| //===-- Writer.cpp - Library for writing LLVM bytecode files --------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This library implements the functionality defined in llvm/Bytecode/Writer.h |
| // |
| // Note that this file uses an unusual technique of outputting all the bytecode |
| // to a deque of unsigned char, then copies the deque to an ostream. The |
| // reason for this is that we must do "seeking" in the stream to do back- |
| // patching, and some very important ostreams that we want to support (like |
| // pipes) do not support seeking. :( :( :( |
| // |
| // The choice of the deque data structure is influenced by the extremely fast |
| // "append" speed, plus the free "seek"/replace in the middle of the stream. I |
| // didn't use a vector because the stream could end up very large and copying |
| // the whole thing to reallocate would be kinda silly. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "WriterInternals.h" |
| #include "llvm/Bytecode/WriteBytecodePass.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Module.h" |
| #include "llvm/SymbolTable.h" |
| #include "Support/STLExtras.h" |
| #include "Support/Statistic.h" |
| #include <cstring> |
| #include <algorithm> |
| using namespace llvm; |
| |
| static RegisterPass<WriteBytecodePass> X("emitbytecode", "Bytecode Writer"); |
| |
| static Statistic<> |
| BytesWritten("bytecodewriter", "Number of bytecode bytes written"); |
| |
| BytecodeWriter::BytecodeWriter(std::deque<unsigned char> &o, const Module *M) |
| : Out(o), Table(M, true) { |
| |
| // Emit the signature... |
| static const unsigned char *Sig = (const unsigned char*)"llvm"; |
| output_data(Sig, Sig+4, Out); |
| |
| // Emit the top level CLASS block. |
| BytecodeBlock ModuleBlock(BytecodeFormat::Module, Out); |
| |
| bool isBigEndian = M->getEndianness() == Module::BigEndian; |
| bool hasLongPointers = M->getPointerSize() == Module::Pointer64; |
| bool hasNoEndianness = M->getEndianness() == Module::AnyEndianness; |
| bool hasNoPointerSize = M->getPointerSize() == Module::AnyPointerSize; |
| |
| // Output the version identifier... we are currently on bytecode version #2, |
| // which corresponds to LLVM v1.3. |
| unsigned Version = (2 << 4) | isBigEndian | (hasLongPointers << 1) | |
| (hasNoEndianness << 2) | (hasNoPointerSize << 3); |
| output_vbr(Version, Out); |
| align32(Out); |
| |
| { |
| BytecodeBlock CPool(BytecodeFormat::GlobalTypePlane, Out); |
| |
| // Write the type plane for types first because earlier planes (e.g. for a |
| // primitive type like float) may have constants constructed using types |
| // coming later (e.g., via getelementptr from a pointer type). The type |
| // plane is needed before types can be fwd or bkwd referenced. |
| const std::vector<const Value*> &Plane = Table.getPlane(Type::TypeTyID); |
| assert(!Plane.empty() && "No types at all?"); |
| unsigned ValNo = Type::FirstDerivedTyID; // Start at the derived types... |
| outputConstantsInPlane(Plane, ValNo); // Write out the types |
| } |
| |
| // The ModuleInfoBlock follows directly after the type information |
| outputModuleInfoBlock(M); |
| |
| // Output module level constants, used for global variable initializers |
| outputConstants(false); |
| |
| // Do the whole module now! Process each function at a time... |
| for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) |
| outputFunction(I); |
| |
| // If needed, output the symbol table for the module... |
| outputSymbolTable(M->getSymbolTable()); |
| } |
| |
| // Helper function for outputConstants(). |
| // Writes out all the constants in the plane Plane starting at entry StartNo. |
| // |
| void BytecodeWriter::outputConstantsInPlane(const std::vector<const Value*> |
| &Plane, unsigned StartNo) { |
| unsigned ValNo = StartNo; |
| |
| // Scan through and ignore function arguments, global values, and constant |
| // strings. |
| for (; ValNo < Plane.size() && |
| (isa<Argument>(Plane[ValNo]) || isa<GlobalValue>(Plane[ValNo]) || |
| (isa<ConstantArray>(Plane[ValNo]) && |
| cast<ConstantArray>(Plane[ValNo])->isString())); ValNo++) |
| /*empty*/; |
| |
| unsigned NC = ValNo; // Number of constants |
| for (; NC < Plane.size() && |
| (isa<Constant>(Plane[NC]) || isa<Type>(Plane[NC])); NC++) |
| /*empty*/; |
| NC -= ValNo; // Convert from index into count |
| if (NC == 0) return; // Skip empty type planes... |
| |
| // FIXME: Most slabs only have 1 or 2 entries! We should encode this much |
| // more compactly. |
| |
| // Output type header: [num entries][type id number] |
| // |
| output_vbr(NC, Out); |
| |
| // Output the Type ID Number... |
| int Slot = Table.getSlot(Plane.front()->getType()); |
| assert (Slot != -1 && "Type in constant pool but not in function!!"); |
| output_vbr((unsigned)Slot, Out); |
| |
| //cerr << "Emitting " << NC << " constants of type '" |
| // << Plane.front()->getType()->getName() << "' = Slot #" << Slot << "\n"; |
| |
| for (unsigned i = ValNo; i < ValNo+NC; ++i) { |
| const Value *V = Plane[i]; |
| if (const Constant *CPV = dyn_cast<Constant>(V)) { |
| //cerr << "Serializing value: <" << V->getType() << ">: " << V << ":" |
| // << Out.size() << "\n"; |
| outputConstant(CPV); |
| } else { |
| outputType(cast<Type>(V)); |
| } |
| } |
| } |
| |
| static inline bool hasNullValue(unsigned TyID) { |
| return TyID != Type::LabelTyID && TyID != Type::TypeTyID && |
| TyID != Type::VoidTyID; |
| } |
| |
| void BytecodeWriter::outputConstants(bool isFunction) { |
| BytecodeBlock CPool(BytecodeFormat::ConstantPool, Out, |
| true /* Elide block if empty */); |
| |
| unsigned NumPlanes = Table.getNumPlanes(); |
| |
| // Output the type plane before any constants! |
| if (isFunction && NumPlanes > Type::TypeTyID) { |
| const std::vector<const Value*> &Plane = Table.getPlane(Type::TypeTyID); |
| if (!Plane.empty()) { // Skip empty type planes... |
| unsigned ValNo = Table.getModuleLevel(Type::TypeTyID); |
| outputConstantsInPlane(Plane, ValNo); |
| } |
| } |
| |
| // Output module-level string constants before any other constants.x |
| if (!isFunction) |
| outputConstantStrings(); |
| |
| for (unsigned pno = 0; pno != NumPlanes; pno++) |
| if (pno != Type::TypeTyID) { // Type plane handled above. |
| const std::vector<const Value*> &Plane = Table.getPlane(pno); |
| if (!Plane.empty()) { // Skip empty type planes... |
| unsigned ValNo = 0; |
| if (isFunction) // Don't re-emit module constants |
| ValNo += Table.getModuleLevel(pno); |
| |
| if (hasNullValue(pno)) { |
| // Skip zero initializer |
| if (ValNo == 0) |
| ValNo = 1; |
| } |
| |
| // Write out constants in the plane |
| outputConstantsInPlane(Plane, ValNo); |
| } |
| } |
| } |
| |
| static unsigned getEncodedLinkage(const GlobalValue *GV) { |
| switch (GV->getLinkage()) { |
| default: assert(0 && "Invalid linkage!"); |
| case GlobalValue::ExternalLinkage: return 0; |
| case GlobalValue::WeakLinkage: return 1; |
| case GlobalValue::AppendingLinkage: return 2; |
| case GlobalValue::InternalLinkage: return 3; |
| case GlobalValue::LinkOnceLinkage: return 4; |
| } |
| } |
| |
| void BytecodeWriter::outputModuleInfoBlock(const Module *M) { |
| BytecodeBlock ModuleInfoBlock(BytecodeFormat::ModuleGlobalInfo, Out); |
| |
| // Output the types for the global variables in the module... |
| for (Module::const_giterator I = M->gbegin(), End = M->gend(); I != End;++I) { |
| int Slot = Table.getSlot(I->getType()); |
| assert(Slot != -1 && "Module global vars is broken!"); |
| |
| // Fields: bit0 = isConstant, bit1 = hasInitializer, bit2-4=Linkage, |
| // bit5+ = Slot # for type |
| unsigned oSlot = ((unsigned)Slot << 5) | (getEncodedLinkage(I) << 2) | |
| (I->hasInitializer() << 1) | I->isConstant(); |
| output_vbr(oSlot, Out); |
| |
| // If we have an initializer, output it now. |
| if (I->hasInitializer()) { |
| Slot = Table.getSlot((Value*)I->getInitializer()); |
| assert(Slot != -1 && "No slot for global var initializer!"); |
| output_vbr((unsigned)Slot, Out); |
| } |
| } |
| output_vbr((unsigned)Table.getSlot(Type::VoidTy), Out); |
| |
| // Output the types of the functions in this module... |
| for (Module::const_iterator I = M->begin(), End = M->end(); I != End; ++I) { |
| int Slot = Table.getSlot(I->getType()); |
| assert(Slot != -1 && "Module const pool is broken!"); |
| assert(Slot >= Type::FirstDerivedTyID && "Derived type not in range!"); |
| output_vbr((unsigned)Slot, Out); |
| } |
| output_vbr((unsigned)Table.getSlot(Type::VoidTy), Out); |
| } |
| |
| void BytecodeWriter::outputInstructions(const Function *F) { |
| BytecodeBlock ILBlock(BytecodeFormat::InstructionList, Out); |
| for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) |
| for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) |
| outputInstruction(*I); |
| } |
| |
| void BytecodeWriter::outputFunction(const Function *F) { |
| BytecodeBlock FunctionBlock(BytecodeFormat::Function, Out); |
| output_vbr(getEncodedLinkage(F), Out); |
| |
| // If this is an external function, there is nothing else to emit! |
| if (F->isExternal()) return; |
| |
| // Get slot information about the function... |
| Table.incorporateFunction(F); |
| |
| if (Table.getCompactionTable().empty()) { |
| // Output information about the constants in the function if the compaction |
| // table is not being used. |
| outputConstants(true); |
| } else { |
| // Otherwise, emit the compaction table. |
| outputCompactionTable(); |
| } |
| |
| // Output all of the instructions in the body of the function |
| outputInstructions(F); |
| |
| // If needed, output the symbol table for the function... |
| outputSymbolTable(F->getSymbolTable()); |
| |
| Table.purgeFunction(); |
| } |
| |
| void BytecodeWriter::outputCompactionTablePlane(unsigned PlaneNo, |
| const std::vector<const Value*> &Plane, |
| unsigned StartNo) { |
| unsigned End = Table.getModuleLevel(PlaneNo); |
| if (Plane.empty() || StartNo == End || End == 0) return; // Nothing to emit |
| assert(StartNo < End && "Cannot emit negative range!"); |
| assert(StartNo < Plane.size() && End <= Plane.size()); |
| |
| // Do not emit the null initializer! |
| if (PlaneNo != Type::TypeTyID) ++StartNo; |
| |
| // Figure out which encoding to use. By far the most common case we have is |
| // to emit 0-2 entries in a compaction table plane. |
| switch (End-StartNo) { |
| case 0: // Avoid emitting two vbr's if possible. |
| case 1: |
| case 2: |
| output_vbr((PlaneNo << 2) | End-StartNo, Out); |
| break; |
| default: |
| // Output the number of things. |
| output_vbr((unsigned(End-StartNo) << 2) | 3, Out); |
| output_vbr(PlaneNo, Out); // Emit the type plane this is |
| break; |
| } |
| |
| for (unsigned i = StartNo; i != End; ++i) |
| output_vbr(Table.getGlobalSlot(Plane[i]), Out); |
| } |
| |
| void BytecodeWriter::outputCompactionTable() { |
| BytecodeBlock CTB(BytecodeFormat::CompactionTable, Out, true/*ElideIfEmpty*/); |
| const std::vector<std::vector<const Value*> > &CT =Table.getCompactionTable(); |
| |
| // First thing is first, emit the type compaction table if there is one. |
| if (CT.size() > Type::TypeTyID) |
| outputCompactionTablePlane(Type::TypeTyID, CT[Type::TypeTyID], |
| Type::FirstDerivedTyID); |
| |
| for (unsigned i = 0, e = CT.size(); i != e; ++i) |
| if (i != Type::TypeTyID) |
| outputCompactionTablePlane(i, CT[i], 0); |
| } |
| |
| void BytecodeWriter::outputSymbolTable(const SymbolTable &MST) { |
| // Do not output the Bytecode block for an empty symbol table, it just wastes |
| // space! |
| if (MST.begin() == MST.end()) return; |
| |
| BytecodeBlock SymTabBlock(BytecodeFormat::SymbolTable, Out, |
| true/* ElideIfEmpty*/); |
| |
| for (SymbolTable::const_iterator TI = MST.begin(); TI != MST.end(); ++TI) { |
| SymbolTable::type_const_iterator I = MST.type_begin(TI->first); |
| SymbolTable::type_const_iterator End = MST.type_end(TI->first); |
| int Slot; |
| |
| if (I == End) continue; // Don't mess with an absent type... |
| |
| // Symtab block header: [num entries][type id number] |
| output_vbr(MST.type_size(TI->first), Out); |
| |
| Slot = Table.getSlot(TI->first); |
| assert(Slot != -1 && "Type in symtab, but not in table!"); |
| output_vbr((unsigned)Slot, Out); |
| |
| for (; I != End; ++I) { |
| // Symtab entry: [def slot #][name] |
| const Value *V = I->second; |
| |
| Slot = Table.getSlot(I->second); |
| assert(Slot != -1 && "Value in symtab but has no slot number!!"); |
| output_vbr((unsigned)Slot, Out); |
| output(I->first, Out, false); // Don't force alignment... |
| } |
| } |
| } |
| |
| void llvm::WriteBytecodeToFile(const Module *C, std::ostream &Out) { |
| assert(C && "You can't write a null module!!"); |
| |
| std::deque<unsigned char> Buffer; |
| |
| // This object populates buffer for us... |
| BytecodeWriter BCW(Buffer, C); |
| |
| // Keep track of how much we've written... |
| BytesWritten += Buffer.size(); |
| |
| // Okay, write the deque out to the ostream now... the deque is not |
| // sequential in memory, however, so write out as much as possible in big |
| // chunks, until we're done. |
| // |
| std::deque<unsigned char>::const_iterator I = Buffer.begin(),E = Buffer.end(); |
| while (I != E) { // Loop until it's all written |
| // Scan to see how big this chunk is... |
| const unsigned char *ChunkPtr = &*I; |
| const unsigned char *LastPtr = ChunkPtr; |
| while (I != E) { |
| const unsigned char *ThisPtr = &*++I; |
| if (LastPtr+1 != ThisPtr) { // Advanced by more than a byte of memory? |
| ++LastPtr; |
| break; |
| } |
| LastPtr = ThisPtr; |
| } |
| |
| // Write out the chunk... |
| Out.write((char*)ChunkPtr, LastPtr-ChunkPtr); |
| } |
| |
| Out.flush(); |
| } |