Move the FunctionLoweringInfo class and some related utility functions out
of SelectionDAGBuild.h/cpp into its own files, to help separate
general lowering logic from SelectionDAG-specific lowering logic.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@89667 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp b/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp
new file mode 100644
index 0000000..964b71f
--- /dev/null
+++ b/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp
@@ -0,0 +1,278 @@
+//===-- FunctionLoweringInfo.cpp ------------------------------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This implements routines for translating functions from LLVM IR into
+// Machine IR.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "function-lowering-info"
+#include "FunctionLoweringInfo.h"
+#include "llvm/CallingConv.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Function.h"
+#include "llvm/Instructions.h"
+#include "llvm/LLVMContext.h"
+#include "llvm/Module.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Analysis/DebugInfo.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Target/TargetFrameInfo.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetIntrinsicInfo.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+using namespace llvm;
+
+/// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
+/// of insertvalue or extractvalue indices that identify a member, return
+/// the linearized index of the start of the member.
+///
+unsigned llvm::ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty,
+                                  const unsigned *Indices,
+                                  const unsigned *IndicesEnd,
+                                  unsigned CurIndex) {
+  // Base case: We're done.
+  if (Indices && Indices == IndicesEnd)
+    return CurIndex;
+
+  // Given a struct type, recursively traverse the elements.
+  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
+    for (StructType::element_iterator EB = STy->element_begin(),
+                                      EI = EB,
+                                      EE = STy->element_end();
+        EI != EE; ++EI) {
+      if (Indices && *Indices == unsigned(EI - EB))
+        return ComputeLinearIndex(TLI, *EI, Indices+1, IndicesEnd, CurIndex);
+      CurIndex = ComputeLinearIndex(TLI, *EI, 0, 0, CurIndex);
+    }
+    return CurIndex;
+  }
+  // Given an array type, recursively traverse the elements.
+  else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
+    const Type *EltTy = ATy->getElementType();
+    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
+      if (Indices && *Indices == i)
+        return ComputeLinearIndex(TLI, EltTy, Indices+1, IndicesEnd, CurIndex);
+      CurIndex = ComputeLinearIndex(TLI, EltTy, 0, 0, CurIndex);
+    }
+    return CurIndex;
+  }
+  // We haven't found the type we're looking for, so keep searching.
+  return CurIndex + 1;
+}
+
+/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
+/// EVTs that represent all the individual underlying
+/// non-aggregate types that comprise it.
+///
+/// If Offsets is non-null, it points to a vector to be filled in
+/// with the in-memory offsets of each of the individual values.
+///
+void llvm::ComputeValueVTs(const TargetLowering &TLI, const Type *Ty,
+                           SmallVectorImpl<EVT> &ValueVTs,
+                           SmallVectorImpl<uint64_t> *Offsets,
+                           uint64_t StartingOffset) {
+  // Given a struct type, recursively traverse the elements.
+  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
+    const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy);
+    for (StructType::element_iterator EB = STy->element_begin(),
+                                      EI = EB,
+                                      EE = STy->element_end();
+         EI != EE; ++EI)
+      ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
+                      StartingOffset + SL->getElementOffset(EI - EB));
+    return;
+  }
+  // Given an array type, recursively traverse the elements.
+  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
+    const Type *EltTy = ATy->getElementType();
+    uint64_t EltSize = TLI.getTargetData()->getTypeAllocSize(EltTy);
+    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
+      ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
+                      StartingOffset + i * EltSize);
+    return;
+  }
+  // Interpret void as zero return values.
+  if (Ty == Type::getVoidTy(Ty->getContext()))
+    return;
+  // Base case: we can get an EVT for this LLVM IR type.
+  ValueVTs.push_back(TLI.getValueType(Ty));
+  if (Offsets)
+    Offsets->push_back(StartingOffset);
+}
+
+/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
+/// PHI nodes or outside of the basic block that defines it, or used by a
+/// switch or atomic instruction, which may expand to multiple basic blocks.
+static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
+  if (isa<PHINode>(I)) return true;
+  BasicBlock *BB = I->getParent();
+  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
+    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI))
+      return true;
+  return false;
+}
+
+/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
+/// entry block, return true.  This includes arguments used by switches, since
+/// the switch may expand into multiple basic blocks.
+static bool isOnlyUsedInEntryBlock(Argument *A, bool EnableFastISel) {
+  // With FastISel active, we may be splitting blocks, so force creation
+  // of virtual registers for all non-dead arguments.
+  // Don't force virtual registers for byval arguments though, because
+  // fast-isel can't handle those in all cases.
+  if (EnableFastISel && !A->hasByValAttr())
+    return A->use_empty();
+
+  BasicBlock *Entry = A->getParent()->begin();
+  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
+    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
+      return false;  // Use not in entry block.
+  return true;
+}
+
+FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli)
+  : TLI(tli) {
+}
+
+void FunctionLoweringInfo::set(Function &fn, MachineFunction &mf,
+                               bool EnableFastISel) {
+  Fn = &fn;
+  MF = &mf;
+  RegInfo = &MF->getRegInfo();
+
+  // Create a vreg for each argument register that is not dead and is used
+  // outside of the entry block for the function.
+  for (Function::arg_iterator AI = Fn->arg_begin(), E = Fn->arg_end();
+       AI != E; ++AI)
+    if (!isOnlyUsedInEntryBlock(AI, EnableFastISel))
+      InitializeRegForValue(AI);
+
+  // Initialize the mapping of values to registers.  This is only set up for
+  // instruction values that are used outside of the block that defines
+  // them.
+  Function::iterator BB = Fn->begin(), EB = Fn->end();
+  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
+    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
+      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
+        const Type *Ty = AI->getAllocatedType();
+        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
+        unsigned Align =
+          std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
+                   AI->getAlignment());
+
+        TySize *= CUI->getZExtValue();   // Get total allocated size.
+        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
+        StaticAllocaMap[AI] =
+          MF->getFrameInfo()->CreateStackObject(TySize, Align, false);
+      }
+
+  for (; BB != EB; ++BB)
+    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
+      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
+        if (!isa<AllocaInst>(I) ||
+            !StaticAllocaMap.count(cast<AllocaInst>(I)))
+          InitializeRegForValue(I);
+
+  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
+  // also creates the initial PHI MachineInstrs, though none of the input
+  // operands are populated.
+  for (BB = Fn->begin(), EB = Fn->end(); BB != EB; ++BB) {
+    MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB);
+    MBBMap[BB] = MBB;
+    MF->push_back(MBB);
+
+    // Transfer the address-taken flag. This is necessary because there could
+    // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
+    // the first one should be marked.
+    if (BB->hasAddressTaken())
+      MBB->setHasAddressTaken();
+
+    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
+    // appropriate.
+    PHINode *PN;
+    DebugLoc DL;
+    for (BasicBlock::iterator
+           I = BB->begin(), E = BB->end(); I != E; ++I) {
+
+      PN = dyn_cast<PHINode>(I);
+      if (!PN || PN->use_empty()) continue;
+
+      unsigned PHIReg = ValueMap[PN];
+      assert(PHIReg && "PHI node does not have an assigned virtual register!");
+
+      SmallVector<EVT, 4> ValueVTs;
+      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
+      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
+        EVT VT = ValueVTs[vti];
+        unsigned NumRegisters = TLI.getNumRegisters(Fn->getContext(), VT);
+        const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
+        for (unsigned i = 0; i != NumRegisters; ++i)
+          BuildMI(MBB, DL, TII->get(TargetInstrInfo::PHI), PHIReg + i);
+        PHIReg += NumRegisters;
+      }
+    }
+  }
+}
+
+/// clear - Clear out all the function-specific state. This returns this
+/// FunctionLoweringInfo to an empty state, ready to be used for a
+/// different function.
+void FunctionLoweringInfo::clear() {
+  MBBMap.clear();
+  ValueMap.clear();
+  StaticAllocaMap.clear();
+#ifndef NDEBUG
+  CatchInfoLost.clear();
+  CatchInfoFound.clear();
+#endif
+  LiveOutRegInfo.clear();
+}
+
+unsigned FunctionLoweringInfo::MakeReg(EVT VT) {
+  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
+}
+
+/// CreateRegForValue - Allocate the appropriate number of virtual registers of
+/// the correctly promoted or expanded types.  Assign these registers
+/// consecutive vreg numbers and return the first assigned number.
+///
+/// In the case that the given value has struct or array type, this function
+/// will assign registers for each member or element.
+///
+unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
+  SmallVector<EVT, 4> ValueVTs;
+  ComputeValueVTs(TLI, V->getType(), ValueVTs);
+
+  unsigned FirstReg = 0;
+  for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
+    EVT ValueVT = ValueVTs[Value];
+    EVT RegisterVT = TLI.getRegisterType(V->getContext(), ValueVT);
+
+    unsigned NumRegs = TLI.getNumRegisters(V->getContext(), ValueVT);
+    for (unsigned i = 0; i != NumRegs; ++i) {
+      unsigned R = MakeReg(RegisterVT);
+      if (!FirstReg) FirstReg = R;
+    }
+  }
+  return FirstReg;
+}