Move helper functions for optimizing division by constant into the APInt
class.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@70488 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Support/APInt.cpp b/lib/Support/APInt.cpp
index 8ac589c..e77fcdb 100644
--- a/lib/Support/APInt.cpp
+++ b/lib/Support/APInt.cpp
@@ -1435,6 +1435,98 @@
   return t[i].isNegative() ? t[i] + modulo : t[i];
 }
 
+/// Calculate the magic numbers required to implement a signed integer division
+/// by a constant as a sequence of multiplies, adds and shifts.  Requires that
+/// the divisor not be 0, 1, or -1.  Taken from "Hacker's Delight", Henry S.
+/// Warren, Jr., chapter 10.
+APInt::ms APInt::magic() const {
+  const APInt& d = *this;
+  unsigned p;
+  APInt ad, anc, delta, q1, r1, q2, r2, t;
+  APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
+  APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
+  APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
+  struct ms mag;
+  
+  ad = d.abs();
+  t = signedMin + (d.lshr(d.getBitWidth() - 1));
+  anc = t - 1 - t.urem(ad);   // absolute value of nc
+  p = d.getBitWidth() - 1;    // initialize p
+  q1 = signedMin.udiv(anc);   // initialize q1 = 2p/abs(nc)
+  r1 = signedMin - q1*anc;    // initialize r1 = rem(2p,abs(nc))
+  q2 = signedMin.udiv(ad);    // initialize q2 = 2p/abs(d)
+  r2 = signedMin - q2*ad;     // initialize r2 = rem(2p,abs(d))
+  do {
+    p = p + 1;
+    q1 = q1<<1;          // update q1 = 2p/abs(nc)
+    r1 = r1<<1;          // update r1 = rem(2p/abs(nc))
+    if (r1.uge(anc)) {  // must be unsigned comparison
+      q1 = q1 + 1;
+      r1 = r1 - anc;
+    }
+    q2 = q2<<1;          // update q2 = 2p/abs(d)
+    r2 = r2<<1;          // update r2 = rem(2p/abs(d))
+    if (r2.uge(ad)) {   // must be unsigned comparison
+      q2 = q2 + 1;
+      r2 = r2 - ad;
+    }
+    delta = ad - r2;
+  } while (q1.ule(delta) || (q1 == delta && r1 == 0));
+  
+  mag.m = q2 + 1;
+  if (d.isNegative()) mag.m = -mag.m;   // resulting magic number
+  mag.s = p - d.getBitWidth();          // resulting shift
+  return mag;
+}
+
+/// Calculate the magic numbers required to implement an unsigned integer
+/// division by a constant as a sequence of multiplies, adds and shifts.
+/// Requires that the divisor not be 0.  Taken from "Hacker's Delight", Henry
+/// S. Warren, Jr., chapter 10.
+APInt::mu APInt::magicu() const {
+  const APInt& d = *this;
+  unsigned p;
+  APInt nc, delta, q1, r1, q2, r2;
+  struct mu magu;
+  magu.a = 0;               // initialize "add" indicator
+  APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
+  APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
+  APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
+
+  nc = allOnes - (-d).urem(d);
+  p = d.getBitWidth() - 1;  // initialize p
+  q1 = signedMin.udiv(nc);  // initialize q1 = 2p/nc
+  r1 = signedMin - q1*nc;   // initialize r1 = rem(2p,nc)
+  q2 = signedMax.udiv(d);   // initialize q2 = (2p-1)/d
+  r2 = signedMax - q2*d;    // initialize r2 = rem((2p-1),d)
+  do {
+    p = p + 1;
+    if (r1.uge(nc - r1)) {
+      q1 = q1 + q1 + 1;  // update q1
+      r1 = r1 + r1 - nc; // update r1
+    }
+    else {
+      q1 = q1+q1; // update q1
+      r1 = r1+r1; // update r1
+    }
+    if ((r2 + 1).uge(d - r2)) {
+      if (q2.uge(signedMax)) magu.a = 1;
+      q2 = q2+q2 + 1;     // update q2
+      r2 = r2+r2 + 1 - d; // update r2
+    }
+    else {
+      if (q2.uge(signedMin)) magu.a = 1;
+      q2 = q2+q2;     // update q2
+      r2 = r2+r2 + 1; // update r2
+    }
+    delta = d - 1 - r2;
+  } while (p < d.getBitWidth()*2 &&
+           (q1.ult(delta) || (q1 == delta && r1 == 0)));
+  magu.m = q2 + 1; // resulting magic number
+  magu.s = p - d.getBitWidth();  // resulting shift
+  return magu;
+}
+
 /// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
 /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
 /// variables here have the same names as in the algorithm. Comments explain