| //===- Reader.cpp - Code to read bytecode files ---------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This library implements the functionality defined in llvm/Bytecode/Reader.h |
| // |
| // Note that this library should be as fast as possible, reentrant, and |
| // threadsafe!! |
| // |
| // TODO: Allow passing in an option to ignore the symbol table |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "AnalyzerInternals.h" |
| #include "llvm/Module.h" |
| #include "llvm/Bytecode/Format.h" |
| #include "Support/StringExtras.h" |
| #include <iostream> |
| #include <sstream> |
| |
| using namespace llvm; |
| |
| #define PARSE_ERROR(inserters) \ |
| { \ |
| std::ostringstream errormsg; \ |
| errormsg << inserters; \ |
| if ( ! handler->handleError( errormsg.str() ) ) \ |
| throw std::string(errormsg.str()); \ |
| } |
| |
| const Type *AbstractBytecodeParser::getType(unsigned ID) { |
| //cerr << "Looking up Type ID: " << ID << "\n"; |
| |
| if (ID < Type::FirstDerivedTyID) |
| if (const Type *T = Type::getPrimitiveType((Type::PrimitiveID)ID)) |
| return T; // Asked for a primitive type... |
| |
| // Otherwise, derived types need offset... |
| ID -= Type::FirstDerivedTyID; |
| |
| if (!CompactionTypeTable.empty()) { |
| if (ID >= CompactionTypeTable.size()) |
| PARSE_ERROR("Type ID out of range for compaction table!"); |
| return CompactionTypeTable[ID]; |
| } |
| |
| // Is it a module-level type? |
| if (ID < ModuleTypes.size()) |
| return ModuleTypes[ID].get(); |
| |
| // Nope, is it a function-level type? |
| ID -= ModuleTypes.size(); |
| if (ID < FunctionTypes.size()) |
| return FunctionTypes[ID].get(); |
| |
| PARSE_ERROR("Illegal type reference!"); |
| return Type::VoidTy; |
| } |
| |
| bool AbstractBytecodeParser::ParseInstruction(BufPtr& Buf, BufPtr EndBuf, |
| std::vector<unsigned> &Operands) { |
| Operands.clear(); |
| unsigned iType = 0; |
| unsigned Opcode = 0; |
| unsigned Op = read(Buf, EndBuf); |
| |
| // bits Instruction format: Common to all formats |
| // -------------------------- |
| // 01-00: Opcode type, fixed to 1. |
| // 07-02: Opcode |
| Opcode = (Op >> 2) & 63; |
| Operands.resize((Op >> 0) & 03); |
| |
| switch (Operands.size()) { |
| case 1: |
| // bits Instruction format: |
| // -------------------------- |
| // 19-08: Resulting type plane |
| // 31-20: Operand #1 (if set to (2^12-1), then zero operands) |
| // |
| iType = (Op >> 8) & 4095; |
| Operands[0] = (Op >> 20) & 4095; |
| if (Operands[0] == 4095) // Handle special encoding for 0 operands... |
| Operands.resize(0); |
| break; |
| case 2: |
| // bits Instruction format: |
| // -------------------------- |
| // 15-08: Resulting type plane |
| // 23-16: Operand #1 |
| // 31-24: Operand #2 |
| // |
| iType = (Op >> 8) & 255; |
| Operands[0] = (Op >> 16) & 255; |
| Operands[1] = (Op >> 24) & 255; |
| break; |
| case 3: |
| // bits Instruction format: |
| // -------------------------- |
| // 13-08: Resulting type plane |
| // 19-14: Operand #1 |
| // 25-20: Operand #2 |
| // 31-26: Operand #3 |
| // |
| iType = (Op >> 8) & 63; |
| Operands[0] = (Op >> 14) & 63; |
| Operands[1] = (Op >> 20) & 63; |
| Operands[2] = (Op >> 26) & 63; |
| break; |
| case 0: |
| Buf -= 4; // Hrm, try this again... |
| Opcode = read_vbr_uint(Buf, EndBuf); |
| Opcode >>= 2; |
| iType = read_vbr_uint(Buf, EndBuf); |
| |
| unsigned NumOperands = read_vbr_uint(Buf, EndBuf); |
| Operands.resize(NumOperands); |
| |
| if (NumOperands == 0) |
| PARSE_ERROR("Zero-argument instruction found; this is invalid."); |
| |
| for (unsigned i = 0; i != NumOperands; ++i) |
| Operands[i] = read_vbr_uint(Buf, EndBuf); |
| align32(Buf, EndBuf); |
| break; |
| } |
| |
| return handler->handleInstruction(Opcode, getType(iType), Operands); |
| } |
| |
| /// ParseBasicBlock - In LLVM 1.0 bytecode files, we used to output one |
| /// basicblock at a time. This method reads in one of the basicblock packets. |
| void AbstractBytecodeParser::ParseBasicBlock(BufPtr &Buf, |
| BufPtr EndBuf, |
| unsigned BlockNo) { |
| handler->handleBasicBlockBegin( BlockNo ); |
| |
| std::vector<unsigned> Args; |
| bool is_terminating = false; |
| while (Buf < EndBuf) |
| is_terminating = ParseInstruction(Buf, EndBuf, Args); |
| |
| if ( ! is_terminating ) |
| PARSE_ERROR( |
| "Failed to recognize instruction as terminating at end of block"); |
| |
| handler->handleBasicBlockEnd( BlockNo ); |
| } |
| |
| |
| /// ParseInstructionList - Parse all of the BasicBlock's & Instruction's in the |
| /// body of a function. In post 1.0 bytecode files, we no longer emit basic |
| /// block individually, in order to avoid per-basic-block overhead. |
| unsigned AbstractBytecodeParser::ParseInstructionList( BufPtr &Buf, |
| BufPtr EndBuf) { |
| unsigned BlockNo = 0; |
| std::vector<unsigned> Args; |
| |
| while (Buf < EndBuf) { |
| handler->handleBasicBlockBegin( BlockNo ); |
| |
| // Read instructions into this basic block until we get to a terminator |
| bool is_terminating = false; |
| while (Buf < EndBuf && !is_terminating ) |
| is_terminating = ParseInstruction(Buf, EndBuf, Args ) ; |
| |
| if (!is_terminating) |
| PARSE_ERROR( "Non-terminated basic block found!"); |
| |
| handler->handleBasicBlockEnd( BlockNo ); |
| ++BlockNo; |
| } |
| return BlockNo; |
| } |
| |
| void AbstractBytecodeParser::ParseSymbolTable(BufPtr &Buf, BufPtr EndBuf) { |
| handler->handleSymbolTableBegin(); |
| |
| while (Buf < EndBuf) { |
| // Symtab block header: [num entries][type id number] |
| unsigned NumEntries = read_vbr_uint(Buf, EndBuf); |
| unsigned Typ = read_vbr_uint(Buf, EndBuf); |
| const Type *Ty = getType(Typ); |
| |
| handler->handleSymbolTablePlane( Typ, NumEntries, Ty ); |
| |
| for (unsigned i = 0; i != NumEntries; ++i) { |
| // Symtab entry: [def slot #][name] |
| unsigned slot = read_vbr_uint(Buf, EndBuf); |
| std::string Name = read_str(Buf, EndBuf); |
| |
| if (Typ == Type::TypeTyID) |
| handler->handleSymbolTableType( i, slot, Name ); |
| else |
| handler->handleSymbolTableValue( i, slot, Name ); |
| } |
| } |
| |
| if (Buf > EndBuf) |
| PARSE_ERROR("Tried to read past end of buffer while reading symbol table."); |
| |
| handler->handleSymbolTableEnd(); |
| } |
| |
| void AbstractBytecodeParser::ParseFunctionLazily(BufPtr &Buf, BufPtr EndBuf) { |
| if (FunctionSignatureList.empty()) |
| throw std::string("FunctionSignatureList empty!"); |
| |
| const Type *FType = FunctionSignatureList.back(); |
| FunctionSignatureList.pop_back(); |
| |
| // Save the information for future reading of the function |
| LazyFunctionLoadMap[FType] = LazyFunctionInfo(Buf, EndBuf); |
| // Pretend we've `parsed' this function |
| Buf = EndBuf; |
| } |
| |
| void AbstractBytecodeParser::ParseNextFunction(Type* FType) { |
| // Find {start, end} pointers and slot in the map. If not there, we're done. |
| LazyFunctionMap::iterator Fi = LazyFunctionLoadMap.find(FType); |
| |
| // Make sure we found it |
| if ( Fi == LazyFunctionLoadMap.end() ) { |
| PARSE_ERROR("Unrecognized function of type " << FType->getDescription()); |
| return; |
| } |
| |
| BufPtr Buf = Fi->second.Buf; |
| BufPtr EndBuf = Fi->second.EndBuf; |
| assert(Fi->first == FType); |
| |
| LazyFunctionLoadMap.erase(Fi); |
| |
| this->ParseFunctionBody( FType, Buf, EndBuf ); |
| } |
| |
| void AbstractBytecodeParser::ParseFunctionBody(const Type* FType, |
| BufPtr &Buf, BufPtr EndBuf ) { |
| |
| GlobalValue::LinkageTypes Linkage = GlobalValue::ExternalLinkage; |
| |
| unsigned LinkageType = read_vbr_uint(Buf, EndBuf); |
| switch (LinkageType) { |
| case 0: Linkage = GlobalValue::ExternalLinkage; break; |
| case 1: Linkage = GlobalValue::WeakLinkage; break; |
| case 2: Linkage = GlobalValue::AppendingLinkage; break; |
| case 3: Linkage = GlobalValue::InternalLinkage; break; |
| case 4: Linkage = GlobalValue::LinkOnceLinkage; break; |
| default: |
| PARSE_ERROR("Invalid linkage type for Function."); |
| Linkage = GlobalValue::InternalLinkage; |
| break; |
| } |
| |
| handler->handleFunctionBegin(FType,Linkage); |
| |
| // Keep track of how many basic blocks we have read in... |
| unsigned BlockNum = 0; |
| bool InsertedArguments = false; |
| |
| while (Buf < EndBuf) { |
| unsigned Type, Size; |
| BufPtr OldBuf = Buf; |
| readBlock(Buf, EndBuf, Type, Size); |
| |
| switch (Type) { |
| case BytecodeFormat::ConstantPool: |
| ParseConstantPool(Buf, Buf+Size, FunctionTypes ); |
| break; |
| |
| case BytecodeFormat::CompactionTable: |
| ParseCompactionTable(Buf, Buf+Size); |
| break; |
| |
| case BytecodeFormat::BasicBlock: |
| ParseBasicBlock(Buf, Buf+Size, BlockNum++); |
| break; |
| |
| case BytecodeFormat::InstructionList: |
| if (BlockNum) |
| PARSE_ERROR("InstructionList must come before basic blocks!"); |
| BlockNum = ParseInstructionList(Buf, Buf+Size); |
| break; |
| |
| case BytecodeFormat::SymbolTable: |
| ParseSymbolTable(Buf, Buf+Size ); |
| break; |
| |
| default: |
| Buf += Size; |
| if (OldBuf > Buf) |
| PARSE_ERROR("Wrapped around reading bytecode"); |
| break; |
| } |
| |
| // Malformed bc file if read past end of block. |
| align32(Buf, EndBuf); |
| } |
| |
| handler->handleFunctionEnd(FType); |
| |
| // Clear out function-level types... |
| FunctionTypes.clear(); |
| CompactionTypeTable.clear(); |
| } |
| |
| void AbstractBytecodeParser::ParseAllFunctionBodies() { |
| LazyFunctionMap::iterator Fi = LazyFunctionLoadMap.begin(); |
| LazyFunctionMap::iterator Fe = LazyFunctionLoadMap.end(); |
| |
| while ( Fi != Fe ) { |
| const Type* FType = Fi->first; |
| this->ParseFunctionBody(FType, Fi->second.Buf, Fi->second.EndBuf); |
| } |
| } |
| |
| void AbstractBytecodeParser::ParseCompactionTable(BufPtr &Buf, BufPtr End) { |
| |
| handler->handleCompactionTableBegin(); |
| |
| while (Buf != End) { |
| unsigned NumEntries = read_vbr_uint(Buf, End); |
| unsigned Ty; |
| |
| if ((NumEntries & 3) == 3) { |
| NumEntries >>= 2; |
| Ty = read_vbr_uint(Buf, End); |
| } else { |
| Ty = NumEntries >> 2; |
| NumEntries &= 3; |
| } |
| |
| handler->handleCompactionTablePlane( Ty, NumEntries ); |
| |
| if (Ty == Type::TypeTyID) { |
| for (unsigned i = 0; i != NumEntries; ++i) { |
| unsigned TypeSlot = read_vbr_uint(Buf,End); |
| const Type *Typ = getGlobalTableType(TypeSlot); |
| handler->handleCompactionTableType( i, TypeSlot, Typ ); |
| } |
| } else { |
| const Type *Typ = getType(Ty); |
| // Push the implicit zero |
| for (unsigned i = 0; i != NumEntries; ++i) { |
| unsigned ValSlot = read_vbr_uint(Buf, End); |
| handler->handleCompactionTableValue( i, ValSlot, Typ ); |
| } |
| } |
| } |
| handler->handleCompactionTableEnd(); |
| } |
| |
| const Type *AbstractBytecodeParser::ParseTypeConstant(const unsigned char *&Buf, |
| const unsigned char *EndBuf) { |
| unsigned PrimType = read_vbr_uint(Buf, EndBuf); |
| |
| const Type *Val = 0; |
| if ((Val = Type::getPrimitiveType((Type::PrimitiveID)PrimType))) |
| return Val; |
| |
| switch (PrimType) { |
| case Type::FunctionTyID: { |
| const Type *RetType = getType(read_vbr_uint(Buf, EndBuf)); |
| |
| unsigned NumParams = read_vbr_uint(Buf, EndBuf); |
| |
| std::vector<const Type*> Params; |
| while (NumParams--) |
| Params.push_back(getType(read_vbr_uint(Buf, EndBuf))); |
| |
| bool isVarArg = Params.size() && Params.back() == Type::VoidTy; |
| if (isVarArg) Params.pop_back(); |
| |
| Type* result = FunctionType::get(RetType, Params, isVarArg); |
| handler->handleType( result ); |
| return result; |
| } |
| case Type::ArrayTyID: { |
| unsigned ElTyp = read_vbr_uint(Buf, EndBuf); |
| const Type *ElementType = getType(ElTyp); |
| |
| unsigned NumElements = read_vbr_uint(Buf, EndBuf); |
| |
| BCR_TRACE(5, "Array Type Constant #" << ElTyp << " size=" |
| << NumElements << "\n"); |
| Type* result = ArrayType::get(ElementType, NumElements); |
| handler->handleType( result ); |
| return result; |
| } |
| case Type::StructTyID: { |
| std::vector<const Type*> Elements; |
| unsigned Typ = read_vbr_uint(Buf, EndBuf); |
| while (Typ) { // List is terminated by void/0 typeid |
| Elements.push_back(getType(Typ)); |
| Typ = read_vbr_uint(Buf, EndBuf); |
| } |
| |
| Type* result = StructType::get(Elements); |
| handler->handleType( result ); |
| return result; |
| } |
| case Type::PointerTyID: { |
| unsigned ElTyp = read_vbr_uint(Buf, EndBuf); |
| BCR_TRACE(5, "Pointer Type Constant #" << ElTyp << "\n"); |
| Type* result = PointerType::get(getType(ElTyp)); |
| handler->handleType( result ); |
| return result; |
| } |
| |
| case Type::OpaqueTyID: { |
| Type* result = OpaqueType::get(); |
| handler->handleType( result ); |
| return result; |
| } |
| |
| default: |
| PARSE_ERROR("Don't know how to deserialize primitive type" << PrimType << "\n"); |
| return Val; |
| } |
| } |
| |
| // ParseTypeConstants - We have to use this weird code to handle recursive |
| // types. We know that recursive types will only reference the current slab of |
| // values in the type plane, but they can forward reference types before they |
| // have been read. For example, Type #0 might be '{ Ty#1 }' and Type #1 might |
| // be 'Ty#0*'. When reading Type #0, type number one doesn't exist. To fix |
| // this ugly problem, we pessimistically insert an opaque type for each type we |
| // are about to read. This means that forward references will resolve to |
| // something and when we reread the type later, we can replace the opaque type |
| // with a new resolved concrete type. |
| // |
| void AbstractBytecodeParser::ParseTypeConstants(const unsigned char *&Buf, |
| const unsigned char *EndBuf, |
| TypeListTy &Tab, |
| unsigned NumEntries) { |
| assert(Tab.size() == 0 && "should not have read type constants in before!"); |
| |
| // Insert a bunch of opaque types to be resolved later... |
| Tab.reserve(NumEntries); |
| for (unsigned i = 0; i != NumEntries; ++i) |
| Tab.push_back(OpaqueType::get()); |
| |
| // Loop through reading all of the types. Forward types will make use of the |
| // opaque types just inserted. |
| // |
| for (unsigned i = 0; i != NumEntries; ++i) { |
| const Type *NewTy = ParseTypeConstant(Buf, EndBuf), *OldTy = Tab[i].get(); |
| if (NewTy == 0) throw std::string("Couldn't parse type!"); |
| BCR_TRACE(4, "#" << i << ": Read Type Constant: '" << NewTy << |
| "' Replacing: " << OldTy << "\n"); |
| |
| // Don't insertValue the new type... instead we want to replace the opaque |
| // type with the new concrete value... |
| // |
| |
| // Refine the abstract type to the new type. This causes all uses of the |
| // abstract type to use NewTy. This also will cause the opaque type to be |
| // deleted... |
| // |
| cast<DerivedType>(const_cast<Type*>(OldTy))->refineAbstractTypeTo(NewTy); |
| |
| // This should have replace the old opaque type with the new type in the |
| // value table... or with a preexisting type that was already in the system |
| assert(Tab[i] != OldTy && "refineAbstractType didn't work!"); |
| } |
| |
| BCR_TRACE(5, "Resulting types:\n"); |
| for (unsigned i = 0; i < NumEntries; ++i) { |
| BCR_TRACE(5, (void*)Tab[i].get() << " - " << Tab[i].get() << "\n"); |
| } |
| } |
| |
| |
| void AbstractBytecodeParser::ParseConstantValue(const unsigned char *&Buf, |
| const unsigned char *EndBuf, |
| unsigned TypeID) { |
| |
| // We must check for a ConstantExpr before switching by type because |
| // a ConstantExpr can be of any type, and has no explicit value. |
| // |
| // 0 if not expr; numArgs if is expr |
| unsigned isExprNumArgs = read_vbr_uint(Buf, EndBuf); |
| |
| if (isExprNumArgs) { |
| unsigned Opcode = read_vbr_uint(Buf, EndBuf); |
| const Type* Typ = getType(TypeID); |
| |
| // FIXME: Encoding of constant exprs could be much more compact! |
| std::vector<std::pair<const Type*,unsigned> > ArgVec; |
| ArgVec.reserve(isExprNumArgs); |
| |
| // Read the slot number and types of each of the arguments |
| for (unsigned i = 0; i != isExprNumArgs; ++i) { |
| unsigned ArgValSlot = read_vbr_uint(Buf, EndBuf); |
| unsigned ArgTypeSlot = read_vbr_uint(Buf, EndBuf); |
| BCR_TRACE(4, "CE Arg " << i << ": Type: '" << *getType(ArgTypeSlot) |
| << "' slot: " << ArgValSlot << "\n"); |
| |
| // Get the arg value from its slot if it exists, otherwise a placeholder |
| ArgVec.push_back(std::make_pair(getType(ArgTypeSlot), ArgValSlot)); |
| } |
| |
| handler->handleConstantExpression( Opcode, Typ, ArgVec ); |
| return; |
| } |
| |
| // Ok, not an ConstantExpr. We now know how to read the given type... |
| const Type *Ty = getType(TypeID); |
| switch (Ty->getPrimitiveID()) { |
| case Type::BoolTyID: { |
| unsigned Val = read_vbr_uint(Buf, EndBuf); |
| if (Val != 0 && Val != 1) |
| PARSE_ERROR("Invalid boolean value read."); |
| |
| handler->handleConstantValue( ConstantBool::get(Val == 1)); |
| break; |
| } |
| |
| case Type::UByteTyID: // Unsigned integer types... |
| case Type::UShortTyID: |
| case Type::UIntTyID: { |
| unsigned Val = read_vbr_uint(Buf, EndBuf); |
| if (!ConstantUInt::isValueValidForType(Ty, Val)) |
| throw std::string("Invalid unsigned byte/short/int read."); |
| handler->handleConstantValue( ConstantUInt::get(Ty, Val) ); |
| break; |
| } |
| |
| case Type::ULongTyID: { |
| handler->handleConstantValue( ConstantUInt::get(Ty, read_vbr_uint64(Buf, EndBuf)) ); |
| break; |
| } |
| |
| case Type::SByteTyID: // Signed integer types... |
| case Type::ShortTyID: |
| case Type::IntTyID: { |
| case Type::LongTyID: |
| int64_t Val = read_vbr_int64(Buf, EndBuf); |
| if (!ConstantSInt::isValueValidForType(Ty, Val)) |
| throw std::string("Invalid signed byte/short/int/long read."); |
| handler->handleConstantValue( ConstantSInt::get(Ty, Val) ); |
| break; |
| } |
| |
| case Type::FloatTyID: { |
| float F; |
| input_data(Buf, EndBuf, &F, &F+1); |
| handler->handleConstantValue( ConstantFP::get(Ty, F) ); |
| break; |
| } |
| |
| case Type::DoubleTyID: { |
| double Val; |
| input_data(Buf, EndBuf, &Val, &Val+1); |
| handler->handleConstantValue( ConstantFP::get(Ty, Val) ); |
| break; |
| } |
| |
| case Type::TypeTyID: |
| PARSE_ERROR("Type constants shouldn't live in constant table!"); |
| break; |
| |
| case Type::ArrayTyID: { |
| const ArrayType *AT = cast<ArrayType>(Ty); |
| unsigned NumElements = AT->getNumElements(); |
| std::vector<unsigned> Elements; |
| Elements.reserve(NumElements); |
| while (NumElements--) // Read all of the elements of the constant. |
| Elements.push_back(read_vbr_uint(Buf, EndBuf)); |
| |
| handler->handleConstantArray( AT, Elements ); |
| break; |
| } |
| |
| case Type::StructTyID: { |
| const StructType *ST = cast<StructType>(Ty); |
| std::vector<unsigned> Elements; |
| Elements.reserve(ST->getNumElements()); |
| for (unsigned i = 0; i != ST->getNumElements(); ++i) |
| Elements.push_back(read_vbr_uint(Buf, EndBuf)); |
| |
| handler->handleConstantStruct( ST, Elements ); |
| } |
| |
| case Type::PointerTyID: { // ConstantPointerRef value... |
| const PointerType *PT = cast<PointerType>(Ty); |
| unsigned Slot = read_vbr_uint(Buf, EndBuf); |
| handler->handleConstantPointer( PT, Slot ); |
| } |
| |
| default: |
| PARSE_ERROR("Don't know how to deserialize constant value of type '"+ |
| Ty->getDescription()); |
| } |
| } |
| |
| void AbstractBytecodeParser::ParseGlobalTypes(const unsigned char *&Buf, |
| const unsigned char *EndBuf) { |
| ParseConstantPool(Buf, EndBuf, ModuleTypes); |
| } |
| |
| void AbstractBytecodeParser::ParseStringConstants(const unsigned char *&Buf, |
| const unsigned char *EndBuf, |
| unsigned NumEntries ){ |
| for (; NumEntries; --NumEntries) { |
| unsigned Typ = read_vbr_uint(Buf, EndBuf); |
| const Type *Ty = getType(Typ); |
| if (!isa<ArrayType>(Ty)) |
| throw std::string("String constant data invalid!"); |
| |
| const ArrayType *ATy = cast<ArrayType>(Ty); |
| if (ATy->getElementType() != Type::SByteTy && |
| ATy->getElementType() != Type::UByteTy) |
| throw std::string("String constant data invalid!"); |
| |
| // Read character data. The type tells us how long the string is. |
| char Data[ATy->getNumElements()]; |
| input_data(Buf, EndBuf, Data, Data+ATy->getNumElements()); |
| |
| std::vector<Constant*> Elements(ATy->getNumElements()); |
| if (ATy->getElementType() == Type::SByteTy) |
| for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) |
| Elements[i] = ConstantSInt::get(Type::SByteTy, (signed char)Data[i]); |
| else |
| for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) |
| Elements[i] = ConstantUInt::get(Type::UByteTy, (unsigned char)Data[i]); |
| |
| // Create the constant, inserting it as needed. |
| ConstantArray *C = cast<ConstantArray>( ConstantArray::get(ATy, Elements) ); |
| handler->handleConstantString( C ); |
| } |
| } |
| |
| |
| void AbstractBytecodeParser::ParseConstantPool(const unsigned char *&Buf, |
| const unsigned char *EndBuf, |
| TypeListTy &TypeTab) { |
| while (Buf < EndBuf) { |
| unsigned NumEntries = read_vbr_uint(Buf, EndBuf); |
| unsigned Typ = read_vbr_uint(Buf, EndBuf); |
| if (Typ == Type::TypeTyID) { |
| ParseTypeConstants(Buf, EndBuf, TypeTab, NumEntries); |
| } else if (Typ == Type::VoidTyID) { |
| ParseStringConstants(Buf, EndBuf, NumEntries); |
| } else { |
| BCR_TRACE(3, "Type: '" << *getType(Typ) << "' NumEntries: " |
| << NumEntries << "\n"); |
| |
| for (unsigned i = 0; i < NumEntries; ++i) { |
| ParseConstantValue(Buf, EndBuf, Typ); |
| } |
| } |
| } |
| |
| if (Buf > EndBuf) PARSE_ERROR("Read past end of buffer."); |
| } |
| |
| void AbstractBytecodeParser::ParseModuleGlobalInfo(BufPtr &Buf, BufPtr End) { |
| |
| handler->handleModuleGlobalsBegin(); |
| |
| // Read global variables... |
| unsigned VarType = read_vbr_uint(Buf, End); |
| while (VarType != Type::VoidTyID) { // List is terminated by Void |
| // VarType Fields: bit0 = isConstant, bit1 = hasInitializer, bit2,3,4 = |
| // Linkage, bit4+ = slot# |
| unsigned SlotNo = VarType >> 5; |
| unsigned LinkageID = (VarType >> 2) & 7; |
| bool isConstant = VarType & 1; |
| bool hasInitializer = VarType & 2; |
| GlobalValue::LinkageTypes Linkage; |
| |
| switch (LinkageID) { |
| case 0: Linkage = GlobalValue::ExternalLinkage; break; |
| case 1: Linkage = GlobalValue::WeakLinkage; break; |
| case 2: Linkage = GlobalValue::AppendingLinkage; break; |
| case 3: Linkage = GlobalValue::InternalLinkage; break; |
| case 4: Linkage = GlobalValue::LinkOnceLinkage; break; |
| default: |
| PARSE_ERROR("Unknown linkage type: " << LinkageID); |
| Linkage = GlobalValue::InternalLinkage; |
| break; |
| } |
| |
| const Type *Ty = getType(SlotNo); |
| if ( !Ty ) { |
| PARSE_ERROR("Global has no type! SlotNo=" << SlotNo); |
| } |
| |
| if ( !isa<PointerType>(Ty)) { |
| PARSE_ERROR("Global not a pointer type! Ty= " << Ty->getDescription()); |
| } |
| |
| const Type *ElTy = cast<PointerType>(Ty)->getElementType(); |
| |
| // Create the global variable... |
| if (hasInitializer) { |
| unsigned initSlot = read_vbr_uint(Buf,End); |
| handler->handleInitializedGV( ElTy, isConstant, Linkage, initSlot ); |
| } else |
| handler->handleGlobalVariable( ElTy, isConstant, Linkage ); |
| |
| // Get next item |
| VarType = read_vbr_uint(Buf, End); |
| } |
| |
| // Read the function objects for all of the functions that are coming |
| unsigned FnSignature = read_vbr_uint(Buf, End); |
| while (FnSignature != Type::VoidTyID) { // List is terminated by Void |
| const Type *Ty = getType(FnSignature); |
| if (!isa<PointerType>(Ty) || |
| !isa<FunctionType>(cast<PointerType>(Ty)->getElementType())) { |
| PARSE_ERROR( "Function not a pointer to function type! Ty = " + |
| Ty->getDescription()); |
| // FIXME: what should Ty be if handler continues? |
| } |
| |
| // We create functions by passing the underlying FunctionType to create... |
| Ty = cast<PointerType>(Ty)->getElementType(); |
| |
| // Save this for later so we know type of lazily instantiated functions |
| FunctionSignatureList.push_back(Ty); |
| |
| handler->handleFunctionDeclaration(Ty); |
| |
| // Get Next function signature |
| FnSignature = read_vbr_uint(Buf, End); |
| } |
| |
| if (hasInconsistentModuleGlobalInfo) |
| align32(Buf, End); |
| |
| // This is for future proofing... in the future extra fields may be added that |
| // we don't understand, so we transparently ignore them. |
| // |
| Buf = End; |
| |
| handler->handleModuleGlobalsEnd(); |
| } |
| |
| void AbstractBytecodeParser::ParseVersionInfo(BufPtr &Buf, BufPtr EndBuf) { |
| unsigned Version = read_vbr_uint(Buf, EndBuf); |
| |
| // Unpack version number: low four bits are for flags, top bits = version |
| Module::Endianness Endianness; |
| Module::PointerSize PointerSize; |
| Endianness = (Version & 1) ? Module::BigEndian : Module::LittleEndian; |
| PointerSize = (Version & 2) ? Module::Pointer64 : Module::Pointer32; |
| |
| bool hasNoEndianness = Version & 4; |
| bool hasNoPointerSize = Version & 8; |
| |
| RevisionNum = Version >> 4; |
| |
| // Default values for the current bytecode version |
| hasInconsistentModuleGlobalInfo = false; |
| hasExplicitPrimitiveZeros = false; |
| hasRestrictedGEPTypes = false; |
| |
| switch (RevisionNum) { |
| case 0: // LLVM 1.0, 1.1 release version |
| // Base LLVM 1.0 bytecode format. |
| hasInconsistentModuleGlobalInfo = true; |
| hasExplicitPrimitiveZeros = true; |
| // FALL THROUGH |
| case 1: // LLVM 1.2 release version |
| // LLVM 1.2 added explicit support for emitting strings efficiently. |
| |
| // Also, it fixed the problem where the size of the ModuleGlobalInfo block |
| // included the size for the alignment at the end, where the rest of the |
| // blocks did not. |
| |
| // LLVM 1.2 and before required that GEP indices be ubyte constants for |
| // structures and longs for sequential types. |
| hasRestrictedGEPTypes = true; |
| |
| // FALL THROUGH |
| case 2: // LLVM 1.3 release version |
| break; |
| |
| default: |
| PARSE_ERROR("Unknown bytecode version number: " << RevisionNum); |
| } |
| |
| if (hasNoEndianness) Endianness = Module::AnyEndianness; |
| if (hasNoPointerSize) PointerSize = Module::AnyPointerSize; |
| |
| handler->handleVersionInfo(RevisionNum, Endianness, PointerSize ); |
| } |
| |
| void AbstractBytecodeParser::ParseModule(BufPtr &Buf, BufPtr EndBuf ) { |
| unsigned Type, Size; |
| readBlock(Buf, EndBuf, Type, Size); |
| if (Type != BytecodeFormat::Module || Buf+Size != EndBuf) |
| // Hrm, not a class? |
| PARSE_ERROR("Expected Module block! B: " << unsigned(intptr_t(Buf)) << |
| ", S: " << Size << " E: " << unsigned(intptr_t(EndBuf))); |
| |
| // Read into instance variables... |
| ParseVersionInfo(Buf, EndBuf); |
| align32(Buf, EndBuf); |
| |
| bool SeenModuleGlobalInfo = false; |
| bool SeenGlobalTypePlane = false; |
| while (Buf < EndBuf) { |
| BufPtr OldBuf = Buf; |
| readBlock(Buf, EndBuf, Type, Size); |
| |
| switch (Type) { |
| |
| case BytecodeFormat::GlobalTypePlane: |
| if ( SeenGlobalTypePlane ) |
| PARSE_ERROR("Two GlobalTypePlane Blocks Encountered!"); |
| |
| ParseGlobalTypes(Buf, Buf+Size); |
| SeenGlobalTypePlane = true; |
| break; |
| |
| case BytecodeFormat::ModuleGlobalInfo: |
| if ( SeenModuleGlobalInfo ) |
| PARSE_ERROR("Two ModuleGlobalInfo Blocks Encountered!"); |
| ParseModuleGlobalInfo(Buf, Buf+Size); |
| SeenModuleGlobalInfo = true; |
| break; |
| |
| case BytecodeFormat::ConstantPool: |
| ParseConstantPool(Buf, Buf+Size, ModuleTypes); |
| break; |
| |
| case BytecodeFormat::Function: |
| ParseFunctionLazily(Buf, Buf+Size); |
| break; |
| |
| case BytecodeFormat::SymbolTable: |
| ParseSymbolTable(Buf, Buf+Size ); |
| break; |
| |
| default: |
| Buf += Size; |
| if (OldBuf > Buf) |
| { |
| PARSE_ERROR("Unexpected Block of Type" << Type << "encountered!" ); |
| } |
| break; |
| } |
| align32(Buf, EndBuf); |
| } |
| } |
| |
| void AbstractBytecodeParser::ParseBytecode( |
| BufPtr Buf, unsigned Length, |
| const std::string &ModuleID) { |
| |
| handler->handleStart(); |
| unsigned char *EndBuf = (unsigned char*)(Buf + Length); |
| |
| // Read and check signature... |
| unsigned Sig = read(Buf, EndBuf); |
| if (Sig != ('l' | ('l' << 8) | ('v' << 16) | ('m' << 24))) { |
| PARSE_ERROR("Invalid bytecode signature: " << Sig); |
| } |
| |
| handler->handleModuleBegin(ModuleID); |
| |
| this->ParseModule(Buf, EndBuf); |
| |
| handler->handleModuleEnd(ModuleID); |
| |
| handler->handleFinish(); |
| } |
| |
| // vim: sw=2 |