| //===-- InstructionWriter.cpp - Functions for writing instructions --------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the routines for encoding instruction opcodes to a |
| // bytecode stream. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "WriterInternals.h" |
| #include "llvm/Module.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Support/GetElementPtrTypeIterator.h" |
| #include "Support/Statistic.h" |
| #include <algorithm> |
| using namespace llvm; |
| |
| typedef unsigned char uchar; |
| |
| // outputInstructionFormat0 - Output those wierd instructions that have a large |
| // number of operands or have large operands themselves... |
| // |
| // Format: [opcode] [type] [numargs] [arg0] [arg1] ... [arg<numargs-1>] |
| // |
| static void outputInstructionFormat0(const Instruction *I, unsigned Opcode, |
| const SlotCalculator &Table, |
| unsigned Type, std::deque<uchar> &Out) { |
| // Opcode must have top two bits clear... |
| output_vbr(Opcode << 2, Out); // Instruction Opcode ID |
| output_vbr(Type, Out); // Result type |
| |
| unsigned NumArgs = I->getNumOperands(); |
| output_vbr(NumArgs + (isa<CastInst>(I) || isa<VANextInst>(I) || |
| isa<VAArgInst>(I)), Out); |
| |
| if (!isa<GetElementPtrInst>(&I)) { |
| for (unsigned i = 0; i < NumArgs; ++i) { |
| int Slot = Table.getSlot(I->getOperand(i)); |
| assert(Slot >= 0 && "No slot number for value!?!?"); |
| output_vbr((unsigned)Slot, Out); |
| } |
| |
| if (isa<CastInst>(I) || isa<VAArgInst>(I)) { |
| int Slot = Table.getSlot(I->getType()); |
| assert(Slot != -1 && "Cast return type unknown?"); |
| output_vbr((unsigned)Slot, Out); |
| } else if (const VANextInst *VAI = dyn_cast<VANextInst>(I)) { |
| int Slot = Table.getSlot(VAI->getArgType()); |
| assert(Slot != -1 && "VarArg argument type unknown?"); |
| output_vbr((unsigned)Slot, Out); |
| } |
| |
| } else { |
| int Slot = Table.getSlot(I->getOperand(0)); |
| assert(Slot >= 0 && "No slot number for value!?!?"); |
| output_vbr(unsigned(Slot), Out); |
| |
| // We need to encode the type of sequential type indices into their slot # |
| unsigned Idx = 1; |
| for (gep_type_iterator TI = gep_type_begin(I), E = gep_type_end(I); |
| Idx != NumArgs; ++TI, ++Idx) { |
| Slot = Table.getSlot(I->getOperand(Idx)); |
| assert(Slot >= 0 && "No slot number for value!?!?"); |
| |
| if (isa<SequentialType>(*TI)) { |
| unsigned IdxId; |
| switch (I->getOperand(Idx)->getType()->getPrimitiveID()) { |
| default: assert(0 && "Unknown index type!"); |
| case Type::UIntTyID: IdxId = 0; break; |
| case Type::IntTyID: IdxId = 1; break; |
| case Type::ULongTyID: IdxId = 2; break; |
| case Type::LongTyID: IdxId = 3; break; |
| } |
| Slot = (Slot << 2) | IdxId; |
| } |
| output_vbr(unsigned(Slot), Out); |
| } |
| } |
| |
| align32(Out); // We must maintain correct alignment! |
| } |
| |
| |
| // outputInstrVarArgsCall - Output the absurdly annoying varargs function calls. |
| // This are more annoying than most because the signature of the call does not |
| // tell us anything about the types of the arguments in the varargs portion. |
| // Because of this, we encode (as type 0) all of the argument types explicitly |
| // before the argument value. This really sucks, but you shouldn't be using |
| // varargs functions in your code! *death to printf*! |
| // |
| // Format: [opcode] [type] [numargs] [arg0] [arg1] ... [arg<numargs-1>] |
| // |
| static void outputInstrVarArgsCall(const Instruction *I, unsigned Opcode, |
| const SlotCalculator &Table, unsigned Type, |
| std::deque<uchar> &Out) { |
| assert(isa<CallInst>(I) || isa<InvokeInst>(I)); |
| // Opcode must have top two bits clear... |
| output_vbr(Opcode << 2, Out); // Instruction Opcode ID |
| output_vbr(Type, Out); // Result type (varargs type) |
| |
| const PointerType *PTy = cast<PointerType>(I->getOperand(0)->getType()); |
| const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); |
| unsigned NumParams = FTy->getNumParams(); |
| |
| unsigned NumFixedOperands; |
| if (isa<CallInst>(I)) { |
| // Output an operand for the callee and each fixed argument, then two for |
| // each variable argument. |
| NumFixedOperands = 1+NumParams; |
| } else { |
| assert(isa<InvokeInst>(I) && "Not call or invoke??"); |
| // Output an operand for the callee and destinations, then two for each |
| // variable argument. |
| NumFixedOperands = 3+NumParams; |
| } |
| output_vbr(2 * I->getNumOperands()-NumFixedOperands, Out); |
| |
| // The type for the function has already been emitted in the type field of the |
| // instruction. Just emit the slot # now. |
| for (unsigned i = 0; i != NumFixedOperands; ++i) { |
| int Slot = Table.getSlot(I->getOperand(i)); |
| assert(Slot >= 0 && "No slot number for value!?!?"); |
| output_vbr((unsigned)Slot, Out); |
| } |
| |
| for (unsigned i = NumFixedOperands, e = I->getNumOperands(); i != e; ++i) { |
| // Output Arg Type ID |
| int Slot = Table.getSlot(I->getOperand(i)->getType()); |
| assert(Slot >= 0 && "No slot number for value!?!?"); |
| output_vbr((unsigned)Slot, Out); |
| |
| // Output arg ID itself |
| Slot = Table.getSlot(I->getOperand(i)); |
| assert(Slot >= 0 && "No slot number for value!?!?"); |
| output_vbr((unsigned)Slot, Out); |
| } |
| align32(Out); // We must maintain correct alignment! |
| } |
| |
| |
| // outputInstructionFormat1 - Output one operand instructions, knowing that no |
| // operand index is >= 2^12. |
| // |
| static void outputInstructionFormat1(const Instruction *I, unsigned Opcode, |
| const SlotCalculator &Table, |
| unsigned *Slots, unsigned Type, |
| std::deque<uchar> &Out) { |
| // bits Instruction format: |
| // -------------------------- |
| // 01-00: Opcode type, fixed to 1. |
| // 07-02: Opcode |
| // 19-08: Resulting type plane |
| // 31-20: Operand #1 (if set to (2^12-1), then zero operands) |
| // |
| unsigned Bits = 1 | (Opcode << 2) | (Type << 8) | (Slots[0] << 20); |
| // cerr << "1 " << IType << " " << Type << " " << Slots[0] << endl; |
| output(Bits, Out); |
| } |
| |
| |
| // outputInstructionFormat2 - Output two operand instructions, knowing that no |
| // operand index is >= 2^8. |
| // |
| static void outputInstructionFormat2(const Instruction *I, unsigned Opcode, |
| const SlotCalculator &Table, |
| unsigned *Slots, unsigned Type, |
| std::deque<uchar> &Out) { |
| // bits Instruction format: |
| // -------------------------- |
| // 01-00: Opcode type, fixed to 2. |
| // 07-02: Opcode |
| // 15-08: Resulting type plane |
| // 23-16: Operand #1 |
| // 31-24: Operand #2 |
| // |
| unsigned Bits = 2 | (Opcode << 2) | (Type << 8) | |
| (Slots[0] << 16) | (Slots[1] << 24); |
| // cerr << "2 " << IType << " " << Type << " " << Slots[0] << " " |
| // << Slots[1] << endl; |
| output(Bits, Out); |
| } |
| |
| |
| // outputInstructionFormat3 - Output three operand instructions, knowing that no |
| // operand index is >= 2^6. |
| // |
| static void outputInstructionFormat3(const Instruction *I, unsigned Opcode, |
| const SlotCalculator &Table, |
| unsigned *Slots, unsigned Type, |
| std::deque<uchar> &Out) { |
| // bits Instruction format: |
| // -------------------------- |
| // 01-00: Opcode type, fixed to 3. |
| // 07-02: Opcode |
| // 13-08: Resulting type plane |
| // 19-14: Operand #1 |
| // 25-20: Operand #2 |
| // 31-26: Operand #3 |
| // |
| unsigned Bits = 3 | (Opcode << 2) | (Type << 8) | |
| (Slots[0] << 14) | (Slots[1] << 20) | (Slots[2] << 26); |
| //cerr << "3 " << IType << " " << Type << " " << Slots[0] << " " |
| // << Slots[1] << " " << Slots[2] << endl; |
| output(Bits, Out); |
| } |
| |
| void BytecodeWriter::outputInstruction(const Instruction &I) { |
| assert(I.getOpcode() < 62 && "Opcode too big???"); |
| unsigned Opcode = I.getOpcode(); |
| unsigned NumOperands = I.getNumOperands(); |
| |
| // Encode 'volatile load' as 62 and 'volatile store' as 63. |
| if (isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) |
| Opcode = 62; |
| if (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) |
| Opcode = 63; |
| |
| // Figure out which type to encode with the instruction. Typically we want |
| // the type of the first parameter, as opposed to the type of the instruction |
| // (for example, with setcc, we always know it returns bool, but the type of |
| // the first param is actually interesting). But if we have no arguments |
| // we take the type of the instruction itself. |
| // |
| const Type *Ty; |
| switch (I.getOpcode()) { |
| case Instruction::Select: |
| case Instruction::Malloc: |
| case Instruction::Alloca: |
| Ty = I.getType(); // These ALWAYS want to encode the return type |
| break; |
| case Instruction::Store: |
| Ty = I.getOperand(1)->getType(); // Encode the pointer type... |
| assert(isa<PointerType>(Ty) && "Store to nonpointer type!?!?"); |
| break; |
| default: // Otherwise use the default behavior... |
| Ty = NumOperands ? I.getOperand(0)->getType() : I.getType(); |
| break; |
| } |
| |
| unsigned Type; |
| int Slot = Table.getSlot(Ty); |
| assert(Slot != -1 && "Type not available!!?!"); |
| Type = (unsigned)Slot; |
| |
| // Varargs calls and invokes are encoded entirely different from any other |
| // instructions. |
| if (const CallInst *CI = dyn_cast<CallInst>(&I)){ |
| const PointerType *Ty =cast<PointerType>(CI->getCalledValue()->getType()); |
| if (cast<FunctionType>(Ty->getElementType())->isVarArg()) { |
| outputInstrVarArgsCall(CI, Opcode, Table, Type, Out); |
| return; |
| } |
| } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) { |
| const PointerType *Ty =cast<PointerType>(II->getCalledValue()->getType()); |
| if (cast<FunctionType>(Ty->getElementType())->isVarArg()) { |
| outputInstrVarArgsCall(II, Opcode, Table, Type, Out); |
| return; |
| } |
| } |
| |
| if (NumOperands <= 3) { |
| // Make sure that we take the type number into consideration. We don't want |
| // to overflow the field size for the instruction format we select. |
| // |
| unsigned MaxOpSlot = Type; |
| unsigned Slots[3]; Slots[0] = (1 << 12)-1; // Marker to signify 0 operands |
| |
| for (unsigned i = 0; i != NumOperands; ++i) { |
| int slot = Table.getSlot(I.getOperand(i)); |
| assert(slot != -1 && "Broken bytecode!"); |
| if (unsigned(slot) > MaxOpSlot) MaxOpSlot = unsigned(slot); |
| Slots[i] = unsigned(slot); |
| } |
| |
| // Handle the special cases for various instructions... |
| if (isa<CastInst>(I) || isa<VAArgInst>(I)) { |
| // Cast has to encode the destination type as the second argument in the |
| // packet, or else we won't know what type to cast to! |
| Slots[1] = Table.getSlot(I.getType()); |
| assert(Slots[1] != ~0U && "Cast return type unknown?"); |
| if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1]; |
| NumOperands++; |
| } else if (const VANextInst *VANI = dyn_cast<VANextInst>(&I)) { |
| Slots[1] = Table.getSlot(VANI->getArgType()); |
| assert(Slots[1] != ~0U && "va_next return type unknown?"); |
| if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1]; |
| NumOperands++; |
| } else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) { |
| // We need to encode the type of sequential type indices into their slot # |
| unsigned Idx = 1; |
| for (gep_type_iterator I = gep_type_begin(GEP), E = gep_type_end(GEP); |
| I != E; ++I, ++Idx) |
| if (isa<SequentialType>(*I)) { |
| unsigned IdxId; |
| switch (GEP->getOperand(Idx)->getType()->getPrimitiveID()) { |
| default: assert(0 && "Unknown index type!"); |
| case Type::UIntTyID: IdxId = 0; break; |
| case Type::IntTyID: IdxId = 1; break; |
| case Type::ULongTyID: IdxId = 2; break; |
| case Type::LongTyID: IdxId = 3; break; |
| } |
| Slots[Idx] = (Slots[Idx] << 2) | IdxId; |
| if (Slots[Idx] > MaxOpSlot) MaxOpSlot = Slots[Idx]; |
| } |
| } |
| |
| // Decide which instruction encoding to use. This is determined primarily |
| // by the number of operands, and secondarily by whether or not the max |
| // operand will fit into the instruction encoding. More operands == fewer |
| // bits per operand. |
| // |
| switch (NumOperands) { |
| case 0: |
| case 1: |
| if (MaxOpSlot < (1 << 12)-1) { // -1 because we use 4095 to indicate 0 ops |
| outputInstructionFormat1(&I, Opcode, Table, Slots, Type, Out); |
| return; |
| } |
| break; |
| |
| case 2: |
| if (MaxOpSlot < (1 << 8)) { |
| outputInstructionFormat2(&I, Opcode, Table, Slots, Type, Out); |
| return; |
| } |
| break; |
| |
| case 3: |
| if (MaxOpSlot < (1 << 6)) { |
| outputInstructionFormat3(&I, Opcode, Table, Slots, Type, Out); |
| return; |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| |
| // If we weren't handled before here, we either have a large number of |
| // operands or a large operand index that we are referring to. |
| outputInstructionFormat0(&I, Opcode, Table, Type, Out); |
| } |