| |
| //===- SPLInstrScheduling.cpp - Modulo Software Pipelining Instruction Scheduling support -------===// |
| // |
| // this file implements the llvm/CodeGen/ModuloScheduling.h interface |
| // |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineCodeForInstruction.h" |
| //#include "llvm/CodeGen/MachineCodeForBasicBlock.h" |
| //#include "llvm/CodeGen/MachineCodeForMethod.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| //#include "llvm/Analysis/LiveVar/FunctionLiveVarInfo.h" // FIXME: Remove when modularized better |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/BasicBlock.h" |
| #include "llvm/Instruction.h" |
| #include "Support/CommandLine.h" |
| #include <algorithm> |
| #include "ModuloSchedGraph.h" |
| #include "ModuloScheduling.h" |
| #include "llvm/Target/TargetSchedInfo.h" |
| #include "llvm/BasicBlock.h" |
| #include "llvm/iTerminators.h" |
| #include "llvm/iPHINode.h" |
| #include "llvm/Constants.h" |
| #include <iostream> |
| //#include <swig.h> |
| #include <fstream> |
| #include "llvm/CodeGen/InstrSelection.h" |
| |
| #define max(x,y) (x>y?x:y) |
| #define min(x,y) (x<y?x:y) |
| using std::cerr; |
| using std::cout; |
| using std::ostream; |
| using std::ios; |
| using std::filebuf; |
| |
| //************************************************************ |
| //printing Debug information |
| //ModuloSchedDebugLevel stores the value of debug level |
| // modsched_os is the ostream to dump debug information, which is written into the file 'moduloSchedDebugInfo.output' |
| //see ModuloSchedulingPass::runOnFunction() |
| //************************************************************ |
| |
| ModuloSchedDebugLevel_t ModuloSchedDebugLevel; |
| static cl::opt<ModuloSchedDebugLevel_t, true> |
| SDL_opt("modsched", cl::Hidden, cl::location(ModuloSchedDebugLevel), |
| cl::desc("enable modulo scheduling debugging information"), |
| cl::values( |
| clEnumValN(ModuloSched_NoDebugInfo, "n", "disable debug output"), |
| clEnumValN(ModuloSched_Disable, "off", "disable modulo scheduling"), |
| clEnumValN(ModuloSched_PrintSchedule, "psched", "print original and new schedule"), |
| clEnumValN(ModuloSched_PrintScheduleProcess,"pschedproc", "print how the new schdule is produced"), |
| 0)); |
| |
| filebuf modSched_fb; |
| ostream modSched_os(&modSched_fb); |
| |
| //************************************************************ |
| |
| |
| ///the method to compute schedule and instert epilogue and prologue |
| void ModuloScheduling::instrScheduling(){ |
| |
| if( ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess) |
| modSched_os<<"*************************computing modulo schedule ************************\n"; |
| |
| |
| const TargetSchedInfo& msi=target.getSchedInfo(); |
| |
| //number of issue slots in the in each cycle |
| int numIssueSlots=msi.maxNumIssueTotal; |
| |
| |
| |
| //compute the schedule |
| bool success=false; |
| while(!success) |
| { |
| //clear memory from the last round and initialize if necessary |
| clearInitMem(msi); |
| |
| //compute schedule and coreSchedule with the current II |
| success=computeSchedule(); |
| |
| if(!success){ |
| II++; |
| if( ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess) |
| modSched_os<<"increase II to "<<II<<"\n"; |
| } |
| } |
| |
| //print the final schedule if necessary |
| if( ModuloSchedDebugLevel >= ModuloSched_PrintSchedule) |
| dumpScheduling(); |
| |
| |
| //the schedule has been computed |
| //create epilogue, prologue and kernel BasicBlock |
| |
| //find the successor for this BasicBlock |
| BasicBlock* succ_bb= getSuccBB(bb); |
| |
| //print the original BasicBlock if necessary |
| if( ModuloSchedDebugLevel >= ModuloSched_PrintSchedule){ |
| modSched_os<<"dumping the orginal block\n"; |
| graph.dump(bb); |
| } |
| |
| //construction of prologue, kernel and epilogue |
| BasicBlock* kernel=bb->splitBasicBlock(bb->begin()); |
| BasicBlock* prologue= bb; |
| BasicBlock* epilogue=kernel->splitBasicBlock(kernel->begin()); |
| |
| |
| //construct prologue |
| constructPrologue(prologue); |
| |
| //construct kernel |
| constructKernel(prologue,kernel,epilogue); |
| |
| //construct epilogue |
| constructEpilogue(epilogue,succ_bb); |
| |
| |
| //print the BasicBlocks if necessary |
| if( ModuloSchedDebugLevel >= ModuloSched_PrintSchedule){ |
| modSched_os<<"dumping the prologue block:\n"; |
| graph.dump(prologue); |
| modSched_os<<"dumping the kernel block\n"; |
| graph.dump(kernel); |
| modSched_os<<"dumping the epilogue block\n"; |
| graph.dump(epilogue); |
| } |
| |
| } |
| |
| //clear memory from the last round and initialize if necessary |
| void ModuloScheduling::clearInitMem(const TargetSchedInfo& msi){ |
| |
| |
| unsigned numIssueSlots = msi.maxNumIssueTotal; |
| //clear nodeScheduled from the last round |
| if( ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess){ |
| modSched_os<< "***** new round with II= "<<II<<" *******************"<<"\n"; |
| modSched_os<< " **************clear the vector nodeScheduled**************** \n"; |
| } |
| nodeScheduled.clear(); |
| |
| |
| //clear resourceTable from the last round and reset it |
| resourceTable.clear(); |
| for(unsigned i=0;i< II;i++) |
| resourceTable.push_back(msi.resourceNumVector); |
| |
| |
| //clear the schdule and coreSchedule from the last round |
| schedule.clear(); |
| coreSchedule.clear(); |
| |
| //create a coreSchedule of size II*numIssueSlots |
| //each entry is NULL |
| while( coreSchedule.size() < II){ |
| std::vector<ModuloSchedGraphNode*>* newCycle=new std::vector<ModuloSchedGraphNode*>(); |
| for(unsigned k=0;k<numIssueSlots;k++) |
| newCycle->push_back(NULL); |
| coreSchedule.push_back(*newCycle); |
| } |
| } |
| |
| |
| //compute schedule and coreSchedule with the current II |
| bool ModuloScheduling::computeSchedule(){ |
| |
| if( ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess) |
| modSched_os <<"start to compute schedule \n"; |
| |
| //loop over the ordered nodes |
| for(NodeVec::const_iterator I=oNodes.begin();I!=oNodes.end();I++) |
| { |
| //try to schedule for node I |
| if( ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess) |
| dumpScheduling(); |
| ModuloSchedGraphNode* node=*I; |
| |
| //compute whether this node has successor(s) |
| bool succ=true; |
| |
| //compute whether this node has predessor(s) |
| bool pred=true; |
| |
| NodeVec schSucc=graph.vectorConj(nodeScheduled,graph.succSet(node)); |
| if(schSucc.empty()) |
| succ=false; |
| NodeVec schPred=graph.vectorConj(nodeScheduled,graph.predSet(node)); |
| if(schPred.empty()) |
| pred=false; |
| |
| //startTime: the earliest time we will try to schedule this node |
| //endTime: the latest time we will try to schedule this node |
| int startTime, endTime; |
| |
| //node's earlyStart: possible earliest time to schedule this node |
| //node's lateStart: possible latest time to schedule this node |
| node->setEarlyStart(-1); |
| node->setLateStart(9999); |
| |
| |
| //this node has predessor but no successor |
| if(!succ && pred){ |
| |
| //this node's earlyStart is it's predessor's schedule time + the edge delay |
| // - the iteration difference* II |
| for(unsigned i=0;i<schPred.size();i++){ |
| ModuloSchedGraphNode* predNode=schPred[i]; |
| SchedGraphEdge* edge=graph.getMaxDelayEdge(predNode->getNodeId(),node->getNodeId()); |
| int temp=predNode->getSchTime()+edge->getMinDelay() - edge->getIteDiff()*II; |
| node->setEarlyStart( max(node->getEarlyStart(),temp)); |
| } |
| startTime=node->getEarlyStart(); |
| endTime=node->getEarlyStart()+II-1; |
| } |
| |
| |
| //this node has successor but no predessor |
| if(succ && !pred){ |
| for(unsigned i=0;i<schSucc.size();i++){ |
| ModuloSchedGraphNode* succNode=schSucc[i]; |
| SchedGraphEdge* edge=graph.getMaxDelayEdge(succNode->getNodeId(),node->getNodeId()); |
| int temp=succNode->getSchTime() - edge->getMinDelay() + edge->getIteDiff()*II; |
| node->setLateStart(min(node->getEarlyStart(),temp)); |
| } |
| startTime=node->getLateStart()- II+1; |
| endTime=node->getLateStart(); |
| } |
| |
| //this node has both successors and predessors |
| if(succ && pred) |
| { |
| for(unsigned i=0;i<schPred.size();i++){ |
| ModuloSchedGraphNode* predNode=schPred[i]; |
| SchedGraphEdge* edge=graph.getMaxDelayEdge(predNode->getNodeId(),node->getNodeId()); |
| int temp=predNode->getSchTime()+edge->getMinDelay() - edge->getIteDiff()*II; |
| node->setEarlyStart(max(node->getEarlyStart(),temp)); |
| } |
| for(unsigned i=0;i<schSucc.size();i++){ |
| ModuloSchedGraphNode* succNode=schSucc[i]; |
| SchedGraphEdge* edge=graph.getMaxDelayEdge(succNode->getNodeId(),node->getNodeId()); |
| int temp=succNode->getSchTime() - edge->getMinDelay() + edge->getIteDiff()*II; |
| node->setLateStart(min(node->getEarlyStart(),temp)); |
| } |
| startTime=node->getEarlyStart(); |
| endTime=min(node->getLateStart(),node->getEarlyStart()+((int)II)-1); |
| } |
| |
| //this node has no successor or predessor |
| if(!succ && !pred){ |
| node->setEarlyStart(node->getASAP()); |
| startTime=node->getEarlyStart(); |
| endTime=node->getEarlyStart()+II -1; |
| } |
| |
| //try to schedule this node based on the startTime and endTime |
| if( ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess) |
| modSched_os<<"scheduling the node "<<(*I)->getNodeId()<<"\n"; |
| |
| bool success= this->ScheduleNode(node,startTime, endTime,nodeScheduled); |
| if(!success)return false; |
| } |
| return true; |
| } |
| |
| |
| //get the successor of the BasicBlock |
| BasicBlock* ModuloScheduling::getSuccBB(BasicBlock* bb){ |
| |
| BasicBlock* succ_bb; |
| for(unsigned i=0;i < II; i++) |
| for(unsigned j=0;j< coreSchedule[i].size();j++) |
| if(coreSchedule[i][j]){ |
| const Instruction* ist=coreSchedule[i][j]->getInst(); |
| |
| //we can get successor from the BranchInst instruction |
| //assume we only have one successor (besides itself) here |
| if(BranchInst::classof(ist)){ |
| BranchInst* bi=(BranchInst*)ist; |
| assert(bi->isConditional()&&"the branchInst is not a conditional one"); |
| assert(bi->getNumSuccessors() ==2&&" more than two successors?"); |
| BasicBlock* bb1=bi->getSuccessor(0); |
| BasicBlock* bb2=bi->getSuccessor(1); |
| assert( (bb1 == bb|| bb2 == bb) && " None of its successor is itself?"); |
| if(bb1 == bb) succ_bb=bb2; |
| else succ_bb=bb1; |
| return succ_bb; |
| } |
| } |
| assert( 0 && "NO Successor?"); |
| return NULL; |
| } |
| |
| |
| //get the predecessor of the BasicBlock |
| BasicBlock* ModuloScheduling::getPredBB(BasicBlock* bb){ |
| |
| BasicBlock* pred_bb; |
| |
| for(unsigned i=0;i < II; i++) |
| for(unsigned j=0;j< coreSchedule[i].size();j++) |
| if(coreSchedule[i][j]){ |
| const Instruction* ist=coreSchedule[i][j]->getInst(); |
| |
| //we can get predecessor from the PHINode instruction |
| //assume we only have one predecessor (besides itself) here |
| if(PHINode::classof(ist)){ |
| PHINode* phi=(PHINode*) ist; |
| assert(phi->getNumIncomingValues() == 2 &&" the number of incoming value is not equal to two? "); |
| BasicBlock* bb1= phi->getIncomingBlock(0); |
| BasicBlock* bb2= phi->getIncomingBlock(1); |
| assert( (bb1 == bb || bb2 == bb) && " None of its predecessor is itself?"); |
| if(bb1 == bb) pred_bb=bb2; |
| else pred_bb=bb1; |
| return pred_bb; |
| } |
| } |
| assert(0 && " no predecessor?"); |
| return NULL; |
| } |
| |
| |
| //construct the prologue |
| void ModuloScheduling::constructPrologue(BasicBlock* prologue){ |
| |
| InstListType& prologue_ist = prologue->getInstList(); |
| vvNodeType& tempSchedule_prologue= *(new vector< std::vector<ModuloSchedGraphNode*> >(schedule)); |
| |
| //compute the schedule for prologue |
| unsigned round=0; |
| unsigned scheduleSize=schedule.size(); |
| while(round < scheduleSize/II){ |
| round++; |
| for(unsigned i=0;i < scheduleSize ;i++){ |
| if(round*II + i >= scheduleSize) break; |
| for(unsigned j=0;j < schedule[i].size(); j++) |
| if(schedule[i][j]){ |
| assert( tempSchedule_prologue[round*II +i ][j] == NULL && "table not consitant with core table"); |
| |
| //move the schedule one iteration ahead and overlap with the original one |
| tempSchedule_prologue[round*II + i][j]=schedule[i][j]; |
| } |
| } |
| } |
| |
| //clear the clone memory in the core schedule instructions |
| clearCloneMemory(); |
| |
| //fill in the prologue |
| for(unsigned i=0;i < ceil(1.0*scheduleSize/II -1)*II ;i++) |
| for(unsigned j=0;j < tempSchedule_prologue[i].size();j++) |
| if(tempSchedule_prologue[i][j]){ |
| |
| //get the instruction |
| Instruction* orn=(Instruction*)tempSchedule_prologue[i][j]->getInst(); |
| |
| //made a clone of it |
| Instruction* cln=cloneInstSetMemory(orn); |
| |
| //insert the instruction |
| prologue_ist.insert(prologue_ist.back(),cln ); |
| |
| //if there is PHINode in the prologue, the incoming value from itself should be removed |
| //because it is not a loop any longer |
| if( PHINode::classof(cln)){ |
| PHINode* phi=(PHINode*)cln; |
| phi->removeIncomingValue(phi->getParent()); |
| } |
| } |
| } |
| |
| |
| //construct the kernel BasicBlock |
| void ModuloScheduling::constructKernel(BasicBlock* prologue,BasicBlock* kernel,BasicBlock* epilogue){ |
| |
| //*************fill instructions in the kernel**************** |
| InstListType& kernel_ist = kernel->getInstList(); |
| BranchInst* brchInst; |
| PHINode* phiInst, *phiCln; |
| |
| for(unsigned i=0;i<coreSchedule.size();i++) |
| for(unsigned j=0;j<coreSchedule[i].size();j++) |
| if(coreSchedule[i][j]){ |
| |
| //we should take care of branch instruction differently with normal instructions |
| if(BranchInst::classof(coreSchedule[i][j]->getInst())){ |
| brchInst=(BranchInst*)coreSchedule[i][j]->getInst(); |
| continue; |
| } |
| |
| //we should take care of PHINode instruction differently with normal instructions |
| if( PHINode::classof(coreSchedule[i][j]->getInst())){ |
| phiInst= (PHINode*)coreSchedule[i][j]->getInst(); |
| Instruction* cln=cloneInstSetMemory(phiInst); |
| kernel_ist.insert(kernel_ist.back(),cln); |
| phiCln=(PHINode*)cln; |
| continue; |
| } |
| |
| //for normal instructions: made a clone and insert it in the kernel_ist |
| Instruction* cln=cloneInstSetMemory( (Instruction*)coreSchedule[i][j]->getInst()); |
| kernel_ist.insert(kernel_ist.back(),cln); |
| } |
| |
| //the two incoming BasicBlock for PHINode is the prologue and the kernel (itself) |
| phiCln->setIncomingBlock(0,prologue); |
| phiCln->setIncomingBlock(1,kernel); |
| |
| //the incoming value for the kernel (itself) is the new value which is computed in the kernel |
| Instruction* originalVal=(Instruction*)phiInst->getIncomingValue(1); |
| phiCln->setIncomingValue(1, originalVal->getClone()); |
| |
| |
| //make a clone of the branch instruction and insert it in the end |
| BranchInst* cln=(BranchInst*)cloneInstSetMemory( brchInst); |
| kernel_ist.insert(kernel_ist.back(),cln); |
| |
| //delete the unconditional branch instruction, which is generated when splitting the basicBlock |
| kernel_ist.erase( --kernel_ist.end()); |
| |
| //set the first successor to itself |
| ((BranchInst*)cln)->setSuccessor(0, kernel); |
| //set the second successor to eiplogue |
| ((BranchInst*)cln)->setSuccessor(1,epilogue); |
| |
| //*****change the condition******* |
| |
| //get the condition instruction |
| Instruction* cond=(Instruction*)cln->getCondition(); |
| |
| //get the condition's second operand, it should be a constant |
| Value* operand=cond->getOperand(1); |
| assert(ConstantSInt::classof(operand)); |
| |
| //change the constant in the condtion instruction |
| ConstantSInt* iteTimes=ConstantSInt::get(operand->getType(),((ConstantSInt*)operand)->getValue()-II+1); |
| cond->setOperand(1,iteTimes); |
| |
| } |
| |
| |
| |
| |
| |
| //construct the epilogue |
| void ModuloScheduling::constructEpilogue(BasicBlock* epilogue, BasicBlock* succ_bb){ |
| |
| //compute the schedule for epilogue |
| vvNodeType& tempSchedule_epilogue= *(new vector< std::vector<ModuloSchedGraphNode*> >(schedule)); |
| unsigned scheduleSize=schedule.size(); |
| int round =0; |
| while(round < ceil(1.0*scheduleSize/II )-1 ){ |
| round++; |
| for( unsigned i=0;i < scheduleSize ; i++){ |
| if(i + round *II >= scheduleSize) break; |
| for(unsigned j=0;j < schedule[i].size();j++) |
| if(schedule[i + round*II ][j]){ |
| assert( tempSchedule_epilogue[i][j] == NULL && "table not consitant with core table"); |
| |
| //move the schdule one iteration behind and overlap |
| tempSchedule_epilogue[i][j]=schedule[i + round*II][j]; |
| } |
| } |
| } |
| |
| //fill in the epilogue |
| InstListType& epilogue_ist = epilogue->getInstList(); |
| for(unsigned i=II;i <scheduleSize ;i++) |
| for(unsigned j=0;j < tempSchedule_epilogue[i].size();j++) |
| if(tempSchedule_epilogue[i][j]){ |
| Instruction* inst=(Instruction*)tempSchedule_epilogue[i][j]->getInst(); |
| |
| //BranchInst and PHINode should be treated differently |
| //BranchInst:unecessary, simly omitted |
| //PHINode: omitted |
| if( !BranchInst::classof(inst) && ! PHINode::classof(inst) ){ |
| //make a clone instruction and insert it into the epilogue |
| Instruction* cln=cloneInstSetMemory(inst); |
| epilogue_ist.push_front(cln); |
| } |
| } |
| |
| |
| //*************delete the original instructions****************// |
| //to delete the original instructions, we have to make sure their use is zero |
| |
| //update original core instruction's uses, using its clone instread |
| for(unsigned i=0;i < II; i++) |
| for(unsigned j=0;j < coreSchedule[i].size() ;j++){ |
| if(coreSchedule[i][j]) |
| updateUseWithClone((Instruction*)coreSchedule[i][j]->getInst() ); |
| } |
| |
| //erase these instructions |
| for(unsigned i=0;i < II; i++) |
| for(unsigned j=0;j < coreSchedule[i].size();j++) |
| if(coreSchedule[i][j]){ |
| Instruction* ist=(Instruction*)coreSchedule[i][j]->getInst(); |
| ist->getParent()->getInstList().erase(ist); |
| } |
| //**************************************************************// |
| |
| |
| //finally, insert an unconditional branch instruction at the end |
| epilogue_ist.push_back(new BranchInst(succ_bb)); |
| |
| } |
| |
| |
| //---------------------------------------------------------------------------------------------- |
| //this function replace the value(instruction) ist in other instructions with its latest clone |
| //i.e. after this function is called, the ist is not used anywhere and it can be erased. |
| //---------------------------------------------------------------------------------------------- |
| void ModuloScheduling::updateUseWithClone(Instruction* ist){ |
| |
| while(ist->use_size() >0){ |
| bool destroyed=false; |
| |
| //other instruction is using this value ist |
| assert(Instruction::classof(*ist->use_begin())); |
| Instruction *inst=(Instruction*)(* ist->use_begin()); |
| |
| for(unsigned i=0;i<inst->getNumOperands();i++) |
| if(inst->getOperand(i) == ist && ist->getClone()){ |
| |
| //if the instruction is TmpInstruction, simly delete it because it has no parent |
| // and it does not belongs to any BasicBlock |
| if(TmpInstruction::classof(inst)) { |
| delete inst; |
| destroyed=true; |
| break; |
| } |
| |
| |
| //otherwise, set the instruction's operand to the value's clone |
| inst->setOperand(i, ist->getClone()); |
| |
| //the use from the original value ist is destroyed |
| destroyed=true; |
| break; |
| } |
| if( !destroyed) |
| { |
| //if the use can not be destroyed , something is wrong |
| inst->dump(); |
| assert( 0 &&"this use can not be destroyed"); |
| } |
| } |
| |
| } |
| |
| |
| //******************************************************** |
| //this function clear all clone mememoy |
| //i.e. set all instruction's clone memory to NULL |
| //***************************************************** |
| void ModuloScheduling::clearCloneMemory(){ |
| for(unsigned i=0; i < coreSchedule.size();i++) |
| for(unsigned j=0;j<coreSchedule[i].size();j++) |
| if(coreSchedule[i][j]) ((Instruction*)coreSchedule[i][j]->getInst())->clearClone(); |
| |
| } |
| |
| |
| //******************************************************************************** |
| //this function make a clone of the instruction orn |
| //the cloned instruction will use the orn's operands' latest clone as its operands |
| //it is done this way because LLVM is in SSA form and we should use the correct value |
| // |
| //this fuction also update the instruction orn's latest clone memory |
| //********************************************************************************** |
| Instruction* ModuloScheduling::cloneInstSetMemory(Instruction* orn) { |
| |
| //make a clone instruction |
| Instruction* cln=orn->clone(); |
| |
| |
| //update the operands |
| for(unsigned k=0;k<orn->getNumOperands();k++){ |
| const Value* op=orn->getOperand(k); |
| if(Instruction::classof(op) && ((Instruction*)op)->getClone()){ |
| Instruction* op_inst=(Instruction*)op; |
| cln->setOperand(k, op_inst->getClone()); |
| } |
| } |
| |
| //update clone memory |
| orn->setClone(cln); |
| return cln; |
| } |
| |
| |
| |
| bool ModuloScheduling::ScheduleNode(ModuloSchedGraphNode* node,unsigned start, unsigned end, NodeVec& nodeScheduled) |
| { |
| |
| const TargetSchedInfo& msi=target.getSchedInfo(); |
| unsigned int numIssueSlots=msi.maxNumIssueTotal; |
| |
| if( ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess) |
| modSched_os<<"startTime= "<<start<<" endTime= "<<end<<"\n"; |
| bool isScheduled=false; |
| for(unsigned i=start;i<= end;i++){ |
| if( ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess) |
| modSched_os<< " now try cycle " <<i<<":"<<"\n"; |
| for(unsigned j=0;j<numIssueSlots;j++){ |
| unsigned int core_i = i%II; |
| unsigned int core_j=j; |
| if( ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess) |
| modSched_os <<"\t Trying slot "<<j<<"..........."; |
| //check the resouce table, make sure there is no resource conflicts |
| const Instruction* instr=node->getInst(); |
| MachineCodeForInstruction& tempMvec= MachineCodeForInstruction::get(instr); |
| bool resourceConflict=false; |
| const TargetInstrInfo &mii=msi.getInstrInfo(); |
| |
| if(coreSchedule.size() < core_i+1 || !coreSchedule[core_i][core_j]){ |
| //this->dumpResourceUsageTable(); |
| int latency=0; |
| for(unsigned k=0;k< tempMvec.size();k++) |
| { |
| MachineInstr* minstr=tempMvec[k]; |
| InstrRUsage rUsage=msi.getInstrRUsage(minstr->getOpCode()); |
| std::vector<std::vector<resourceId_t> > resources |
| =rUsage.resourcesByCycle; |
| updateResourceTable(resources,i + latency); |
| latency +=max(mii.minLatency(minstr->getOpCode()),1) ; |
| } |
| |
| //this->dumpResourceUsageTable(); |
| |
| latency=0; |
| if( resourceTableNegative()){ |
| |
| //undo-update the resource table |
| for(unsigned k=0;k< tempMvec.size();k++){ |
| MachineInstr* minstr=tempMvec[k]; |
| InstrRUsage rUsage=msi.getInstrRUsage(minstr->getOpCode()); |
| std::vector<std::vector<resourceId_t> > resources |
| =rUsage.resourcesByCycle; |
| undoUpdateResourceTable(resources,i + latency); |
| latency +=max(mii.minLatency(minstr->getOpCode()),1) ; |
| } |
| resourceConflict=true; |
| } |
| } |
| if( !resourceConflict && !coreSchedule[core_i][core_j]){ |
| if( ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess){ |
| modSched_os <<" OK!"<<"\n"; |
| modSched_os<<"Node "<<node->getNodeId()<< " is scheduleed."<<"\n"; |
| } |
| //schedule[i][j]=node; |
| while(schedule.size() <= i){ |
| std::vector<ModuloSchedGraphNode*>* newCycle=new std::vector<ModuloSchedGraphNode*>(); |
| for(unsigned k=0;k<numIssueSlots;k++) |
| newCycle->push_back(NULL); |
| schedule.push_back(*newCycle); |
| } |
| vector<ModuloSchedGraphNode*>::iterator startIterator; |
| startIterator = schedule[i].begin(); |
| schedule[i].insert(startIterator+j,node); |
| startIterator = schedule[i].begin(); |
| schedule[i].erase(startIterator+j+1); |
| |
| //update coreSchedule |
| //coreSchedule[core_i][core_j]=node; |
| while(coreSchedule.size() <= core_i){ |
| std::vector<ModuloSchedGraphNode*>* newCycle=new std::vector<ModuloSchedGraphNode*>(); |
| for(unsigned k=0;k<numIssueSlots;k++) |
| newCycle->push_back(NULL); |
| coreSchedule.push_back(*newCycle); |
| } |
| |
| startIterator = coreSchedule[core_i].begin(); |
| coreSchedule[core_i].insert(startIterator+core_j,node); |
| startIterator = coreSchedule[core_i].begin(); |
| coreSchedule[core_i].erase(startIterator+core_j+1); |
| |
| node->setSchTime(i); |
| isScheduled=true; |
| nodeScheduled.push_back(node); |
| |
| break; |
| } |
| else if( coreSchedule[core_i][core_j]) { |
| if( ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess) |
| modSched_os <<" Slot not available "<<"\n"; |
| } |
| else{ |
| if( ModuloSchedDebugLevel >= ModuloSched_PrintScheduleProcess) |
| modSched_os <<" Resource conflicts"<<"\n"; |
| } |
| } |
| if(isScheduled) break; |
| } |
| //assert(nodeScheduled &&"this node can not be scheduled?"); |
| return isScheduled; |
| } |
| |
| void ModuloScheduling::updateResourceTable(std::vector<std::vector<unsigned int> > useResources, int startCycle){ |
| for(unsigned i=0;i< useResources.size();i++){ |
| int absCycle=startCycle+i; |
| int coreCycle=absCycle % II; |
| std::vector<pair<int,int> >& resourceRemained=resourceTable[coreCycle]; |
| std::vector<unsigned int>& resourceUsed= useResources[i]; |
| for(unsigned j=0;j< resourceUsed.size();j++){ |
| for(unsigned k=0;k< resourceRemained.size();k++) |
| if((int)resourceUsed[j] == resourceRemained[k].first){ |
| resourceRemained[k].second--; |
| } |
| } |
| } |
| } |
| |
| void ModuloScheduling::undoUpdateResourceTable(std::vector<std::vector<unsigned int> > useResources, int startCycle){ |
| for(unsigned i=0;i< useResources.size();i++){ |
| int absCycle=startCycle+i; |
| int coreCycle=absCycle % II; |
| std::vector<pair<int,int> >& resourceRemained=resourceTable[coreCycle]; |
| std::vector<unsigned int>& resourceUsed= useResources[i]; |
| for(unsigned j=0;j< resourceUsed.size();j++){ |
| for(unsigned k=0;k< resourceRemained.size();k++) |
| if((int)resourceUsed[j] == resourceRemained[k].first){ |
| resourceRemained[k].second++; |
| } |
| } |
| } |
| } |
| |
| |
| //----------------------------------------------------------------------- |
| //Function: resouceTableNegative |
| //return value: |
| // return false if any element in the resouceTable is negative |
| // otherwise return true |
| //Purpose: |
| // this function is used to determine if an instruction is eligible for schedule at certain cycle |
| //--------------------------------------------------------------------------------------- |
| |
| bool ModuloScheduling::resourceTableNegative(){ |
| assert(resourceTable.size() == (unsigned)II&& "resouceTable size must be equal to II"); |
| bool isNegative=false; |
| for(unsigned i=0; i < resourceTable.size();i++) |
| for(unsigned j=0;j < resourceTable[i].size();j++){ |
| if(resourceTable[i][j].second <0) { |
| isNegative=true; |
| break; |
| } |
| } |
| return isNegative; |
| } |
| |
| |
| //---------------------------------------------------------------------- |
| //Function: dumpResouceUsageTable |
| //Purpose: |
| // print out ResouceTable for debug |
| // |
| //------------------------------------------------------------------------ |
| |
| void ModuloScheduling::dumpResourceUsageTable(){ |
| modSched_os<<"dumping resource usage table"<<"\n"; |
| for(unsigned i=0;i< resourceTable.size();i++){ |
| for(unsigned j=0;j < resourceTable[i].size();j++) |
| modSched_os <<resourceTable[i][j].first<<":"<< resourceTable[i][j].second<<" "; |
| modSched_os <<"\n"; |
| } |
| |
| } |
| |
| //---------------------------------------------------------------------- |
| //Function: dumpSchedule |
| //Purpose: |
| // print out thisSchedule for debug |
| // |
| //----------------------------------------------------------------------- |
| void ModuloScheduling::dumpSchedule(std::vector< std::vector<ModuloSchedGraphNode*> > thisSchedule){ |
| |
| const TargetSchedInfo& msi=target.getSchedInfo(); |
| unsigned numIssueSlots=msi.maxNumIssueTotal; |
| for(unsigned i=0;i< numIssueSlots;i++) |
| modSched_os <<"\t#"; |
| modSched_os<<"\n"; |
| for(unsigned i=0;i < thisSchedule.size();i++) |
| { |
| modSched_os<<"cycle"<<i<<": "; |
| for(unsigned j=0;j<thisSchedule[i].size();j++) |
| if(thisSchedule[i][j]!= NULL) |
| modSched_os<<thisSchedule[i][j]->getNodeId()<<"\t"; |
| else |
| modSched_os<<"\t"; |
| modSched_os<<"\n"; |
| } |
| |
| } |
| |
| |
| //---------------------------------------------------- |
| //Function: dumpScheduling |
| //Purpose: |
| // print out the schedule and coreSchedule for debug |
| // |
| //------------------------------------------------------- |
| |
| void ModuloScheduling::dumpScheduling(){ |
| modSched_os<<"dump schedule:"<<"\n"; |
| const TargetSchedInfo& msi=target.getSchedInfo(); |
| unsigned numIssueSlots=msi.maxNumIssueTotal; |
| for(unsigned i=0;i< numIssueSlots;i++) |
| modSched_os <<"\t#"; |
| modSched_os<<"\n"; |
| for(unsigned i=0;i < schedule.size();i++) |
| { |
| modSched_os<<"cycle"<<i<<": "; |
| for(unsigned j=0;j<schedule[i].size();j++) |
| if(schedule[i][j]!= NULL) |
| modSched_os<<schedule[i][j]->getNodeId()<<"\t"; |
| else |
| modSched_os<<"\t"; |
| modSched_os<<"\n"; |
| } |
| |
| modSched_os<<"dump coreSchedule:"<<"\n"; |
| for(unsigned i=0;i< numIssueSlots;i++) |
| modSched_os <<"\t#"; |
| modSched_os<<"\n"; |
| for(unsigned i=0;i < coreSchedule.size();i++){ |
| modSched_os<<"cycle"<<i<<": "; |
| for(unsigned j=0;j< coreSchedule[i].size();j++) |
| if(coreSchedule[i][j] !=NULL) |
| modSched_os<<coreSchedule[i][j]->getNodeId()<<"\t"; |
| else |
| modSched_os<<"\t"; |
| modSched_os<<"\n"; |
| } |
| } |
| |
| |
| |
| //--------------------------------------------------------------------------- |
| // Function: ModuloSchedulingPass |
| // |
| // Purpose: |
| // Entry point for Modulo Scheduling |
| // Schedules LLVM instruction |
| // |
| //--------------------------------------------------------------------------- |
| |
| namespace { |
| class ModuloSchedulingPass : public FunctionPass { |
| const TargetMachine ⌖ |
| public: |
| ModuloSchedulingPass(const TargetMachine &T) : target(T) {} |
| const char *getPassName() const { return "Modulo Scheduling"; } |
| |
| // getAnalysisUsage - We use LiveVarInfo... |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| //AU.addRequired(FunctionLiveVarInfo::ID); |
| } |
| bool runOnFunction(Function &F); |
| }; |
| } // end anonymous namespace |
| |
| |
| |
| bool ModuloSchedulingPass::runOnFunction(Function &F) |
| { |
| |
| //if necessary , open the output for debug purpose |
| if(ModuloSchedDebugLevel== ModuloSched_Disable) |
| return false; |
| |
| if(ModuloSchedDebugLevel>= ModuloSched_PrintSchedule){ |
| modSched_fb.open("moduloSchedDebugInfo.output", ios::out); |
| modSched_os<<"******************Modula Scheduling debug information*************************"<<"\n "; |
| } |
| |
| ModuloSchedGraphSet* graphSet = new ModuloSchedGraphSet(&F,target); |
| ModuloSchedulingSet ModuloSchedulingSet(*graphSet); |
| |
| if(ModuloSchedDebugLevel>= ModuloSched_PrintSchedule) |
| modSched_fb.close(); |
| |
| return false; |
| } |
| |
| |
| Pass *createModuloSchedulingPass(const TargetMachine &tgt) { |
| return new ModuloSchedulingPass(tgt); |
| } |
| |