \
ENTRY(ARM_FORMAT_MULFRM, 1) \
ENTRY(ARM_FORMAT_BRFRM, 2) \
ENTRY(ARM_FORMAT_BRMISCFRM, 3) \
ENTRY(ARM_FORMAT_DPFRM, 4) \
ENTRY(ARM_FORMAT_DPSOREGFRM, 5) \
ENTRY(ARM_FORMAT_LDFRM, 6) \
ENTRY(ARM_FORMAT_STFRM, 7) \
ENTRY(ARM_FORMAT_LDMISCFRM, 8) \
ENTRY(ARM_FORMAT_STMISCFRM, 9) \
ENTRY(ARM_FORMAT_LDSTMULFRM, 10) \
ENTRY(ARM_FORMAT_ARITHMISCFRM, 11) \
ENTRY(ARM_FORMAT_EXTFRM, 12) \
ENTRY(ARM_FORMAT_VFPUNARYFRM, 13) \
ENTRY(ARM_FORMAT_VFPBINARYFRM, 14) \
ENTRY(ARM_FORMAT_VFPCONV1FRM, 15) \
ENTRY(ARM_FORMAT_VFPCONV2FRM, 16) \
ENTRY(ARM_FORMAT_VFPCONV3FRM, 17) \
ENTRY(ARM_FORMAT_VFPCONV4FRM, 18) \
ENTRY(ARM_FORMAT_VFPCONV5FRM, 19) \
ENTRY(ARM_FORMAT_VFPLDSTFRM, 20) \
ENTRY(ARM_FORMAT_VFPLDSTMULFRM, 21) \
ENTRY(ARM_FORMAT_VFPMISCFRM, 22) \
ENTRY(ARM_FORMAT_THUMBFRM, 23) \
ENTRY(ARM_FORMAT_NEONFRM, 24) \
ENTRY(ARM_FORMAT_NEONGETLNFRM, 25) \
ENTRY(ARM_FORMAT_NEONSETLNFRM, 26) \
ENTRY(ARM_FORMAT_NEONDUPFRM, 27) \
ENTRY(ARM_FORMAT_LDSTEXFRM, 28) \
ENTRY(ARM_FORMAT_MISCFRM, 29) \
ENTRY(ARM_FORMAT_THUMBMISCFRM, 30)
// ARM instruction format specifies the encoding used by the instruction.
#define ENTRY(n, v) n = v,
typedef enum {
ARM_FORMATS
ARM_FORMAT_NA
} ARMFormat;
#undef ENTRY
// Converts enum to const char*.
static const char *stringForARMFormat(ARMFormat form) {
#define ENTRY(n, v) case n: return #n;
switch(form) {
ARM_FORMATS
case ARM_FORMAT_NA:
default:
return "";
}
#undef ENTRY
}
#define NS_FORMATS \
ENTRY(NS_FORMAT_NONE, 0) \
ENTRY(NS_FORMAT_VLDSTLane, 1) \
ENTRY(NS_FORMAT_VLDSTLaneDbl, 2) \
ENTRY(NS_FORMAT_VLDSTRQ, 3) \
ENTRY(NS_FORMAT_NVdImm, 4) \
ENTRY(NS_FORMAT_NVdVmImm, 5) \
ENTRY(NS_FORMAT_NVdVmImmVCVT, 6) \
ENTRY(NS_FORMAT_NVdVmImmVDupLane, 7) \
ENTRY(NS_FORMAT_NVdVmImmVSHLL, 8) \
ENTRY(NS_FORMAT_NVectorShuffle, 9) \
ENTRY(NS_FORMAT_NVectorShift, 10) \
ENTRY(NS_FORMAT_NVectorShift2, 11) \
ENTRY(NS_FORMAT_NVdVnVmImm, 12) \
ENTRY(NS_FORMAT_NVdVnVmImmVectorShift, 13) \
ENTRY(NS_FORMAT_NVdVnVmImmVectorExtract, 14) \
ENTRY(NS_FORMAT_NVdVnVmImmMulScalar, 15) \
ENTRY(NS_FORMAT_VTBL, 16)
// NEON instruction sub-format further classify the NEONFrm instruction.
#define ENTRY(n, v) n = v,
typedef enum {
NS_FORMATS
NS_FORMAT_NA
} NSFormat;
#undef ENTRY
// Converts enum to const char*.
static const char *stringForNSFormat(NSFormat form) {
#define ENTRY(n, v) case n: return #n;
switch(form) {
NS_FORMATS
case NS_FORMAT_NA:
default:
return "";
}
#undef ENTRY
}
// Enums for the available target names.
typedef enum {
TARGET_ARM = 0,
TARGET_THUMB
} TARGET_NAME_t;
class AbstractFilterChooser {
public:
static TARGET_NAME_t TargetName;
static void setTargetName(TARGET_NAME_t tn) { TargetName = tn; }
virtual ~AbstractFilterChooser() {}
virtual void emitTop(raw_ostream &o, Indenter &i) = 0;
virtual void emitBot(raw_ostream &o, Indenter &i) = 0;
};
// Define the symbol here.
TARGET_NAME_t AbstractFilterChooser::TargetName;
template <unsigned tBitWidth>
class FilterChooser : public AbstractFilterChooser {
protected:
// Representation of the instruction to work on.
typedef bit_value_t insn_t[tBitWidth];
class Filter {
protected:
FilterChooser *Owner; // pointer without ownership
unsigned StartBit; // the starting bit position
unsigned NumBits; // number of bits to filter
bool Mixed; // a mixed region contains both set and unset bits
// Map of well-known segment value to the set of uid's with that value.
std::map<uint64_t, std::vector<unsigned> > FilteredInstructions;
// Set of uid's with non-constant segment values.
std::vector<unsigned> VariableInstructions;
// Map of well-known segment value to its delegate.
std::map<unsigned, FilterChooser> FilterChooserMap;
// Number of instructions which fall under FilteredInstructions category.
unsigned NumFiltered;
// Keeps track of the last opcode in the filtered bucket.
unsigned LastOpcFiltered;
// Number of instructions which fall under VariableInstructions category.
unsigned NumVariable;
public:
unsigned getNumFiltered() { return NumFiltered; }
unsigned getNumVariable() { return NumVariable; }
unsigned getSingletonOpc() {
assert(NumFiltered == 1);
return LastOpcFiltered;
}
FilterChooser &getVariableFC() {
assert(NumFiltered == 1);
assert(FilterChooserMap.size() == 1);
return FilterChooserMap.find(-1)->second;
}
Filter(const Filter &f) :
Owner(f.Owner),
StartBit(f.StartBit),
NumBits(f.NumBits),
Mixed(f.Mixed),
FilteredInstructions(f.FilteredInstructions),
VariableInstructions(f.VariableInstructions),
FilterChooserMap(f.FilterChooserMap),
NumFiltered(f.NumFiltered),
LastOpcFiltered(f.LastOpcFiltered),
NumVariable(f.NumVariable) { }
Filter(FilterChooser &owner, unsigned startBit, unsigned numBits,
bool mixed) :
Owner(&owner),
StartBit(startBit),
NumBits(numBits),
Mixed(mixed)
{
assert(StartBit + NumBits - 1 < tBitWidth);
NumFiltered = 0;
LastOpcFiltered = 0;
NumVariable = 0;
for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) {
insn_t Insn;
// Populates the insn given the uid.
Owner->insnWithID(Insn, Owner->Opcodes[i]);
uint64_t Field;
// Scans the segment for possibly well-specified encoding bits.
bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits);
if (ok) {
// The encoding bits are well-known. Lets add the uid of the
// instruction into the bucket keyed off the constant field value.
LastOpcFiltered = Owner->Opcodes[i];
FilteredInstructions[Field].push_back(LastOpcFiltered);
++NumFiltered;
} else {
// Some of the encoding bit(s) are unspecfied. This contributes to
// one additional member of "Variable" instructions.
VariableInstructions.push_back(Owner->Opcodes[i]);
++NumVariable;
}
}
assert((FilteredInstructions.size() + VariableInstructions.size() > 0)
&& "Filter returns no instruction categories");
}
// Divides the decoding task into sub tasks and delegates them to the
// inferior FilterChooser's.
//
// A special case arises when there's only one entry in the filtered
// instructions. In order to unambiguously decode the singleton, we need to
// match the remaining undecoded encoding bits against the singleton.
void recurse() {
std::map<uint64_t, std::vector<unsigned> >::const_iterator mapIterator;
bit_value_t BitValueArray[tBitWidth];
// Starts by inheriting our parent filter chooser's filter bit values.
memcpy(BitValueArray, Owner->FilterBitValues, sizeof(BitValueArray));
unsigned bitIndex;
if (VariableInstructions.size()) {
// Conservatively marks each segment position as BIT_UNSET.
for (bitIndex = 0; bitIndex < NumBits; bitIndex++)
BitValueArray[StartBit + bitIndex] = BIT_UNSET;
// Delegates to an inferior filter chooser for futher processing on this
// group of instructions whose segment values are variable.
FilterChooserMap.insert(std::pair<unsigned, FilterChooser>(
(unsigned)-1,
FilterChooser(Owner->AllInstructions,
VariableInstructions,
BitValueArray,
*Owner)
));
}
// No need to recurse for a singleton filtered instruction.
// See also Filter::emit().
if (getNumFiltered() == 1) {
//Owner->SingletonExists(LastOpcFiltered);
assert(FilterChooserMap.size() == 1);
return;
}
// Otherwise, create sub choosers.
for (mapIterator = FilteredInstructions.begin();
mapIterator != FilteredInstructions.end();
mapIterator++) {
// Marks all the segment positions with either BIT_TRUE or BIT_FALSE.
for (bitIndex = 0; bitIndex < NumBits; bitIndex++) {
if (mapIterator->first & (1 << bitIndex))
BitValueArray[StartBit + bitIndex] = BIT_TRUE;
else
BitValueArray[StartBit + bitIndex] = BIT_FALSE;
}
// Delegates to an inferior filter chooser for futher processing on this
// category of instructions.
FilterChooserMap.insert(std::pair<unsigned, FilterChooser>(
mapIterator->first,
FilterChooser(Owner->AllInstructions,
mapIterator->second,
BitValueArray,
*Owner)
));
}
}
// Emit code to decode instructions given a segment or segments of bits.
void emit(raw_ostream &o, Indenter &i) {
o.indent(i) << "// Check Inst{";
if (NumBits > 1)
o << (StartBit + NumBits - 1) << '-';
o << StartBit << "} ...\n";
o.indent(i) << "switch (fieldFromInstruction(insn, "
<< StartBit << ", " << NumBits << ")) {\n";
typename std::map<unsigned, FilterChooser>::iterator filterIterator;
bool DefaultCase = false;
for (filterIterator = FilterChooserMap.begin();
filterIterator != FilterChooserMap.end();
filterIterator++) {
// Field value -1 implies a non-empty set of variable instructions.
// See also recurse().
if (filterIterator->first == (unsigned)-1) {
DefaultCase = true;
o.indent(i) << "default:\n";
o.indent(i) << " break; // fallthrough\n";
// Closing curly brace for the switch statement.
// This is unconventional because we want the default processing to be
// performed for the fallthrough cases as well, i.e., when the "cases"
// did not prove a decoded instruction.
o.indent(i) << "}\n";
} else {
o.indent(i) << "case " << filterIterator->first << ":\n";
}
// We arrive at a category of instructions with the same segment value.
// Now delegate to the sub filter chooser for further decodings.
// The case may fallthrough, which happens if the remaining well-known
// encoding bits do not match exactly.
if (!DefaultCase) i.push();
{
bool finished = filterIterator->second.emit(o, i);
// For top level default case, there's no need for a break statement.
if (Owner->isTopLevel() && DefaultCase)
break;
if (!finished)
o.indent(i) << "break;\n";
}
if (!DefaultCase) i.pop();
}
// If there is no default case, we still need to supply a closing brace.
if (!DefaultCase) {
// Closing curly brace for the switch statement.
o.indent(i) << "}\n";
}
}
// Returns the number of fanout produced by the filter. More fanout implies
// the filter distinguishes more categories of instructions.
unsigned usefulness() const {
if (VariableInstructions.size())
return FilteredInstructions.size();
else
return FilteredInstructions.size() + 1;
}
}; // End of inner class Filter
friend class Filter;
// Vector of codegen instructions to choose our filter.
const std::vector<const CodeGenInstruction*> &AllInstructions;
// Vector of uid's for this filter chooser to work on.
const std::vector<unsigned> Opcodes;
// Vector of candidate filters.
std::vector<Filter> Filters;
// Array of bit values passed down from our parent.
// Set to all BIT_UNFILTERED's for Parent == NULL.
bit_value_t FilterBitValues[tBitWidth];
// Links to the FilterChooser above us in the decoding tree.
FilterChooser *Parent;
// Index of the best filter from Filters.
int BestIndex;
public:
FilterChooser(const FilterChooser &FC) :
AbstractFilterChooser(),
AllInstructions(FC.AllInstructions),
Opcodes(FC.Opcodes),
Filters(FC.Filters),
Parent(FC.Parent),
BestIndex(FC.BestIndex)
{
memcpy(FilterBitValues, FC.FilterBitValues, sizeof(FilterBitValues));
}
FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
const std::vector<unsigned> &IDs) :
AllInstructions(Insts),
Opcodes(IDs),
Filters(),
Parent(NULL),
BestIndex(-1)
{
for (unsigned i = 0; i < tBitWidth; ++i)
FilterBitValues[i] = BIT_UNFILTERED;
doFilter();
}
FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
const std::vector<unsigned> &IDs,
bit_value_t (&ParentFilterBitValues)[tBitWidth],
FilterChooser &parent) :
AllInstructions(Insts),
Opcodes(IDs),
Filters(),
Parent(&parent),
BestIndex(-1)
{
for (unsigned i = 0; i < tBitWidth; ++i)
FilterBitValues[i] = ParentFilterBitValues[i];
doFilter();
}
// The top level filter chooser has NULL as its parent.
bool isTopLevel() { return Parent == NULL; }
// This provides an opportunity for target specific code emission.
void emitTopHook(raw_ostream &o, Indenter &i) {
if (TargetName == TARGET_ARM) {
// Emit code that references the ARMFormat data type.
o << "static const ARMFormat ARMFormats[] = {\n";
for (unsigned i = 0, e = AllInstructions.size(); i != e; ++i) {
const Record &Def = *(AllInstructions[i]->TheDef);
const std::string &Name = Def.getName();
if (Def.isSubClassOf("InstARM") || Def.isSubClassOf("InstThumb"))
o.indent(2) <<
stringForARMFormat((ARMFormat)getByteField(Def, "Form"));
else
o << " ARM_FORMAT_NA";
o << ",\t// Inst #" << i << " = " << Name << '\n';
}
o << " ARM_FORMAT_NA\t// Unreachable.\n";
o << "};\n\n";
// And emit code that references the NSFormat data type.
// This is meaningful only for NEONFrm instructions.
o << "static const NSFormat NSFormats[] = {\n";
for (unsigned i = 0, e = AllInstructions.size(); i != e; ++i) {
const Record &Def = *(AllInstructions[i]->TheDef);
const std::string &Name = Def.getName();
if (Def.isSubClassOf("NeonI") || Def.isSubClassOf("NeonXI"))
o.indent(2) <<
stringForNSFormat((NSFormat)getByteField(Def, "NSForm"));
else
o << " NS_FORMAT_NA";
o << ",\t// Inst #" << i << " = " << Name << '\n';
}
o << " NS_FORMAT_NA\t// Unreachable.\n";
o << "};\n\n";
}
}
// Emit the top level typedef and decodeInstruction() function.
void emitTop(raw_ostream &o, Indenter &i) {
// Run the target specific emit hook.
emitTopHook(o, i);
switch(tBitWidth) {
case 8:
o.indent(i) << "typedef uint8_t field_t;\n";
break;
case 16:
o.indent(i) << "typedef uint16_t field_t;\n";
break;
case 32:
o.indent(i) << "typedef uint32_t field_t;\n";
break;
case 64:
o.indent(i) << "typedef uint64_t field_t;\n";
break;
default:
assert(0 && "Unexpected instruction size!");
}
o << '\n';
o.indent(i) << "static field_t " <<
"fieldFromInstruction(field_t insn, unsigned startBit, unsigned numBits)\n";
o.indent(i) << "{\n";
i.push();
{
o.indent(i) << "assert(startBit + numBits <= " << tBitWidth
<< " && \"Instruction field out of bounds!\");\n";
o << '\n';
o.indent(i) << "field_t fieldMask;\n";
o << '\n';
o.indent(i) << "if (numBits == " << tBitWidth << ")\n";
i.push();
{
o.indent(i) << "fieldMask = (field_t)-1;\n";
}
i.pop();
o.indent(i) << "else\n";
i.push();
{
o.indent(i) << "fieldMask = ((1 << numBits) - 1) << startBit;\n";
}
i.pop();
o << '\n';
o.indent(i) << "return (insn & fieldMask) >> startBit;\n";
}
i.pop();
o.indent(i) << "}\n";
o << '\n';
o.indent(i) << "static uint16_t decodeInstruction(field_t insn) {\n";
i.push();
{
// Emits code to decode the instructions.
emit(o, i);
o << '\n';
o.indent(i) << "return 0;\n";
}
i.pop();
o.indent(i) << "}\n";
o << '\n';
}
// This provides an opportunity for target specific code emission after
// emitTop().
void emitBot(raw_ostream &o, Indenter &i) {
if (TargetName == TARGET_THUMB) {
// Emit code that decodes the Thumb ISA.
o.indent(i)
<< "static uint16_t decodeThumbInstruction(field_t insn) {\n";
i.push();
{
// Emits code to decode the instructions.
emit(o, i);
o << '\n';
o.indent(i) << "return 0;\n";
}
i.pop();
o.indent(i) << "}\n";
}
}
protected:
// Populates the insn given the uid.
void insnWithID(insn_t &Insn, unsigned Opcode) const {
assert(Opcode > 10);
BitsInit &Bits = getBitsField(*AllInstructions[Opcode]->TheDef, "Inst");
for (unsigned i = 0; i < tBitWidth; ++i)
Insn[i] = bitFromBits(Bits, i);
}
// Returns the record name.
const std::string &nameWithID(unsigned Opcode) const {
return AllInstructions[Opcode]->TheDef->getName();
}
// Populates the field of the insn given the start position and the number of
// consecutive bits to scan for.
//
// Returns false if and on the first uninitialized bit value encountered.
// Returns true, otherwise.
const bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit,
unsigned NumBits) const {
Field = 0;
for (unsigned i = 0; i < NumBits; ++i) {
if (Insn[StartBit + i] == BIT_UNSET)
return false;
if (Insn[StartBit + i] == BIT_TRUE)
Field = Field | (1 << i);
}
return true;
}
void dumpFilterArray(raw_ostream &o, bit_value_t (&filter)[tBitWidth]) {
unsigned bitIndex;
for (bitIndex = tBitWidth; bitIndex > 0; bitIndex--) {
switch (filter[bitIndex - 1]) {
case BIT_UNFILTERED:
o << ".";
break;
case BIT_UNSET:
o << "_";
break;
case BIT_TRUE:
o << "1";
break;
case BIT_FALSE:
o << "0";
break;
}
}
}
void dumpStack(raw_ostream &o, const char *prefix) {
FilterChooser *current = this;
while (current) {
o << prefix;
dumpFilterArray(o, current->FilterBitValues);
o << '\n';
current = current->Parent;
}
}
Filter &bestFilter() {
assert(BestIndex != -1 && "BestIndex not set");
return Filters[BestIndex];
}
// States of our finite state machines.
typedef enum {
ATTR_NONE,
ATTR_FILTERED,
ATTR_ALL_SET,
ATTR_ALL_UNSET,
ATTR_MIXED
} bitAttr_t;
// Called from Filter::recurse() when singleton exists. For debug purpose.
void SingletonExists(unsigned Opc) {
insn_t Insn0;
insnWithID(Insn0, Opc);
errs() << "Singleton exists: " << nameWithID(Opc)
<< " with its decoding dominating ";
for (unsigned i = 0; i < Opcodes.size(); ++i) {
if (Opcodes[i] == Opc) continue;
errs() << nameWithID(Opcodes[i]) << ' ';
}
errs() << '\n';
dumpStack(errs(), "\t\t");
for (unsigned i = 0; i < Opcodes.size(); i++) {
const std::string &Name = nameWithID(Opcodes[i]);
errs() << '\t' << Name << " ";
dumpBits(errs(),
getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
errs() << '\n';
}
}
bool ValueSet(bit_value_t V) {
return (V == BIT_TRUE || V == BIT_FALSE);
}
bool ValueNotSet(bit_value_t V) {
return (V == BIT_UNSET);
}
int Value(bit_value_t V) {
return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1);
}
bool PositionFiltered(unsigned i) {
return ValueSet(FilterBitValues[i]);
}
// Calculates the island(s) needed to decode the instruction.
unsigned getIslands(std::vector<unsigned> &StartBits,
std::vector<unsigned> &EndBits,
std::vector<uint64_t> &FieldVals, insn_t &Insn)
{
unsigned Num, BitNo;
Num = BitNo = 0;
uint64_t FieldVal = 0;
// 0: Init
// 1: Water
// 2: Island
int State = 0;
int Val = -1;
for (unsigned i = 0; i < tBitWidth; ++i) {
Val = Value(Insn[i]);
bool Filtered = PositionFiltered(i);
switch (State) {
default:
assert(0 && "Unreachable code!");
break;
case 0:
case 1:
if (Filtered || Val == -1)
State = 1; // Still in Water
else {
State = 2; // Into the Island
BitNo = 0;
StartBits.push_back(i);
FieldVal = Val;
}
break;
case 2:
if (Filtered || Val == -1) {
State = 1; // Into the Water
EndBits.push_back(i - 1);
FieldVals.push_back(FieldVal);
++Num;
} else {
State = 2; // Still in Island
++BitNo;
FieldVal = FieldVal | Val << BitNo;
}
break;
}
}
// If we are still in Island after the loop, do some housekeeping.
if (State == 2) {
EndBits.push_back(tBitWidth - 1);
FieldVals.push_back(FieldVal);
++Num;
}
/*
printf("StartBits.size()=%u,EndBits.size()=%u,FieldVals.size()=%u,Num=%u\n",
(unsigned)StartBits.size(), (unsigned)EndBits.size(),
(unsigned)FieldVals.size(), Num);
*/
assert(StartBits.size() == Num && EndBits.size() == Num &&
FieldVals.size() == Num);
return Num;
}
bool LdStCopEncoding1(unsigned Opc) {
const std::string &Name = nameWithID(Opc);
if (Name == "LDC_OFFSET" || Name == "LDC_OPTION" ||
Name == "LDC_POST" || Name == "LDC_PRE" ||
Name == "LDCL_OFFSET" || Name == "LDCL_OPTION" ||
Name == "LDCL_POST" || Name == "LDCL_PRE" ||
Name == "STC_OFFSET" || Name == "STC_OPTION" ||
Name == "STC_POST" || Name == "STC_PRE" ||
Name == "STCL_OFFSET" || Name == "STCL_OPTION" ||
Name == "STCL_POST" || Name == "STCL_PRE")
return true;
else
return false;
}
// Emits code to decode the singleton. Return true if we have matched all the
// well-known bits.
bool emitSingletonDecoder(raw_ostream &o, Indenter &i, unsigned Opc) {
std::vector<unsigned> StartBits;
std::vector<unsigned> EndBits;
std::vector<uint64_t> FieldVals;
insn_t Insn;
insnWithID(Insn, Opc);
if (TargetName == TARGET_ARM && LdStCopEncoding1(Opc)) {
o.indent(i);
// A8.6.51 & A8.6.188
// If coproc = 0b101?, i.e, slice(insn, 11, 8) = 10 or 11, escape.
o << "if (fieldFromInstruction(insn, 9, 3) == 5) break; // fallthrough\n";
}
// Look for islands of undecoded bits of the singleton.
getIslands(StartBits, EndBits, FieldVals, Insn);
unsigned Size = StartBits.size();
unsigned I, NumBits;
// If we have matched all the well-known bits, just issue a return.
if (Size == 0) {
o.indent(i) << "return " << Opc << "; // " << nameWithID(Opc) << '\n';
return true;
}
// Otherwise, there are more decodings to be done!
// Emit code to match the island(s) for the singleton.
o.indent(i) << "// Check ";
for (I = Size; I != 0; --I) {
o << "Inst{" << EndBits[I-1] << '-' << StartBits[I-1] << "} ";
if (I > 1)
o << "&& ";
else
o << "for singleton decoding...\n";
}
o.indent(i) << "if (";
for (I = Size; I != 0; --I) {
NumBits = EndBits[I-1] - StartBits[I-1] + 1;
o << "fieldFromInstruction(insn, " << StartBits[I-1] << ", " << NumBits
<< ") == " << FieldVals[I-1];
if (I > 1)
o << " && ";
else
o << ")\n";
}
o.indent(i) << " return " << Opc << "; // " << nameWithID(Opc) << '\n';
return false;
}
// Emits code to decode the singleton, and then to decode the rest.
void emitSingletonDecoder(raw_ostream &o, Indenter &i, Filter & Best) {
unsigned Opc = Best.getSingletonOpc();
emitSingletonDecoder(o, i, Opc);
// Emit code for the rest.
o.indent(i) << "else\n";
i.push();
{
Best.getVariableFC().emit(o, i);
}
i.pop();
}
// Assign a single filter and run with it.
void runSingleFilter(FilterChooser &owner, unsigned startBit, unsigned numBit,
bool mixed) {
Filters.clear();
Filter F(*this, startBit, numBit, true);
Filters.push_back(F);
BestIndex = 0; // Sole Filter instance to choose from.
bestFilter().recurse();
}
bool filterProcessor(bool AllowMixed, bool Greedy = true) {
Filters.clear();
BestIndex = -1;
unsigned numInstructions = Opcodes.size();
assert(numInstructions && "Filter created with no instructions");
// No further filtering is necessary.
if (numInstructions == 1)
return true;
// Heuristics. See also doFilter()'s "Heuristics" comment when num of
// instructions is 3.
if (AllowMixed && !Greedy) {
assert(numInstructions == 3);
for (unsigned i = 0; i < Opcodes.size(); ++i) {
std::vector<unsigned> StartBits;
std::vector<unsigned> EndBits;
std::vector<uint64_t> FieldVals;
insn_t Insn;
insnWithID(Insn, Opcodes[i]);
// Look for islands of undecoded bits of any instruction.
if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) {
// Found an instruction with island(s). Now just assign a filter.
runSingleFilter(*this, StartBits[0], EndBits[0] - StartBits[0] + 1,
true);
return true;
}
}
}
unsigned bitIndex, insnIndex;
// We maintain tBitWidth copies of the bitAttrs automaton.
// The automaton consumes the corresponding bit from each
// instruction.
//
// Input symbols: 0, 1, and _ (unset).
// States: NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED.
// Initial state: NONE.
//
// (NONE) ------- [01] -> (ALL_SET)
// (NONE) ------- _ ----> (ALL_UNSET)
// (ALL_SET) ---- [01] -> (ALL_SET)
// (ALL_SET) ---- _ ----> (MIXED)
// (ALL_UNSET) -- [01] -> (MIXED)
// (ALL_UNSET) -- _ ----> (ALL_UNSET)
// (MIXED) ------ . ----> (MIXED)
// (FILTERED)---- . ----> (FILTERED)
bitAttr_t bitAttrs[tBitWidth];
// FILTERED bit positions provide no entropy and are not worthy of pursuing.
// Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position.
for (bitIndex = 0; bitIndex < tBitWidth; ++bitIndex)
if (FilterBitValues[bitIndex] == BIT_TRUE ||
FilterBitValues[bitIndex] == BIT_FALSE)
bitAttrs[bitIndex] = ATTR_FILTERED;
else
bitAttrs[bitIndex] = ATTR_NONE;
for (insnIndex = 0; insnIndex < numInstructions; ++insnIndex) {
insn_t insn;
insnWithID(insn, Opcodes[insnIndex]);
for (bitIndex = 0; bitIndex < tBitWidth; ++bitIndex) {
switch (bitAttrs[bitIndex]) {
case ATTR_NONE:
if (insn[bitIndex] == BIT_UNSET)
bitAttrs[bitIndex] = ATTR_ALL_UNSET;
else
bitAttrs[bitIndex] = ATTR_ALL_SET;
break;
case ATTR_ALL_SET:
if (insn[bitIndex] == BIT_UNSET)
bitAttrs[bitIndex] = ATTR_MIXED;
break;
case ATTR_ALL_UNSET:
if (insn[bitIndex] != BIT_UNSET)
bitAttrs[bitIndex] = ATTR_MIXED;
break;
case ATTR_MIXED:
case ATTR_FILTERED:
break;
}
}
}
// The regionAttr automaton consumes the bitAttrs automatons' state,
// lowest-to-highest.
//
// Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed)
// States: NONE, ALL_SET, MIXED
// Initial state: NONE
//
// (NONE) ----- F --> (NONE)
// (NONE) ----- S --> (ALL_SET) ; and set region start
// (NONE) ----- U --> (NONE)
// (NONE) ----- M --> (MIXED) ; and set region start
// (ALL_SET) -- F --> (NONE) ; and report an ALL_SET region
// (ALL_SET) -- S --> (ALL_SET)
// (ALL_SET) -- U --> (NONE) ; and report an ALL_SET region
// (ALL_SET) -- M --> (MIXED) ; and report an ALL_SET region
// (MIXED) ---- F --> (NONE) ; and report a MIXED region
// (MIXED) ---- S --> (ALL_SET) ; and report a MIXED region
// (MIXED) ---- U --> (NONE) ; and report a MIXED region
// (MIXED) ---- M --> (MIXED)
bitAttr_t regionAttr = ATTR_NONE;
unsigned startBit = 0;
for (bitIndex = 0; bitIndex < tBitWidth; bitIndex++) {
bitAttr_t bitAttr = bitAttrs[bitIndex];
assert(bitAttr != ATTR_NONE && "Bit without attributes");
#define SET_START \
startBit = bitIndex;
#define REPORT_REGION \
if (regionAttr == ATTR_MIXED && AllowMixed) \
Filters.push_back(Filter(*this, startBit, bitIndex - startBit, true)); \
else if (regionAttr == ATTR_ALL_SET && !AllowMixed) \
Filters.push_back(Filter(*this, startBit, bitIndex - startBit, false));
switch (regionAttr) {
case ATTR_NONE:
switch (bitAttr) {
case ATTR_FILTERED:
break;
case ATTR_ALL_SET:
SET_START
regionAttr = ATTR_ALL_SET;
break;
case ATTR_ALL_UNSET:
break;
case ATTR_MIXED:
SET_START
regionAttr = ATTR_MIXED;
break;
default:
assert(0 && "Unexpected bitAttr!");
}
break;
case ATTR_ALL_SET:
switch (bitAttr) {
case ATTR_FILTERED:
REPORT_REGION
regionAttr = ATTR_NONE;
break;
case ATTR_ALL_SET:
break;
case ATTR_ALL_UNSET:
REPORT_REGION
regionAttr = ATTR_NONE;
break;
case ATTR_MIXED:
REPORT_REGION
SET_START
regionAttr = ATTR_MIXED;
break;
default:
assert(0 && "Unexpected bitAttr!");
}
break;
case ATTR_MIXED:
switch (bitAttr) {
case ATTR_FILTERED:
REPORT_REGION
SET_START
regionAttr = ATTR_NONE;
break;
case ATTR_ALL_SET:
REPORT_REGION
SET_START
regionAttr = ATTR_ALL_SET;
break;
case ATTR_ALL_UNSET:
REPORT_REGION
regionAttr = ATTR_NONE;
break;
case ATTR_MIXED:
break;
default:
assert(0 && "Unexpected bitAttr!");
}
break;
case ATTR_ALL_UNSET:
assert(0 && "regionAttr state machine has no ATTR_UNSET state");
case ATTR_FILTERED:
assert(0 && "regionAttr state machine has no ATTR_FILTERED state");
}
}
// At the end, if we're still in ALL_SET or MIXED states, report a region
switch (regionAttr) {
case ATTR_NONE:
break;
case ATTR_FILTERED:
break;
case ATTR_ALL_SET:
REPORT_REGION
break;
case ATTR_ALL_UNSET:
break;
case ATTR_MIXED:
REPORT_REGION
break;
}
#undef SET_START
#undef REPORT_REGION
// We have finished with the filter processings. Now it's time to choose
// the best performing filter.
BestIndex = 0;
bool AllUseless = true;
unsigned BestScore = 0;
for (unsigned i = 0, e = Filters.size(); i != e; ++i) {
unsigned Usefulness = Filters[i].usefulness();
if (Usefulness)
AllUseless = false;
if (Usefulness > BestScore) {
BestIndex = i;
BestScore = Usefulness;
}
}
if (!AllUseless) {
bestFilter().recurse();
}
return !AllUseless;
} // end of filterProcessor(bool)
// Decides on the best configuration of filter(s) to use in order to decode
// the instructions. A conflict of instructions may occur, in which case we
// dump the conflict set to the standard error.
void doFilter() {
unsigned Num = Opcodes.size();
assert(Num && "FilterChooser created with no instructions");
// Heuristics: Use Inst{31-28} as the top level filter for ARM ISA.
if (TargetName == TARGET_ARM && Parent == NULL) {
runSingleFilter(*this, 28, 4, false);
return;
}
if (filterProcessor(false))
return;
if (filterProcessor(true))
return;
// Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where
// no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a
// well-known encoding pattern. In such case, we backtrack and scan for the
// the very first consecutive ATTR_ALL_SET region and assign a filter to it.
if (Num == 3 && filterProcessor(true, false))
return;
// If we come to here, the instruction decoding has failed.
// Print out the instructions in the conflict set...
BestIndex = -1;
DEBUG({
errs() << "Conflict:\n";
dumpStack(errs(), "\t\t");
for (unsigned i = 0; i < Num; i++) {
const std::string &Name = nameWithID(Opcodes[i]);
errs() << '\t' << Name << " ";
dumpBits(errs(),
getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
errs() << '\n';
}
});
}
// Emits code to decode our share of instructions. Returns true if the
// emitted code causes a return, which occurs if we know how to decode
// the instruction at this level or the instruction is not decodeable.
bool emit(raw_ostream &o, Indenter &i) {
if (Opcodes.size() == 1) {
// There is only one instruction in the set, which is great!
// Call emitSingletonDecoder() to see whether there are any remaining
// encodings bits.
return emitSingletonDecoder(o, i, Opcodes[0]);
} else if (BestIndex == -1) {
if (TargetName == TARGET_ARM && Opcodes.size() == 2) {
// Resolve the known conflict sets:
//
// 1. source registers are identical => VMOVDneon; otherwise => VORRd
// 2. source registers are identical => VMOVQ; otherwise => VORRq
// 3. LDR, LDRcp => return LDR for now.
// FIXME: How can we distinguish between LDR and LDRcp? Do we need to?
// 4. VLD[234]LN*a/VST[234]LN*a vs. VLD[234]LN*b/VST[234]LN*b conflicts
// are resolved returning the 'a' versions of the instructions. Note
// that the difference between a/b is that the former is for double-
// spaced even registers while the latter is for double-spaced odd
// registers. This is for codegen instruction selection purpose.
// For disassembly, it does not matter.
const std::string &name1 = nameWithID(Opcodes[0]);
const std::string &name2 = nameWithID(Opcodes[1]);
if ((name1 == "VMOVDneon" && name2 == "VORRd") ||
(name1 == "VMOVQ" && name2 == "VORRq")) {
// Inserting the opening curly brace for this case block.
i.pop();
o.indent(i) << "{\n";
i.push();
o.indent(i) << "field_t N = fieldFromInstruction(insn, 7, 1), "
<< "M = fieldFromInstruction(insn, 5, 1);\n";
o.indent(i) << "field_t Vn = fieldFromInstruction(insn, 16, 4), "
<< "Vm = fieldFromInstruction(insn, 0, 4);\n";
o.indent(i) << "return (N == M && Vn == Vm) ? "
<< Opcodes[0] << " /* " << name1 << " */ : "
<< Opcodes[1] << " /* " << name2 << " */ ;\n";
// Inserting the closing curly brace for this case block.
i.pop();
o.indent(i) << "}\n";
i.push();
return true;
}
if (name1 == "LDR" && name2 == "LDRcp") {
o.indent(i) << "return " << Opcodes[0]
<< "; // Returning LDR for {LDR, LDRcp}\n";
return true;
}
if (sameStringExceptEndingChar(name1, name2, 'a', 'b')) {
o.indent(i) << "return " << Opcodes[0] << "; // Returning " << name1
<< " for {" << name1 << ", " << name2 << "}\n";
return true;
}
// Otherwise, it does not belong to the known conflict sets.
}
// We don't know how to decode these instructions! Dump the conflict set!
o.indent(i) << "return 0;" << " // Conflict set: ";
for (int i = 0, N = Opcodes.size(); i < N; ++i) {
o << nameWithID(Opcodes[i]);
if (i < (N - 1))
o << ", ";
else
o << '\n';
}
return true;
} else {
// Choose the best filter to do the decodings!
Filter &Best = bestFilter();
if (Best.getNumFiltered() == 1)
emitSingletonDecoder(o, i, Best);
else
bestFilter().emit(o, i);
return false;
}
}
};
///////////////
// Backend //
///////////////
class RISCDisassemblerEmitter::RISCDEBackend {
public:
RISCDEBackend(RISCDisassemblerEmitter &frontend) :
NumberedInstructions(),
Opcodes(),
Frontend(frontend),
Target(),
AFC(NULL)
{
populateInstructions();
if (Target.getName() == "ARM") {
TargetName = TARGET_ARM;
} else {
errs() << "Target name " << Target.getName() << " not recognized\n";
assert(0 && "Unknown target");
}
}
~RISCDEBackend() {
if (AFC) {
delete AFC;
AFC = NULL;
}
}
void getInstructionsByEnumValue(std::vector<const CodeGenInstruction*>
&NumberedInstructions) {
// Dig down to the proper namespace. Code shamelessly stolen from
// InstrEnumEmitter.cpp
std::string Namespace;
CodeGenTarget::inst_iterator II, E;
for (II = Target.inst_begin(), E = Target.inst_end(); II != E; ++II)
if (II->second.Namespace != "TargetInstrInfo") {
Namespace = II->second.Namespace;
break;
}
assert(!Namespace.empty() && "No instructions defined.");
Target.getInstructionsByEnumValue(NumberedInstructions);
}
bool populateInstruction(const CodeGenInstruction &CGI, TARGET_NAME_t TN) {
const Record &Def = *CGI.TheDef;
const std::string &Name = Def.getName();
uint8_t Form = getByteField(Def, "Form");
BitsInit &Bits = getBitsField(Def, "Inst");
if (TN == TARGET_ARM) {
// FIXME: what about Int_MemBarrierV6 and Int_SyncBarrierV6?
if ((Name != "Int_MemBarrierV7" && Name != "Int_SyncBarrierV7") &&
Form == ARM_FORMAT_PSEUDO)
return false;
if (thumbInstruction(Form))
return false;
if (Name.find("CMPz") != std::string::npos /* ||
Name.find("CMNz") != std::string::npos */)
return false;
// Ignore pseudo instructions.
if (Name == "BXr9" || Name == "BMOVPCRX" || Name == "BMOVPCRXr9")
return false;
// VLDRQ/VSTRQ can be hanlded with the more generic VLDMD/VSTMD.
if (Name == "VLDRQ" || Name == "VSTRQ")
return false;
//
// The following special cases are for conflict resolutions.
//
// RSCSri and RSCSrs set the 's' bit, but are not predicated. We are
// better off using the generic RSCri and RSCrs instructions.
if (Name == "RSCSri" || Name == "RSCSrs") return false;
// MOVCCr, MOVCCs, MOVCCi, FCYPScc, FCYPDcc, FNEGScc, and FNEGDcc are used
// in the compiler to implement conditional moves. We can ignore them in
// favor of their more generic versions of instructions.
// See also SDNode *ARMDAGToDAGISel::Select(SDValue Op).
if (Name == "MOVCCr" || Name == "MOVCCs" || Name == "MOVCCi" ||
Name == "FCPYScc" || Name == "FCPYDcc" ||
Name == "FNEGScc" || Name == "FNEGDcc")
return false;
// Ditto for VMOVDcc, VMOVScc, VNEGDcc, and VNEGScc.
if (Name == "VMOVDcc" || Name == "VMOVScc" || Name == "VNEGDcc" ||
Name == "VNEGScc")
return false;
// Ignore the *_sfp instructions when decoding. They are used by the
// compiler to implement scalar floating point operations using vector
// operations in order to work around some performance issues.
if (Name.find("_sfp") != std::string::npos) return false;
// LLVM added LDM/STM_UPD which conflicts with LDM/STM.
// Ditto for VLDMS_UPD, VLDMD_UPD, VSTMS_UPD, VSTMD_UPD.
if (Name == "LDM_UPD" || Name == "STM_UPD" || Name == "VLDMS_UPD" ||
Name == "VLDMD_UPD" || Name == "VSTMS_UPD" || Name == "VSTMD_UPD")
return false;
// LDM_RET is a special case of LDM (Load Multiple) where the registers
// loaded include the PC, causing a branch to a loaded address. Ignore
// the LDM_RET instruction when decoding.
if (Name == "LDM_RET") return false;
// Bcc is in a more generic form than B. Ignore B when decoding.
if (Name == "B") return false;
// Ignore the non-Darwin BL instructions and the TPsoft (TLS) instruction.
if (Name == "BL" || Name == "BL_pred" || Name == "BLX" || Name == "BX" ||
Name == "TPsoft")
return false;
// Ignore VDUPf[d|q] instructions known to conflict with VDUP32[d-q] for
// decoding. The instruction duplicates an element from an ARM core
// register into every element of the destination vector. There is no
// distinction between data types.
if (Name == "VDUPfd" || Name == "VDUPfq") return false;
// A8-598: VEXT
// Vector Extract extracts elements from the bottom end of the second
// operand vector and the top end of the first, concatenates them and
// places the result in the destination vector. The elements of the
// vectors are treated as being 8-bit bitfields. There is no distinction
// between data types. The size of the operation can be specified in
// assembler as vext.size. If the value is 16, 32, or 64, the syntax is
// a pseudo-instruction for a VEXT instruction specifying the equivalent
// number of bytes.
//
// Variants VEXTd16, VEXTd32, VEXTd8, and VEXTdf are reduced to VEXTd8;
// variants VEXTq16, VEXTq32, VEXTq8, and VEXTqf are reduced to VEXTq8.
if (Name == "VEXTd16" || Name == "VEXTd32" || Name == "VEXTdf" ||
Name == "VEXTq16" || Name == "VEXTq32" || Name == "VEXTqf")
return false;
// Vector Reverse is similar to Vector Extract. There is no distinction
// between data types, other than size.
//
// VREV64df is equivalent to VREV64d32.
// VREV64qf is equivalent to VREV64q32.
if (Name == "VREV64df" || Name == "VREV64qf") return false;
// VDUPLNfd is equivalent to VDUPLN32d; VDUPfdf is specialized VDUPLN32d.
// VDUPLNfq is equivalent to VDUPLN32q; VDUPfqf is specialized VDUPLN32q.
// VLD1df is equivalent to VLD1d32.
// VLD1qf is equivalent to VLD1q32.
// VLD2d64 is equivalent to VLD1q64.
// VST1df is equivalent to VST1d32.
// VST1qf is equivalent to VST1q32.
// VST2d64 is equivalent to VST1q64.
if (Name == "VDUPLNfd" || Name == "VDUPfdf" ||
Name == "VDUPLNfq" || Name == "VDUPfqf" ||
Name == "VLD1df" || Name == "VLD1qf" || Name == "VLD2d64" ||
Name == "VST1df" || Name == "VST1qf" || Name == "VST2d64")
return false;
} else if (TN == TARGET_THUMB) {
if (!thumbInstruction(Form))
return false;
// Ignore pseudo instructions.
if (Name == "tInt_eh_sjlj_setjmp" || Name == "t2Int_eh_sjlj_setjmp" ||
Name == "t2MOVi32imm" || Name == "tBX" || Name == "tBXr9")
return false;
// LLVM added tLDM_UPD which conflicts with tLDM.
if (Name == "tLDM_UPD")
return false;
// On Darwin R9 is call-clobbered. Ignore the non-Darwin counterparts.
if (Name == "tBL" || Name == "tBLXi" || Name == "tBLXr")
return false;
// Ignore the TPsoft (TLS) instructions, which conflict with tBLr9.
if (Name == "tTPsoft" || Name == "t2TPsoft")
return false;
// Ignore tLEApcrel and tLEApcrelJT, prefer tADDrPCi.
if (Name == "tLEApcrel" || Name == "tLEApcrelJT")
return false;
// Ignore t2LEApcrel, prefer the generic t2ADD* for disassembly printing.
if (Name == "t2LEApcrel")
return false;
// Ignore tADDrSP, tADDspr, and tPICADD, prefer the generic tADDhirr.
// Ignore t2SUBrSPs, prefer the t2SUB[S]r[r|s].
// Ignore t2ADDrSPs, prefer the t2ADD[S]r[r|s].
if (Name == "tADDrSP" || Name == "tADDspr" || Name == "tPICADD" ||
Name == "t2SUBrSPs" || Name == "t2ADDrSPs")
return false;
// Ignore t2LDRDpci, prefer the generic t2LDRDi8, t2LDRD_PRE, t2LDRD_POST.
if (Name == "t2LDRDpci")
return false;
// Ignore t2TBB, t2TBH and prefer the generic t2TBBgen, t2TBHgen.
if (Name == "t2TBB" || Name == "t2TBH")
return false;
// Resolve conflicts:
//
// tBfar conflicts with tBLr9
// tCMNz conflicts with tCMN (with assembly format strings being equal)
// tPOP_RET/t2LDM_RET conflict with tPOP/t2LDM (ditto)
// tMOVCCi conflicts with tMOVi8
// tMOVCCr conflicts with tMOVgpr2gpr
// tBR_JTr conflicts with tBRIND
// tSpill conflicts with tSTRspi
// tLDRcp conflicts with tLDRspi
// tRestore conflicts with tLDRspi
// t2LEApcrelJT conflicts with t2LEApcrel
// t2ADDrSPi/t2SUBrSPi have more generic couterparts
if (Name == "tBfar" ||
/* Name == "tCMNz" || */ Name == "tCMPzi8" || Name == "tCMPzr" ||
Name == "tCMPzhir" || /* Name == "t2CMNzrr" || Name == "t2CMNzrs" ||
Name == "t2CMNzri" || */ Name == "t2CMPzrr" || Name == "t2CMPzrs" ||
Name == "t2CMPzri" || Name == "tPOP_RET" || Name == "t2LDM_RET" ||
Name == "tMOVCCi" || Name == "tMOVCCr" || Name == "tBR_JTr" ||
Name == "tSpill" || Name == "tLDRcp" || Name == "tRestore" ||
Name == "t2LEApcrelJT" || Name == "t2ADDrSPi" || Name == "t2SUBrSPi")
return false;
}
// Dumps the instruction encoding format.
switch (TargetName) {
case TARGET_ARM:
case TARGET_THUMB:
DEBUG(errs() << Name << " " << stringForARMFormat((ARMFormat)Form));
break;
}
DEBUG({
errs() << " ";
// Dumps the instruction encoding bits.
dumpBits(errs(), Bits);
errs() << '\n';
// Dumps the list of operand info.
for (unsigned i = 0, e = CGI.OperandList.size(); i != e; ++i) {
CodeGenInstruction::OperandInfo Info = CGI.OperandList[i];
const std::string &OperandName = Info.Name;
const Record &OperandDef = *Info.Rec;
errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n";
}
});
return true;
}
void populateInstructions() {
getInstructionsByEnumValue(NumberedInstructions);
uint16_t numUIDs = NumberedInstructions.size();
uint16_t uid;
const char *instClass = NULL;
switch (TargetName) {
case TARGET_ARM:
instClass = "InstARM";
break;
default:
assert(0 && "Unreachable code!");
}
for (uid = 0; uid < numUIDs; uid++) {
// filter out intrinsics
if (!NumberedInstructions[uid]->TheDef->isSubClassOf(instClass))
continue;
if (populateInstruction(*NumberedInstructions[uid], TargetName))
Opcodes.push_back(uid);
}
// Special handling for the ARM chip, which supports two modes of execution.
// This branch handles the Thumb opcodes.
if (TargetName == TARGET_ARM) {
for (uid = 0; uid < numUIDs; uid++) {
// filter out intrinsics
if (!NumberedInstructions[uid]->TheDef->isSubClassOf("InstARM")
&& !NumberedInstructions[uid]->TheDef->isSubClassOf("InstThumb"))
continue;
if (populateInstruction(*NumberedInstructions[uid], TARGET_THUMB))
Opcodes2.push_back(uid);
}
}
}
// Emits disassembler code for instruction decoding. This delegates to the
// FilterChooser instance to do the heavy lifting.
void emit(raw_ostream &o) {
Indenter i;
std::string s;
raw_string_ostream ro(s);
switch (TargetName) {
case TARGET_ARM:
Frontend.EmitSourceFileHeader("ARM Disassembler", ro);
break;
default:
assert(0 && "Unreachable code!");
}
ro.flush();
o << s;
o.indent(i) << "#include <inttypes.h>\n";
o.indent(i) << "#include <assert.h>\n";
o << '\n';
o << "namespace llvm {\n\n";
AbstractFilterChooser::setTargetName(TargetName);
switch (TargetName) {
case TARGET_ARM: {
// Emit common utility and ARM ISA decoder.
AFC = new FilterChooser<32>(NumberedInstructions, Opcodes);
AFC->emitTop(o, i);
delete AFC;
// Emit Thumb ISA decoder as well.
AbstractFilterChooser::setTargetName(TARGET_THUMB);
AFC = new FilterChooser<32>(NumberedInstructions, Opcodes2);
AFC->emitBot(o, i);
break;
}
default:
assert(0 && "Unreachable code!");
}
o << "\n} // End llvm namespace \n";
}
protected:
std::vector<const CodeGenInstruction*> NumberedInstructions;
std::vector<unsigned> Opcodes;
// Special case for the ARM chip, which supports ARM and Thumb ISAs.
// Opcodes2 will be populated with the Thumb opcodes.
std::vector<unsigned> Opcodes2;
RISCDisassemblerEmitter &Frontend;
CodeGenTarget Target;
AbstractFilterChooser *AFC;
TARGET_NAME_t TargetName;
};
/////////////////////////
// Backend interface //
/////////////////////////
void RISCDisassemblerEmitter::initBackend()
{
Backend = new RISCDEBackend(*this);
}
void RISCDisassemblerEmitter::run(raw_ostream &o)
{
Backend->emit(o);
}
void RISCDisassemblerEmitter::shutdownBackend()
{
delete Backend;
Backend = NULL;
}