| //===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Pass to verify generated machine code. The following is checked: |
| // |
| // Operand counts: All explicit operands must be present. |
| // |
| // Register classes: All physical and virtual register operands must be |
| // compatible with the register class required by the instruction descriptor. |
| // |
| // Register live intervals: Registers must be defined only once, and must be |
| // defined before use. |
| // |
| // The machine code verifier is enabled from LLVMTargetMachine.cpp with the |
| // command-line option -verify-machineinstrs, or by defining the environment |
| // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive |
| // the verifier errors. |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Instructions.h" |
| #include "llvm/Function.h" |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h" |
| #include "llvm/CodeGen/LiveVariables.h" |
| #include "llvm/CodeGen/LiveStackAnalysis.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/SetOperations.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| using namespace llvm; |
| |
| namespace { |
| struct MachineVerifier { |
| |
| MachineVerifier(Pass *pass, const char *b) : |
| PASS(pass), |
| Banner(b), |
| OutFileName(getenv("LLVM_VERIFY_MACHINEINSTRS")) |
| {} |
| |
| bool runOnMachineFunction(MachineFunction &MF); |
| |
| Pass *const PASS; |
| const char *Banner; |
| const char *const OutFileName; |
| raw_ostream *OS; |
| const MachineFunction *MF; |
| const TargetMachine *TM; |
| const TargetInstrInfo *TII; |
| const TargetRegisterInfo *TRI; |
| const MachineRegisterInfo *MRI; |
| |
| unsigned foundErrors; |
| |
| typedef SmallVector<unsigned, 16> RegVector; |
| typedef DenseSet<unsigned> RegSet; |
| typedef DenseMap<unsigned, const MachineInstr*> RegMap; |
| |
| const MachineInstr *FirstTerminator; |
| |
| BitVector regsReserved; |
| RegSet regsLive; |
| RegVector regsDefined, regsDead, regsKilled; |
| RegSet regsLiveInButUnused; |
| |
| SlotIndex lastIndex; |
| |
| // Add Reg and any sub-registers to RV |
| void addRegWithSubRegs(RegVector &RV, unsigned Reg) { |
| RV.push_back(Reg); |
| if (TargetRegisterInfo::isPhysicalRegister(Reg)) |
| for (const unsigned *R = TRI->getSubRegisters(Reg); *R; R++) |
| RV.push_back(*R); |
| } |
| |
| struct BBInfo { |
| // Is this MBB reachable from the MF entry point? |
| bool reachable; |
| |
| // Vregs that must be live in because they are used without being |
| // defined. Map value is the user. |
| RegMap vregsLiveIn; |
| |
| // Regs killed in MBB. They may be defined again, and will then be in both |
| // regsKilled and regsLiveOut. |
| RegSet regsKilled; |
| |
| // Regs defined in MBB and live out. Note that vregs passing through may |
| // be live out without being mentioned here. |
| RegSet regsLiveOut; |
| |
| // Vregs that pass through MBB untouched. This set is disjoint from |
| // regsKilled and regsLiveOut. |
| RegSet vregsPassed; |
| |
| // Vregs that must pass through MBB because they are needed by a successor |
| // block. This set is disjoint from regsLiveOut. |
| RegSet vregsRequired; |
| |
| BBInfo() : reachable(false) {} |
| |
| // Add register to vregsPassed if it belongs there. Return true if |
| // anything changed. |
| bool addPassed(unsigned Reg) { |
| if (!TargetRegisterInfo::isVirtualRegister(Reg)) |
| return false; |
| if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) |
| return false; |
| return vregsPassed.insert(Reg).second; |
| } |
| |
| // Same for a full set. |
| bool addPassed(const RegSet &RS) { |
| bool changed = false; |
| for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) |
| if (addPassed(*I)) |
| changed = true; |
| return changed; |
| } |
| |
| // Add register to vregsRequired if it belongs there. Return true if |
| // anything changed. |
| bool addRequired(unsigned Reg) { |
| if (!TargetRegisterInfo::isVirtualRegister(Reg)) |
| return false; |
| if (regsLiveOut.count(Reg)) |
| return false; |
| return vregsRequired.insert(Reg).second; |
| } |
| |
| // Same for a full set. |
| bool addRequired(const RegSet &RS) { |
| bool changed = false; |
| for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) |
| if (addRequired(*I)) |
| changed = true; |
| return changed; |
| } |
| |
| // Same for a full map. |
| bool addRequired(const RegMap &RM) { |
| bool changed = false; |
| for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) |
| if (addRequired(I->first)) |
| changed = true; |
| return changed; |
| } |
| |
| // Live-out registers are either in regsLiveOut or vregsPassed. |
| bool isLiveOut(unsigned Reg) const { |
| return regsLiveOut.count(Reg) || vregsPassed.count(Reg); |
| } |
| }; |
| |
| // Extra register info per MBB. |
| DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; |
| |
| bool isReserved(unsigned Reg) { |
| return Reg < regsReserved.size() && regsReserved.test(Reg); |
| } |
| |
| // Analysis information if available |
| LiveVariables *LiveVars; |
| LiveIntervals *LiveInts; |
| LiveStacks *LiveStks; |
| SlotIndexes *Indexes; |
| |
| void visitMachineFunctionBefore(); |
| void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); |
| void visitMachineInstrBefore(const MachineInstr *MI); |
| void visitMachineOperand(const MachineOperand *MO, unsigned MONum); |
| void visitMachineInstrAfter(const MachineInstr *MI); |
| void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); |
| void visitMachineFunctionAfter(); |
| |
| void report(const char *msg, const MachineFunction *MF); |
| void report(const char *msg, const MachineBasicBlock *MBB); |
| void report(const char *msg, const MachineInstr *MI); |
| void report(const char *msg, const MachineOperand *MO, unsigned MONum); |
| |
| void markReachable(const MachineBasicBlock *MBB); |
| void calcRegsPassed(); |
| void checkPHIOps(const MachineBasicBlock *MBB); |
| |
| void calcRegsRequired(); |
| void verifyLiveVariables(); |
| void verifyLiveIntervals(); |
| }; |
| |
| struct MachineVerifierPass : public MachineFunctionPass { |
| static char ID; // Pass ID, replacement for typeid |
| const char *const Banner; |
| |
| MachineVerifierPass(const char *b = 0) |
| : MachineFunctionPass(ID), Banner(b) { |
| initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesAll(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| bool runOnMachineFunction(MachineFunction &MF) { |
| MF.verify(this, Banner); |
| return false; |
| } |
| }; |
| |
| } |
| |
| char MachineVerifierPass::ID = 0; |
| INITIALIZE_PASS(MachineVerifierPass, "machineverifier", |
| "Verify generated machine code", false, false) |
| |
| FunctionPass *llvm::createMachineVerifierPass(const char *Banner) { |
| return new MachineVerifierPass(Banner); |
| } |
| |
| void MachineFunction::verify(Pass *p, const char *Banner) const { |
| MachineVerifier(p, Banner) |
| .runOnMachineFunction(const_cast<MachineFunction&>(*this)); |
| } |
| |
| bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) { |
| raw_ostream *OutFile = 0; |
| if (OutFileName) { |
| std::string ErrorInfo; |
| OutFile = new raw_fd_ostream(OutFileName, ErrorInfo, |
| raw_fd_ostream::F_Append); |
| if (!ErrorInfo.empty()) { |
| errs() << "Error opening '" << OutFileName << "': " << ErrorInfo << '\n'; |
| exit(1); |
| } |
| |
| OS = OutFile; |
| } else { |
| OS = &errs(); |
| } |
| |
| foundErrors = 0; |
| |
| this->MF = &MF; |
| TM = &MF.getTarget(); |
| TII = TM->getInstrInfo(); |
| TRI = TM->getRegisterInfo(); |
| MRI = &MF.getRegInfo(); |
| |
| LiveVars = NULL; |
| LiveInts = NULL; |
| LiveStks = NULL; |
| Indexes = NULL; |
| if (PASS) { |
| LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); |
| // We don't want to verify LiveVariables if LiveIntervals is available. |
| if (!LiveInts) |
| LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); |
| LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); |
| Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); |
| } |
| |
| visitMachineFunctionBefore(); |
| for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); |
| MFI!=MFE; ++MFI) { |
| visitMachineBasicBlockBefore(MFI); |
| for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(), |
| MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) { |
| if (MBBI->getParent() != MFI) { |
| report("Bad instruction parent pointer", MFI); |
| *OS << "Instruction: " << *MBBI; |
| continue; |
| } |
| // Skip BUNDLE instruction for now. FIXME: We should add code to verify |
| // the BUNDLE's specifically. |
| if (MBBI->isBundle()) |
| continue; |
| visitMachineInstrBefore(MBBI); |
| for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) |
| visitMachineOperand(&MBBI->getOperand(I), I); |
| visitMachineInstrAfter(MBBI); |
| } |
| visitMachineBasicBlockAfter(MFI); |
| } |
| visitMachineFunctionAfter(); |
| |
| if (OutFile) |
| delete OutFile; |
| else if (foundErrors) |
| report_fatal_error("Found "+Twine(foundErrors)+" machine code errors."); |
| |
| // Clean up. |
| regsLive.clear(); |
| regsDefined.clear(); |
| regsDead.clear(); |
| regsKilled.clear(); |
| regsLiveInButUnused.clear(); |
| MBBInfoMap.clear(); |
| |
| return false; // no changes |
| } |
| |
| void MachineVerifier::report(const char *msg, const MachineFunction *MF) { |
| assert(MF); |
| *OS << '\n'; |
| if (!foundErrors++) { |
| if (Banner) |
| *OS << "# " << Banner << '\n'; |
| MF->print(*OS, Indexes); |
| } |
| *OS << "*** Bad machine code: " << msg << " ***\n" |
| << "- function: " << MF->getFunction()->getName() << "\n"; |
| } |
| |
| void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { |
| assert(MBB); |
| report(msg, MBB->getParent()); |
| *OS << "- basic block: " << MBB->getName() |
| << " " << (void*)MBB |
| << " (BB#" << MBB->getNumber() << ")"; |
| if (Indexes) |
| *OS << " [" << Indexes->getMBBStartIdx(MBB) |
| << ';' << Indexes->getMBBEndIdx(MBB) << ')'; |
| *OS << '\n'; |
| } |
| |
| void MachineVerifier::report(const char *msg, const MachineInstr *MI) { |
| assert(MI); |
| report(msg, MI->getParent()); |
| *OS << "- instruction: "; |
| if (Indexes && Indexes->hasIndex(MI)) |
| *OS << Indexes->getInstructionIndex(MI) << '\t'; |
| MI->print(*OS, TM); |
| } |
| |
| void MachineVerifier::report(const char *msg, |
| const MachineOperand *MO, unsigned MONum) { |
| assert(MO); |
| report(msg, MO->getParent()); |
| *OS << "- operand " << MONum << ": "; |
| MO->print(*OS, TM); |
| *OS << "\n"; |
| } |
| |
| void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { |
| BBInfo &MInfo = MBBInfoMap[MBB]; |
| if (!MInfo.reachable) { |
| MInfo.reachable = true; |
| for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), |
| SuE = MBB->succ_end(); SuI != SuE; ++SuI) |
| markReachable(*SuI); |
| } |
| } |
| |
| void MachineVerifier::visitMachineFunctionBefore() { |
| lastIndex = SlotIndex(); |
| regsReserved = TRI->getReservedRegs(*MF); |
| |
| // A sub-register of a reserved register is also reserved |
| for (int Reg = regsReserved.find_first(); Reg>=0; |
| Reg = regsReserved.find_next(Reg)) { |
| for (const unsigned *Sub = TRI->getSubRegisters(Reg); *Sub; ++Sub) { |
| // FIXME: This should probably be: |
| // assert(regsReserved.test(*Sub) && "Non-reserved sub-register"); |
| regsReserved.set(*Sub); |
| } |
| } |
| markReachable(&MF->front()); |
| } |
| |
| // Does iterator point to a and b as the first two elements? |
| static bool matchPair(MachineBasicBlock::const_succ_iterator i, |
| const MachineBasicBlock *a, const MachineBasicBlock *b) { |
| if (*i == a) |
| return *++i == b; |
| if (*i == b) |
| return *++i == a; |
| return false; |
| } |
| |
| void |
| MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { |
| FirstTerminator = 0; |
| |
| // Count the number of landing pad successors. |
| SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs; |
| for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), |
| E = MBB->succ_end(); I != E; ++I) { |
| if ((*I)->isLandingPad()) |
| LandingPadSuccs.insert(*I); |
| } |
| |
| const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); |
| const BasicBlock *BB = MBB->getBasicBlock(); |
| if (LandingPadSuccs.size() > 1 && |
| !(AsmInfo && |
| AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && |
| BB && isa<SwitchInst>(BB->getTerminator()))) |
| report("MBB has more than one landing pad successor", MBB); |
| |
| // Call AnalyzeBranch. If it succeeds, there several more conditions to check. |
| MachineBasicBlock *TBB = 0, *FBB = 0; |
| SmallVector<MachineOperand, 4> Cond; |
| if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB), |
| TBB, FBB, Cond)) { |
| // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's |
| // check whether its answers match up with reality. |
| if (!TBB && !FBB) { |
| // Block falls through to its successor. |
| MachineFunction::const_iterator MBBI = MBB; |
| ++MBBI; |
| if (MBBI == MF->end()) { |
| // It's possible that the block legitimately ends with a noreturn |
| // call or an unreachable, in which case it won't actually fall |
| // out the bottom of the function. |
| } else if (MBB->succ_size() == LandingPadSuccs.size()) { |
| // It's possible that the block legitimately ends with a noreturn |
| // call or an unreachable, in which case it won't actuall fall |
| // out of the block. |
| } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) { |
| report("MBB exits via unconditional fall-through but doesn't have " |
| "exactly one CFG successor!", MBB); |
| } else if (!MBB->isSuccessor(MBBI)) { |
| report("MBB exits via unconditional fall-through but its successor " |
| "differs from its CFG successor!", MBB); |
| } |
| if (!MBB->empty() && MBB->back().isBarrier() && |
| !TII->isPredicated(&MBB->back())) { |
| report("MBB exits via unconditional fall-through but ends with a " |
| "barrier instruction!", MBB); |
| } |
| if (!Cond.empty()) { |
| report("MBB exits via unconditional fall-through but has a condition!", |
| MBB); |
| } |
| } else if (TBB && !FBB && Cond.empty()) { |
| // Block unconditionally branches somewhere. |
| if (MBB->succ_size() != 1+LandingPadSuccs.size()) { |
| report("MBB exits via unconditional branch but doesn't have " |
| "exactly one CFG successor!", MBB); |
| } else if (!MBB->isSuccessor(TBB)) { |
| report("MBB exits via unconditional branch but the CFG " |
| "successor doesn't match the actual successor!", MBB); |
| } |
| if (MBB->empty()) { |
| report("MBB exits via unconditional branch but doesn't contain " |
| "any instructions!", MBB); |
| } else if (!MBB->back().isBarrier()) { |
| report("MBB exits via unconditional branch but doesn't end with a " |
| "barrier instruction!", MBB); |
| } else if (!MBB->back().isTerminator()) { |
| report("MBB exits via unconditional branch but the branch isn't a " |
| "terminator instruction!", MBB); |
| } |
| } else if (TBB && !FBB && !Cond.empty()) { |
| // Block conditionally branches somewhere, otherwise falls through. |
| MachineFunction::const_iterator MBBI = MBB; |
| ++MBBI; |
| if (MBBI == MF->end()) { |
| report("MBB conditionally falls through out of function!", MBB); |
| } if (MBB->succ_size() != 2) { |
| report("MBB exits via conditional branch/fall-through but doesn't have " |
| "exactly two CFG successors!", MBB); |
| } else if (!matchPair(MBB->succ_begin(), TBB, MBBI)) { |
| report("MBB exits via conditional branch/fall-through but the CFG " |
| "successors don't match the actual successors!", MBB); |
| } |
| if (MBB->empty()) { |
| report("MBB exits via conditional branch/fall-through but doesn't " |
| "contain any instructions!", MBB); |
| } else if (MBB->back().isBarrier()) { |
| report("MBB exits via conditional branch/fall-through but ends with a " |
| "barrier instruction!", MBB); |
| } else if (!MBB->back().isTerminator()) { |
| report("MBB exits via conditional branch/fall-through but the branch " |
| "isn't a terminator instruction!", MBB); |
| } |
| } else if (TBB && FBB) { |
| // Block conditionally branches somewhere, otherwise branches |
| // somewhere else. |
| if (MBB->succ_size() != 2) { |
| report("MBB exits via conditional branch/branch but doesn't have " |
| "exactly two CFG successors!", MBB); |
| } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { |
| report("MBB exits via conditional branch/branch but the CFG " |
| "successors don't match the actual successors!", MBB); |
| } |
| if (MBB->empty()) { |
| report("MBB exits via conditional branch/branch but doesn't " |
| "contain any instructions!", MBB); |
| } else if (!MBB->back().isBarrier()) { |
| report("MBB exits via conditional branch/branch but doesn't end with a " |
| "barrier instruction!", MBB); |
| } else if (!MBB->back().isTerminator()) { |
| report("MBB exits via conditional branch/branch but the branch " |
| "isn't a terminator instruction!", MBB); |
| } |
| if (Cond.empty()) { |
| report("MBB exits via conditinal branch/branch but there's no " |
| "condition!", MBB); |
| } |
| } else { |
| report("AnalyzeBranch returned invalid data!", MBB); |
| } |
| } |
| |
| regsLive.clear(); |
| for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(), |
| E = MBB->livein_end(); I != E; ++I) { |
| if (!TargetRegisterInfo::isPhysicalRegister(*I)) { |
| report("MBB live-in list contains non-physical register", MBB); |
| continue; |
| } |
| regsLive.insert(*I); |
| for (const unsigned *R = TRI->getSubRegisters(*I); *R; R++) |
| regsLive.insert(*R); |
| } |
| regsLiveInButUnused = regsLive; |
| |
| const MachineFrameInfo *MFI = MF->getFrameInfo(); |
| assert(MFI && "Function has no frame info"); |
| BitVector PR = MFI->getPristineRegs(MBB); |
| for (int I = PR.find_first(); I>0; I = PR.find_next(I)) { |
| regsLive.insert(I); |
| for (const unsigned *R = TRI->getSubRegisters(I); *R; R++) |
| regsLive.insert(*R); |
| } |
| |
| regsKilled.clear(); |
| regsDefined.clear(); |
| |
| if (Indexes) |
| lastIndex = Indexes->getMBBStartIdx(MBB); |
| } |
| |
| void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { |
| const MCInstrDesc &MCID = MI->getDesc(); |
| if (MI->getNumOperands() < MCID.getNumOperands()) { |
| report("Too few operands", MI); |
| *OS << MCID.getNumOperands() << " operands expected, but " |
| << MI->getNumExplicitOperands() << " given.\n"; |
| } |
| |
| // Check the MachineMemOperands for basic consistency. |
| for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), |
| E = MI->memoperands_end(); I != E; ++I) { |
| if ((*I)->isLoad() && !MI->mayLoad()) |
| report("Missing mayLoad flag", MI); |
| if ((*I)->isStore() && !MI->mayStore()) |
| report("Missing mayStore flag", MI); |
| } |
| |
| // Debug values must not have a slot index. |
| // Other instructions must have one. |
| if (LiveInts) { |
| bool mapped = !LiveInts->isNotInMIMap(MI); |
| if (MI->isDebugValue()) { |
| if (mapped) |
| report("Debug instruction has a slot index", MI); |
| } else { |
| if (!mapped) |
| report("Missing slot index", MI); |
| } |
| } |
| |
| // Ensure non-terminators don't follow terminators. |
| if (MI->isTerminator()) { |
| if (!FirstTerminator) |
| FirstTerminator = MI; |
| } else if (FirstTerminator) { |
| report("Non-terminator instruction after the first terminator", MI); |
| *OS << "First terminator was:\t" << *FirstTerminator; |
| } |
| |
| StringRef ErrorInfo; |
| if (!TII->verifyInstruction(MI, ErrorInfo)) |
| report(ErrorInfo.data(), MI); |
| } |
| |
| void |
| MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { |
| const MachineInstr *MI = MO->getParent(); |
| const MCInstrDesc &MCID = MI->getDesc(); |
| const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; |
| |
| // The first MCID.NumDefs operands must be explicit register defines |
| if (MONum < MCID.getNumDefs()) { |
| if (!MO->isReg()) |
| report("Explicit definition must be a register", MO, MONum); |
| else if (!MO->isDef()) |
| report("Explicit definition marked as use", MO, MONum); |
| else if (MO->isImplicit()) |
| report("Explicit definition marked as implicit", MO, MONum); |
| } else if (MONum < MCID.getNumOperands()) { |
| // Don't check if it's the last operand in a variadic instruction. See, |
| // e.g., LDM_RET in the arm back end. |
| if (MO->isReg() && |
| !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) { |
| if (MO->isDef() && !MCOI.isOptionalDef()) |
| report("Explicit operand marked as def", MO, MONum); |
| if (MO->isImplicit()) |
| report("Explicit operand marked as implicit", MO, MONum); |
| } |
| } else { |
| // ARM adds %reg0 operands to indicate predicates. We'll allow that. |
| if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) |
| report("Extra explicit operand on non-variadic instruction", MO, MONum); |
| } |
| |
| switch (MO->getType()) { |
| case MachineOperand::MO_Register: { |
| const unsigned Reg = MO->getReg(); |
| if (!Reg) |
| return; |
| |
| // Check Live Variables. |
| if (MI->isDebugValue()) { |
| // Liveness checks are not valid for debug values. |
| } else if (MO->isUse() && !MO->isUndef()) { |
| regsLiveInButUnused.erase(Reg); |
| |
| bool isKill = false; |
| unsigned defIdx; |
| if (MI->isRegTiedToDefOperand(MONum, &defIdx)) { |
| // A two-addr use counts as a kill if use and def are the same. |
| unsigned DefReg = MI->getOperand(defIdx).getReg(); |
| if (Reg == DefReg) |
| isKill = true; |
| else if (TargetRegisterInfo::isPhysicalRegister(Reg)) { |
| report("Two-address instruction operands must be identical", |
| MO, MONum); |
| } |
| } else |
| isKill = MO->isKill(); |
| |
| if (isKill) |
| addRegWithSubRegs(regsKilled, Reg); |
| |
| // Check that LiveVars knows this kill. |
| if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) && |
| MO->isKill()) { |
| LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); |
| if (std::find(VI.Kills.begin(), |
| VI.Kills.end(), MI) == VI.Kills.end()) |
| report("Kill missing from LiveVariables", MO, MONum); |
| } |
| |
| // Check LiveInts liveness and kill. |
| if (TargetRegisterInfo::isVirtualRegister(Reg) && |
| LiveInts && !LiveInts->isNotInMIMap(MI)) { |
| SlotIndex UseIdx = LiveInts->getInstructionIndex(MI).getRegSlot(true); |
| if (LiveInts->hasInterval(Reg)) { |
| const LiveInterval &LI = LiveInts->getInterval(Reg); |
| if (!LI.liveAt(UseIdx)) { |
| report("No live range at use", MO, MONum); |
| *OS << UseIdx << " is not live in " << LI << '\n'; |
| } |
| // Check for extra kill flags. |
| // Note that we allow missing kill flags for now. |
| if (MO->isKill() && !LI.killedAt(UseIdx.getRegSlot())) { |
| report("Live range continues after kill flag", MO, MONum); |
| *OS << "Live range: " << LI << '\n'; |
| } |
| } else { |
| report("Virtual register has no Live interval", MO, MONum); |
| } |
| } |
| |
| // Use of a dead register. |
| if (!regsLive.count(Reg)) { |
| if (TargetRegisterInfo::isPhysicalRegister(Reg)) { |
| // Reserved registers may be used even when 'dead'. |
| if (!isReserved(Reg)) |
| report("Using an undefined physical register", MO, MONum); |
| } else { |
| BBInfo &MInfo = MBBInfoMap[MI->getParent()]; |
| // We don't know which virtual registers are live in, so only complain |
| // if vreg was killed in this MBB. Otherwise keep track of vregs that |
| // must be live in. PHI instructions are handled separately. |
| if (MInfo.regsKilled.count(Reg)) |
| report("Using a killed virtual register", MO, MONum); |
| else if (!MI->isPHI()) |
| MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); |
| } |
| } |
| } else if (MO->isDef()) { |
| // Register defined. |
| // TODO: verify that earlyclobber ops are not used. |
| if (MO->isDead()) |
| addRegWithSubRegs(regsDead, Reg); |
| else |
| addRegWithSubRegs(regsDefined, Reg); |
| |
| // Verify SSA form. |
| if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) && |
| llvm::next(MRI->def_begin(Reg)) != MRI->def_end()) |
| report("Multiple virtual register defs in SSA form", MO, MONum); |
| |
| // Check LiveInts for a live range, but only for virtual registers. |
| if (LiveInts && TargetRegisterInfo::isVirtualRegister(Reg) && |
| !LiveInts->isNotInMIMap(MI)) { |
| SlotIndex DefIdx = LiveInts->getInstructionIndex(MI).getRegSlot(); |
| if (LiveInts->hasInterval(Reg)) { |
| const LiveInterval &LI = LiveInts->getInterval(Reg); |
| if (const VNInfo *VNI = LI.getVNInfoAt(DefIdx)) { |
| assert(VNI && "NULL valno is not allowed"); |
| if (VNI->def != DefIdx && !MO->isEarlyClobber()) { |
| report("Inconsistent valno->def", MO, MONum); |
| *OS << "Valno " << VNI->id << " is not defined at " |
| << DefIdx << " in " << LI << '\n'; |
| } |
| } else { |
| report("No live range at def", MO, MONum); |
| *OS << DefIdx << " is not live in " << LI << '\n'; |
| } |
| } else { |
| report("Virtual register has no Live interval", MO, MONum); |
| } |
| } |
| } |
| |
| // Check register classes. |
| if (MONum < MCID.getNumOperands() && !MO->isImplicit()) { |
| unsigned SubIdx = MO->getSubReg(); |
| |
| if (TargetRegisterInfo::isPhysicalRegister(Reg)) { |
| if (SubIdx) { |
| report("Illegal subregister index for physical register", MO, MONum); |
| return; |
| } |
| if (const TargetRegisterClass *DRC = TII->getRegClass(MCID,MONum,TRI)) { |
| if (!DRC->contains(Reg)) { |
| report("Illegal physical register for instruction", MO, MONum); |
| *OS << TRI->getName(Reg) << " is not a " |
| << DRC->getName() << " register.\n"; |
| } |
| } |
| } else { |
| // Virtual register. |
| const TargetRegisterClass *RC = MRI->getRegClass(Reg); |
| if (SubIdx) { |
| const TargetRegisterClass *SRC = |
| TRI->getSubClassWithSubReg(RC, SubIdx); |
| if (!SRC) { |
| report("Invalid subregister index for virtual register", MO, MONum); |
| *OS << "Register class " << RC->getName() |
| << " does not support subreg index " << SubIdx << "\n"; |
| return; |
| } |
| if (RC != SRC) { |
| report("Invalid register class for subregister index", MO, MONum); |
| *OS << "Register class " << RC->getName() |
| << " does not fully support subreg index " << SubIdx << "\n"; |
| return; |
| } |
| } |
| if (const TargetRegisterClass *DRC = TII->getRegClass(MCID,MONum,TRI)) { |
| if (SubIdx) { |
| const TargetRegisterClass *SuperRC = |
| TRI->getLargestLegalSuperClass(RC); |
| if (!SuperRC) { |
| report("No largest legal super class exists.", MO, MONum); |
| return; |
| } |
| DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); |
| if (!DRC) { |
| report("No matching super-reg register class.", MO, MONum); |
| return; |
| } |
| } |
| if (!RC->hasSuperClassEq(DRC)) { |
| report("Illegal virtual register for instruction", MO, MONum); |
| *OS << "Expected a " << DRC->getName() << " register, but got a " |
| << RC->getName() << " register\n"; |
| } |
| } |
| } |
| } |
| break; |
| } |
| |
| case MachineOperand::MO_MachineBasicBlock: |
| if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) |
| report("PHI operand is not in the CFG", MO, MONum); |
| break; |
| |
| case MachineOperand::MO_FrameIndex: |
| if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && |
| LiveInts && !LiveInts->isNotInMIMap(MI)) { |
| LiveInterval &LI = LiveStks->getInterval(MO->getIndex()); |
| SlotIndex Idx = LiveInts->getInstructionIndex(MI); |
| if (MI->mayLoad() && !LI.liveAt(Idx.getRegSlot(true))) { |
| report("Instruction loads from dead spill slot", MO, MONum); |
| *OS << "Live stack: " << LI << '\n'; |
| } |
| if (MI->mayStore() && !LI.liveAt(Idx.getRegSlot())) { |
| report("Instruction stores to dead spill slot", MO, MONum); |
| *OS << "Live stack: " << LI << '\n'; |
| } |
| } |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) { |
| BBInfo &MInfo = MBBInfoMap[MI->getParent()]; |
| set_union(MInfo.regsKilled, regsKilled); |
| set_subtract(regsLive, regsKilled); regsKilled.clear(); |
| set_subtract(regsLive, regsDead); regsDead.clear(); |
| set_union(regsLive, regsDefined); regsDefined.clear(); |
| |
| if (Indexes && Indexes->hasIndex(MI)) { |
| SlotIndex idx = Indexes->getInstructionIndex(MI); |
| if (!(idx > lastIndex)) { |
| report("Instruction index out of order", MI); |
| *OS << "Last instruction was at " << lastIndex << '\n'; |
| } |
| lastIndex = idx; |
| } |
| } |
| |
| void |
| MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { |
| MBBInfoMap[MBB].regsLiveOut = regsLive; |
| regsLive.clear(); |
| |
| if (Indexes) { |
| SlotIndex stop = Indexes->getMBBEndIdx(MBB); |
| if (!(stop > lastIndex)) { |
| report("Block ends before last instruction index", MBB); |
| *OS << "Block ends at " << stop |
| << " last instruction was at " << lastIndex << '\n'; |
| } |
| lastIndex = stop; |
| } |
| } |
| |
| // Calculate the largest possible vregsPassed sets. These are the registers that |
| // can pass through an MBB live, but may not be live every time. It is assumed |
| // that all vregsPassed sets are empty before the call. |
| void MachineVerifier::calcRegsPassed() { |
| // First push live-out regs to successors' vregsPassed. Remember the MBBs that |
| // have any vregsPassed. |
| DenseSet<const MachineBasicBlock*> todo; |
| for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); |
| MFI != MFE; ++MFI) { |
| const MachineBasicBlock &MBB(*MFI); |
| BBInfo &MInfo = MBBInfoMap[&MBB]; |
| if (!MInfo.reachable) |
| continue; |
| for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), |
| SuE = MBB.succ_end(); SuI != SuE; ++SuI) { |
| BBInfo &SInfo = MBBInfoMap[*SuI]; |
| if (SInfo.addPassed(MInfo.regsLiveOut)) |
| todo.insert(*SuI); |
| } |
| } |
| |
| // Iteratively push vregsPassed to successors. This will converge to the same |
| // final state regardless of DenseSet iteration order. |
| while (!todo.empty()) { |
| const MachineBasicBlock *MBB = *todo.begin(); |
| todo.erase(MBB); |
| BBInfo &MInfo = MBBInfoMap[MBB]; |
| for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), |
| SuE = MBB->succ_end(); SuI != SuE; ++SuI) { |
| if (*SuI == MBB) |
| continue; |
| BBInfo &SInfo = MBBInfoMap[*SuI]; |
| if (SInfo.addPassed(MInfo.vregsPassed)) |
| todo.insert(*SuI); |
| } |
| } |
| } |
| |
| // Calculate the set of virtual registers that must be passed through each basic |
| // block in order to satisfy the requirements of successor blocks. This is very |
| // similar to calcRegsPassed, only backwards. |
| void MachineVerifier::calcRegsRequired() { |
| // First push live-in regs to predecessors' vregsRequired. |
| DenseSet<const MachineBasicBlock*> todo; |
| for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); |
| MFI != MFE; ++MFI) { |
| const MachineBasicBlock &MBB(*MFI); |
| BBInfo &MInfo = MBBInfoMap[&MBB]; |
| for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), |
| PrE = MBB.pred_end(); PrI != PrE; ++PrI) { |
| BBInfo &PInfo = MBBInfoMap[*PrI]; |
| if (PInfo.addRequired(MInfo.vregsLiveIn)) |
| todo.insert(*PrI); |
| } |
| } |
| |
| // Iteratively push vregsRequired to predecessors. This will converge to the |
| // same final state regardless of DenseSet iteration order. |
| while (!todo.empty()) { |
| const MachineBasicBlock *MBB = *todo.begin(); |
| todo.erase(MBB); |
| BBInfo &MInfo = MBBInfoMap[MBB]; |
| for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), |
| PrE = MBB->pred_end(); PrI != PrE; ++PrI) { |
| if (*PrI == MBB) |
| continue; |
| BBInfo &SInfo = MBBInfoMap[*PrI]; |
| if (SInfo.addRequired(MInfo.vregsRequired)) |
| todo.insert(*PrI); |
| } |
| } |
| } |
| |
| // Check PHI instructions at the beginning of MBB. It is assumed that |
| // calcRegsPassed has been run so BBInfo::isLiveOut is valid. |
| void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) { |
| for (MachineBasicBlock::const_iterator BBI = MBB->begin(), BBE = MBB->end(); |
| BBI != BBE && BBI->isPHI(); ++BBI) { |
| DenseSet<const MachineBasicBlock*> seen; |
| |
| for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { |
| unsigned Reg = BBI->getOperand(i).getReg(); |
| const MachineBasicBlock *Pre = BBI->getOperand(i + 1).getMBB(); |
| if (!Pre->isSuccessor(MBB)) |
| continue; |
| seen.insert(Pre); |
| BBInfo &PrInfo = MBBInfoMap[Pre]; |
| if (PrInfo.reachable && !PrInfo.isLiveOut(Reg)) |
| report("PHI operand is not live-out from predecessor", |
| &BBI->getOperand(i), i); |
| } |
| |
| // Did we see all predecessors? |
| for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), |
| PrE = MBB->pred_end(); PrI != PrE; ++PrI) { |
| if (!seen.count(*PrI)) { |
| report("Missing PHI operand", BBI); |
| *OS << "BB#" << (*PrI)->getNumber() |
| << " is a predecessor according to the CFG.\n"; |
| } |
| } |
| } |
| } |
| |
| void MachineVerifier::visitMachineFunctionAfter() { |
| calcRegsPassed(); |
| |
| for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); |
| MFI != MFE; ++MFI) { |
| BBInfo &MInfo = MBBInfoMap[MFI]; |
| |
| // Skip unreachable MBBs. |
| if (!MInfo.reachable) |
| continue; |
| |
| checkPHIOps(MFI); |
| } |
| |
| // Now check liveness info if available |
| if (LiveVars || LiveInts) |
| calcRegsRequired(); |
| if (LiveVars) |
| verifyLiveVariables(); |
| if (LiveInts) |
| verifyLiveIntervals(); |
| } |
| |
| void MachineVerifier::verifyLiveVariables() { |
| assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); |
| for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { |
| unsigned Reg = TargetRegisterInfo::index2VirtReg(i); |
| LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); |
| for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); |
| MFI != MFE; ++MFI) { |
| BBInfo &MInfo = MBBInfoMap[MFI]; |
| |
| // Our vregsRequired should be identical to LiveVariables' AliveBlocks |
| if (MInfo.vregsRequired.count(Reg)) { |
| if (!VI.AliveBlocks.test(MFI->getNumber())) { |
| report("LiveVariables: Block missing from AliveBlocks", MFI); |
| *OS << "Virtual register " << PrintReg(Reg) |
| << " must be live through the block.\n"; |
| } |
| } else { |
| if (VI.AliveBlocks.test(MFI->getNumber())) { |
| report("LiveVariables: Block should not be in AliveBlocks", MFI); |
| *OS << "Virtual register " << PrintReg(Reg) |
| << " is not needed live through the block.\n"; |
| } |
| } |
| } |
| } |
| } |
| |
| void MachineVerifier::verifyLiveIntervals() { |
| assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); |
| for (LiveIntervals::const_iterator LVI = LiveInts->begin(), |
| LVE = LiveInts->end(); LVI != LVE; ++LVI) { |
| const LiveInterval &LI = *LVI->second; |
| |
| // Spilling and splitting may leave unused registers around. Skip them. |
| if (MRI->use_empty(LI.reg)) |
| continue; |
| |
| // Physical registers have much weirdness going on, mostly from coalescing. |
| // We should probably fix it, but for now just ignore them. |
| if (TargetRegisterInfo::isPhysicalRegister(LI.reg)) |
| continue; |
| |
| assert(LVI->first == LI.reg && "Invalid reg to interval mapping"); |
| |
| for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end(); |
| I!=E; ++I) { |
| VNInfo *VNI = *I; |
| const VNInfo *DefVNI = LI.getVNInfoAt(VNI->def); |
| |
| if (!DefVNI) { |
| if (!VNI->isUnused()) { |
| report("Valno not live at def and not marked unused", MF); |
| *OS << "Valno #" << VNI->id << " in " << LI << '\n'; |
| } |
| continue; |
| } |
| |
| if (VNI->isUnused()) |
| continue; |
| |
| if (DefVNI != VNI) { |
| report("Live range at def has different valno", MF); |
| *OS << "Valno #" << VNI->id << " is defined at " << VNI->def |
| << " where valno #" << DefVNI->id << " is live in " << LI << '\n'; |
| continue; |
| } |
| |
| const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); |
| if (!MBB) { |
| report("Invalid definition index", MF); |
| *OS << "Valno #" << VNI->id << " is defined at " << VNI->def |
| << " in " << LI << '\n'; |
| continue; |
| } |
| |
| if (VNI->isPHIDef()) { |
| if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { |
| report("PHIDef value is not defined at MBB start", MF); |
| *OS << "Valno #" << VNI->id << " is defined at " << VNI->def |
| << ", not at the beginning of BB#" << MBB->getNumber() |
| << " in " << LI << '\n'; |
| } |
| } else { |
| // Non-PHI def. |
| const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); |
| if (!MI) { |
| report("No instruction at def index", MF); |
| *OS << "Valno #" << VNI->id << " is defined at " << VNI->def |
| << " in " << LI << '\n'; |
| } else if (!MI->modifiesRegister(LI.reg, TRI)) { |
| report("Defining instruction does not modify register", MI); |
| *OS << "Valno #" << VNI->id << " in " << LI << '\n'; |
| } |
| |
| bool isEarlyClobber = false; |
| if (MI) { |
| for (MachineInstr::const_mop_iterator MOI = MI->operands_begin(), |
| MOE = MI->operands_end(); MOI != MOE; ++MOI) { |
| if (MOI->isReg() && MOI->getReg() == LI.reg && MOI->isDef() && |
| MOI->isEarlyClobber()) { |
| isEarlyClobber = true; |
| break; |
| } |
| } |
| } |
| |
| // Early clobber defs begin at USE slots, but other defs must begin at |
| // DEF slots. |
| if (isEarlyClobber) { |
| if (!VNI->def.isEarlyClobber()) { |
| report("Early clobber def must be at an early-clobber slot", MF); |
| *OS << "Valno #" << VNI->id << " is defined at " << VNI->def |
| << " in " << LI << '\n'; |
| } |
| } else if (!VNI->def.isRegister()) { |
| report("Non-PHI, non-early clobber def must be at a register slot", |
| MF); |
| *OS << "Valno #" << VNI->id << " is defined at " << VNI->def |
| << " in " << LI << '\n'; |
| } |
| } |
| } |
| |
| for (LiveInterval::const_iterator I = LI.begin(), E = LI.end(); I!=E; ++I) { |
| const VNInfo *VNI = I->valno; |
| assert(VNI && "Live range has no valno"); |
| |
| if (VNI->id >= LI.getNumValNums() || VNI != LI.getValNumInfo(VNI->id)) { |
| report("Foreign valno in live range", MF); |
| I->print(*OS); |
| *OS << " has a valno not in " << LI << '\n'; |
| } |
| |
| if (VNI->isUnused()) { |
| report("Live range valno is marked unused", MF); |
| I->print(*OS); |
| *OS << " in " << LI << '\n'; |
| } |
| |
| const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(I->start); |
| if (!MBB) { |
| report("Bad start of live segment, no basic block", MF); |
| I->print(*OS); |
| *OS << " in " << LI << '\n'; |
| continue; |
| } |
| SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); |
| if (I->start != MBBStartIdx && I->start != VNI->def) { |
| report("Live segment must begin at MBB entry or valno def", MBB); |
| I->print(*OS); |
| *OS << " in " << LI << '\n' << "Basic block starts at " |
| << MBBStartIdx << '\n'; |
| } |
| |
| const MachineBasicBlock *EndMBB = |
| LiveInts->getMBBFromIndex(I->end.getPrevSlot()); |
| if (!EndMBB) { |
| report("Bad end of live segment, no basic block", MF); |
| I->print(*OS); |
| *OS << " in " << LI << '\n'; |
| continue; |
| } |
| if (I->end != LiveInts->getMBBEndIdx(EndMBB)) { |
| // The live segment is ending inside EndMBB |
| const MachineInstr *MI = |
| LiveInts->getInstructionFromIndex(I->end.getPrevSlot()); |
| if (!MI) { |
| report("Live segment doesn't end at a valid instruction", EndMBB); |
| I->print(*OS); |
| *OS << " in " << LI << '\n' << "Basic block starts at " |
| << MBBStartIdx << '\n'; |
| } else if (TargetRegisterInfo::isVirtualRegister(LI.reg) && |
| !MI->readsVirtualRegister(LI.reg)) { |
| // A live range can end with either a redefinition, a kill flag on a |
| // use, or a dead flag on a def. |
| // FIXME: Should we check for each of these? |
| bool hasDeadDef = false; |
| for (MachineInstr::const_mop_iterator MOI = MI->operands_begin(), |
| MOE = MI->operands_end(); MOI != MOE; ++MOI) { |
| if (MOI->isReg() && MOI->getReg() == LI.reg && MOI->isDef() && MOI->isDead()) { |
| hasDeadDef = true; |
| break; |
| } |
| } |
| |
| if (!hasDeadDef) { |
| report("Instruction killing live segment neither defines nor reads " |
| "register", MI); |
| I->print(*OS); |
| *OS << " in " << LI << '\n'; |
| } |
| } |
| } |
| |
| // Now check all the basic blocks in this live segment. |
| MachineFunction::const_iterator MFI = MBB; |
| // Is this live range the beginning of a non-PHIDef VN? |
| if (I->start == VNI->def && !VNI->isPHIDef()) { |
| // Not live-in to any blocks. |
| if (MBB == EndMBB) |
| continue; |
| // Skip this block. |
| ++MFI; |
| } |
| for (;;) { |
| assert(LiveInts->isLiveInToMBB(LI, MFI)); |
| // We don't know how to track physregs into a landing pad. |
| if (TargetRegisterInfo::isPhysicalRegister(LI.reg) && |
| MFI->isLandingPad()) { |
| if (&*MFI == EndMBB) |
| break; |
| ++MFI; |
| continue; |
| } |
| // Check that VNI is live-out of all predecessors. |
| for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), |
| PE = MFI->pred_end(); PI != PE; ++PI) { |
| SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI); |
| const VNInfo *PVNI = LI.getVNInfoBefore(PEnd); |
| |
| if (VNI->isPHIDef() && VNI->def == LiveInts->getMBBStartIdx(MFI)) |
| continue; |
| |
| if (!PVNI) { |
| report("Register not marked live out of predecessor", *PI); |
| *OS << "Valno #" << VNI->id << " live into BB#" << MFI->getNumber() |
| << '@' << LiveInts->getMBBStartIdx(MFI) << ", not live before " |
| << PEnd << " in " << LI << '\n'; |
| continue; |
| } |
| |
| if (PVNI != VNI) { |
| report("Different value live out of predecessor", *PI); |
| *OS << "Valno #" << PVNI->id << " live out of BB#" |
| << (*PI)->getNumber() << '@' << PEnd |
| << "\nValno #" << VNI->id << " live into BB#" << MFI->getNumber() |
| << '@' << LiveInts->getMBBStartIdx(MFI) << " in " << LI << '\n'; |
| } |
| } |
| if (&*MFI == EndMBB) |
| break; |
| ++MFI; |
| } |
| } |
| |
| // Check the LI only has one connected component. |
| if (TargetRegisterInfo::isVirtualRegister(LI.reg)) { |
| ConnectedVNInfoEqClasses ConEQ(*LiveInts); |
| unsigned NumComp = ConEQ.Classify(&LI); |
| if (NumComp > 1) { |
| report("Multiple connected components in live interval", MF); |
| *OS << NumComp << " components in " << LI << '\n'; |
| for (unsigned comp = 0; comp != NumComp; ++comp) { |
| *OS << comp << ": valnos"; |
| for (LiveInterval::const_vni_iterator I = LI.vni_begin(), |
| E = LI.vni_end(); I!=E; ++I) |
| if (comp == ConEQ.getEqClass(*I)) |
| *OS << ' ' << (*I)->id; |
| *OS << '\n'; |
| } |
| } |
| } |
| } |
| } |
| |