Scheduling DAG for instruction scheduling.  Currently for a single basic block.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@394 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/CodeGen/InstrSched/SchedGraph.cpp b/lib/CodeGen/InstrSched/SchedGraph.cpp
new file mode 100644
index 0000000..96bcb50
--- /dev/null
+++ b/lib/CodeGen/InstrSched/SchedGraph.cpp
@@ -0,0 +1,759 @@
+/*
+ ****************************************************************************
+ * File:
+ *	SchedGraph.cpp
+ * 
+ * Purpose:
+ *	Scheduling graph based on SSA graph plus extra dependence edges
+ *	capturing dependences due to machine resources (machine registers,
+ *	CC registers, and any others).
+ * 
+ * History:
+ *	7/20/01	 -  Vikram Adve  -  Created
+ ***************************************************************************/
+
+//************************** System Include Files **************************/
+
+#include <algorithm>
+
+//*************************** User Include Files ***************************/
+
+#include "llvm/InstrTypes.h"
+#include "llvm/Instruction.h"
+#include "llvm/BasicBlock.h"
+#include "llvm/Method.h"
+#include "llvm/CodeGen/SchedGraph.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/TargetMachine.h"
+
+//************************* Class Implementations **************************/
+
+// 
+// class SchedGraphEdge
+// 
+
+/*ctor*/
+SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
+			       SchedGraphNode* _sink,
+			       SchedGraphEdgeDepType _depType,
+			       DataDepOrderType _depOrderType,
+			       int _minDelay)
+  : src(_src),
+    sink(_sink),
+    depType(_depType),
+    depOrderType(_depOrderType),
+    val(NULL),
+    minDelay((_minDelay >= 0)? _minDelay : _src->getLatency())
+{
+  src->addOutEdge(this);
+  sink->addInEdge(this);
+}
+
+
+/*ctor*/
+SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
+			       SchedGraphNode* _sink,
+			       Value* _val,
+			       DataDepOrderType _depOrderType,
+			       int _minDelay)
+  : src(_src),
+    sink(_sink),
+    depType(DefUseDep),
+    depOrderType(_depOrderType),
+    val(_val),
+    minDelay((_minDelay >= 0)? _minDelay : _src->getLatency())
+{
+  src->addOutEdge(this);
+  sink->addInEdge(this);
+}
+
+
+/*ctor*/
+SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
+			       SchedGraphNode* _sink,
+			       unsigned int    _regNum,
+			       DataDepOrderType _depOrderType,
+			       int _minDelay)
+  : src(_src),
+    sink(_sink),
+    depType(MachineRegister),
+    depOrderType(_depOrderType),
+    minDelay((_minDelay >= 0)? _minDelay : _src->getLatency()),
+    machineRegNum(_regNum)
+{
+  src->addOutEdge(this);
+  sink->addInEdge(this);
+}
+
+
+/*ctor*/
+SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
+			       SchedGraphNode* _sink,
+			       ResourceId      _resourceId,
+			       int _minDelay)
+  : src(_src),
+    sink(_sink),
+    depType(MachineResource),
+    depOrderType(NonDataDep),
+    minDelay((_minDelay >= 0)? _minDelay : _src->getLatency()),
+    resourceId(_resourceId)
+{
+  src->addOutEdge(this);
+  sink->addInEdge(this);
+}
+
+
+// 
+// class SchedGraphNode
+// 
+
+/*ctor*/
+SchedGraphNode::SchedGraphNode(unsigned int _nodeId,
+			       const Instruction* _instr,
+			       const MachineInstr* _minstr,
+			       const TargetMachine& target)
+  : nodeId(_nodeId),
+    instr(_instr),
+    minstr(_minstr),
+    latency(0)
+{
+  if (minstr)
+    {
+      MachineOpCode mopCode = minstr->getOpCode();
+      latency = target.getInstrInfo().hasResultInterlock(mopCode)
+	? target.getInstrInfo().minLatency(mopCode)
+	: target.getInstrInfo().maxLatency(mopCode);
+    }
+}
+
+
+/*dtor*/
+SchedGraphNode::~SchedGraphNode()
+{
+  // a node deletes its outgoing edges only
+  for (unsigned i=0, N=outEdges.size(); i < N; i++)
+    delete outEdges[i];
+}
+
+
+inline void
+SchedGraphNode::addInEdge(SchedGraphEdge* edge)
+{
+  inEdges.push_back(edge);
+}
+
+
+inline void
+SchedGraphNode::addOutEdge(SchedGraphEdge* edge)
+{
+  outEdges.push_back(edge);
+}
+
+inline void
+SchedGraphNode::removeInEdge(const SchedGraphEdge* edge)
+{
+  assert(edge->getSink() == this);
+  for (iterator I = beginInEdges(); I != endInEdges(); ++I)
+    if ((*I) == edge)
+      {
+	inEdges.erase(I);
+	break;
+      }
+}
+
+inline void
+SchedGraphNode::removeOutEdge(const SchedGraphEdge* edge)
+{
+  assert(edge->getSrc() == this);
+  for (iterator I = beginOutEdges(); I != endOutEdges(); ++I)
+    if ((*I) == edge)
+      {
+	outEdges.erase(I);
+	break;
+      }
+}
+
+void
+SchedGraphNode::eraseAllEdges()
+{
+  // Disconnect and delete all in-edges and out-edges for the node.
+  // Note that we delete the in-edges too since they have been
+  // disconnected from the source node and will not be deleted there.
+  for (iterator I = beginInEdges(); I != endInEdges(); ++I)
+    {
+      (*I)->getSrc()->removeOutEdge(*I);
+      delete *I;
+    }
+  for (iterator I = beginOutEdges(); I != endOutEdges(); ++I)
+    {
+      (*I)->getSink()->removeInEdge(*I);
+      delete *I;
+    }
+  inEdges.clear();
+  outEdges.clear();
+}
+
+
+// 
+// class SchedGraph
+// 
+
+
+/*ctor*/
+SchedGraph::SchedGraph(const BasicBlock* bb,
+		       const TargetMachine& target)
+{
+  bbVec.push_back(bb);
+  this->buildGraph(target);
+}
+
+
+/*dtor*/
+SchedGraph::~SchedGraph()
+{
+  // delete all the nodes.  each node deletes its out-edges.
+  for (iterator I=begin(); I != end(); ++I)
+    delete (*I).second;
+}
+
+
+void
+SchedGraph::dump() const
+{
+  cout << "  Sched Graph for Basic Blocks: ";
+  for (unsigned i=0, N=bbVec.size(); i < N; i++)
+    {
+      cout << (bbVec[i]->hasName()? bbVec[i]->getName() : "block")
+	   << " (" << bbVec[i] << ")"
+	   << ((i == N-1)? "" : ", ");
+    }
+  
+  cout << endl << endl << "    Actual Root nodes : ";
+  for (unsigned i=0, N=graphRoot->outEdges.size(); i < N; i++)
+    cout << graphRoot->outEdges[i]->getSink()->getNodeId()
+	 << ((i == N-1)? "" : ", ");
+  
+  cout << endl << "    Graph Nodes:" << endl;
+  for (const_iterator I=begin(); I != end(); ++I)
+    cout << endl << * (*I).second;
+  
+  cout << endl;
+}
+
+
+void
+SchedGraph::addDummyEdges()
+{
+  assert(graphRoot->outEdges.size() == 0);
+  
+  for (const_iterator I=begin(); I != end(); ++I)
+    {
+      SchedGraphNode* node = (*I).second;
+      assert(node != graphRoot && node != graphLeaf);
+      if (node->beginInEdges() == node->endInEdges())
+	(void) new SchedGraphEdge(graphRoot, node, SchedGraphEdge::CtrlDep,
+				  SchedGraphEdge::NonDataDep, 0);
+      if (node->beginOutEdges() == node->endOutEdges())
+	(void) new SchedGraphEdge(node, graphLeaf, SchedGraphEdge::CtrlDep,
+				  SchedGraphEdge::NonDataDep, 0);
+    }
+}
+
+
+void
+SchedGraph::addCDEdges(const TerminatorInst* term,
+		       const TargetMachine& target)
+{
+  const MachineInstrInfo& mii = target.getInstrInfo();
+  MachineCodeForVMInstr& termMvec = term->getMachineInstrVec();
+  
+  // Find the first branch instr in the sequence of machine instrs for term
+  // 
+  unsigned first = 0;
+  while (! mii.isBranch(termMvec[first]->getOpCode()))
+    ++first;
+  assert(first < termMvec.size() &&
+	 "No branch instructions for BR?  Ok, but weird!  Delete assertion.");
+  if (first == termMvec.size())
+    return;
+  
+  SchedGraphNode* firstBrNode = this->getGraphNodeForInstr(termMvec[first]);
+  
+  // Add CD edges from each instruction in the sequence to the
+  // *last preceding* branch instr. in the sequence 
+  // 
+  for (int i = (int) termMvec.size()-1; i > (int) first; i--) 
+    {
+      SchedGraphNode* toNode = this->getGraphNodeForInstr(termMvec[i]);
+      assert(toNode && "No node for instr generated for branch?");
+      
+      for (int j = i-1; j >= 0; j--) 
+	if (mii.isBranch(termMvec[j]->getOpCode()))
+	  {
+	    SchedGraphNode* brNode = this->getGraphNodeForInstr(termMvec[j]);
+	    assert(brNode && "No node for instr generated for branch?");
+	    (void) new SchedGraphEdge(brNode, toNode, SchedGraphEdge::CtrlDep,
+				      SchedGraphEdge::NonDataDep, 0);
+	    break;			// only one incoming edge is enough
+	  }
+    }
+  
+  // Add CD edges from each instruction preceding the first branch
+  // to the first branch
+  // 
+  for (int i = first-1; i >= 0; i--) 
+    {
+      SchedGraphNode* fromNode = this->getGraphNodeForInstr(termMvec[i]);
+      assert(fromNode && "No node for instr generated for branch?");
+      (void) new SchedGraphEdge(fromNode, firstBrNode, SchedGraphEdge::CtrlDep,
+				SchedGraphEdge::NonDataDep, 0);
+    }
+  
+  // Now add CD edges to the first branch instruction in the sequence
+  // from all preceding instructions in the basic block.
+  // 
+  const BasicBlock* bb = term->getParent();
+  for (BasicBlock::const_iterator II = bb->begin(); II != bb->end(); ++II)
+    {
+      if ((*II) == (const Instruction*) term)	// special case, handled above
+	continue;
+      
+      assert(! (*II)->isTerminator() && "Two terminators in basic block?");
+      
+      const MachineCodeForVMInstr& mvec = (*II)->getMachineInstrVec();
+      for (unsigned i=0, N=mvec.size(); i < N; i++) 
+	{
+	  SchedGraphNode* fromNode = this->getGraphNodeForInstr(mvec[i]);
+	  if (fromNode == NULL)
+	    continue;			// dummy instruction, e.g., PHI
+	  
+	  (void) new SchedGraphEdge(fromNode, firstBrNode,
+				    SchedGraphEdge::CtrlDep,
+				    SchedGraphEdge::NonDataDep, 0);
+	  
+	  // If we find any other machine instructions (other than due to
+	  // the terminator) that also have delay slots, add an outgoing edge
+	  // from the instruction to the instructions in the delay slots.
+	  // 
+	  unsigned d = mii.getNumDelaySlots(mvec[i]->getOpCode());
+	  assert(i+d < N && "Insufficient delay slots for instruction?");
+	  
+	  for (unsigned j=1; j <= d; j++)
+	    {
+	      SchedGraphNode* toNode = this->getGraphNodeForInstr(mvec[i+j]);
+	      assert(toNode && "No node for machine instr in delay slot?");
+	      (void) new SchedGraphEdge(fromNode, toNode,
+					SchedGraphEdge::CtrlDep,
+				      SchedGraphEdge::NonDataDep, 0);
+	    }
+	}
+    }
+}
+
+
+void
+SchedGraph::addMemEdges(const vector<const Instruction*>& memVec,
+			const TargetMachine& target)
+{
+  const MachineInstrInfo& mii = target.getInstrInfo();
+  
+  for (unsigned im=0, NM=memVec.size(); im < NM; im++)
+    {
+      const Instruction* fromInstr = memVec[im];
+      bool fromIsLoad = fromInstr->getOpcode() == Instruction::Load;
+      
+      for (unsigned jm=im+1; jm < NM; jm++)
+	{
+	  const Instruction* toInstr = memVec[jm];
+	  bool toIsLoad = toInstr->getOpcode() == Instruction::Load;
+	  SchedGraphEdge::DataDepOrderType depOrderType;
+	  
+	  if (fromIsLoad)
+	    {
+	      if (toIsLoad) continue;	// both instructions are loads
+	      depOrderType = SchedGraphEdge::AntiDep;
+	    }
+	  else
+	    {
+	      depOrderType = (toIsLoad)? SchedGraphEdge::TrueDep
+		: SchedGraphEdge::OutputDep;
+	    }
+	  
+	  MachineCodeForVMInstr& fromInstrMvec=fromInstr->getMachineInstrVec();
+	  MachineCodeForVMInstr& toInstrMvec = toInstr->getMachineInstrVec();
+	  
+	  // We have two VM memory instructions, and at least one is a store.
+	  // Add edges between all machine load/store instructions.
+	  // 
+	  for (unsigned i=0, N=fromInstrMvec.size(); i < N; i++) 
+	    {
+	      MachineOpCode fromOpCode = fromInstrMvec[i]->getOpCode();
+	      if (mii.isLoad(fromOpCode) || mii.isStore(fromOpCode))
+		{
+		  SchedGraphNode* fromNode =
+		    this->getGraphNodeForInstr(fromInstrMvec[i]);
+		  assert(fromNode && "No node for memory instr?");
+		  
+		  for (unsigned j=0, M=toInstrMvec.size(); j < M; j++) 
+		    {
+		      MachineOpCode toOpCode = toInstrMvec[j]->getOpCode();
+		      if (mii.isLoad(toOpCode) || mii.isStore(toOpCode))
+			{
+			  SchedGraphNode* toNode =
+			    this->getGraphNodeForInstr(toInstrMvec[j]);
+			  assert(toNode && "No node for memory instr?");
+			  
+			  (void) new SchedGraphEdge(fromNode, toNode,
+						    SchedGraphEdge::MemoryDep,
+						    depOrderType, 1);
+			}
+		    }
+		}
+	    }
+	}
+    }
+}
+
+
+typedef vector< pair<SchedGraphNode*, unsigned int> > RegRefVec;
+
+// The following needs to be a class, not a typedef, so we can use
+// an opaque declaration in SchedGraph.h
+class NodeToRegRefMap: public hash_map<int, RegRefVec> {
+  typedef hash_map<int, RegRefVec>::      iterator iterator;
+  typedef hash_map<int, RegRefVec>::const_iterator const_iterator;
+};
+
+
+void
+SchedGraph::addMachineRegEdges(NodeToRegRefMap& regToRefVecMap,
+			       const TargetMachine& target)
+{
+  assert(bbVec.size() == 1 && "Only handling a single basic block here");
+  
+  // This assumes that such hardwired registers are never allocated
+  // to any LLVM value (since register allocation happens later), i.e.,
+  // any uses or defs of this register have been made explicit!
+  // Also assumes that two registers with different numbers are
+  // not aliased!
+  // 
+  for (NodeToRegRefMap::iterator I = regToRefVecMap.begin();
+       I != regToRefVecMap.end(); ++I)
+    {
+      int regNum           = (*I).first;
+      RegRefVec& regRefVec = (*I).second;
+      
+      // regRefVec is ordered by control flow order in the basic block
+      int lastDefIdx = -1;
+      for (unsigned i=0; i < regRefVec.size(); ++i)
+	{
+	  SchedGraphNode* node = regRefVec[i].first;
+	  bool isDef           = regRefVec[i].second;
+	  
+	  if (isDef)
+	    { // Each def gets an output edge from the last def
+	      if (lastDefIdx > 0)
+		new SchedGraphEdge(regRefVec[lastDefIdx].first, node, regNum,
+				   SchedGraphEdge::OutputDep);
+	      
+	      // Also, an anti edge from all uses *since* the last def,
+	      // But don't add edge from an instruction to itself!
+	      for (int u = 1 + lastDefIdx; u < (int) i; u++)
+		if (regRefVec[u].first != node) 
+		  new SchedGraphEdge(regRefVec[u].first, node, regNum,
+				     SchedGraphEdge::AntiDep);
+	    }
+	  else
+	    { // Each use gets a true edge from the last def
+	      if (lastDefIdx > 0)
+		new SchedGraphEdge(regRefVec[lastDefIdx].first, node, regNum);
+	    }
+	}
+    }
+}
+
+
+void
+SchedGraph::addSSAEdge(SchedGraphNode* node,
+		       Value* val,
+		       const TargetMachine& target)
+{
+  if (val->getValueType() != Value::InstructionVal)
+    return;
+
+  const Instruction* thisVMInstr = node->getInstr();
+  const Instruction* defVMInstr  = (const Instruction*) val;
+  
+  // Phi instructions are the only ones that produce a value but don't get
+  // any non-dummy machine instructions.  Return here as an optimization.
+  // 
+  if (defVMInstr->isPHINode())
+    return;
+  
+  // Now add the graph edge for the appropriate machine instruction(s).
+  // Note that multiple machine instructions generated for the
+  // def VM instruction may modify the register for the def value.
+  // 
+  MachineCodeForVMInstr& defMvec = defVMInstr->getMachineInstrVec();
+  const MachineInstrInfo& mii = target.getInstrInfo();
+  
+  for (unsigned i=0, N=defMvec.size(); i < N; i++)
+    for (int o=0, N = mii.getNumOperands(defMvec[i]->getOpCode()); o < N; o++)
+      {
+	const MachineOperand& defOp = defMvec[i]->getOperand(o); 
+	
+	if (defOp.opIsDef()
+	    && (defOp.getOperandType() == MachineOperand::MO_VirtualRegister
+		|| defOp.getOperandType() == MachineOperand::MO_CCRegister)
+	    && (defOp.getVRegValue() == val))
+	  {
+	    // this instruction does define value `val'.
+	    // if there is a node for it in the same graph, add an edge.
+	    SchedGraphNode* defNode = this->getGraphNodeForInstr(defMvec[i]);
+	    if (defNode != NULL)
+	      (void) new SchedGraphEdge(defNode, node, val);
+	  }
+      }
+}
+
+
+void
+SchedGraph::addEdgesForInstruction(SchedGraphNode* node,
+				   NodeToRegRefMap& regToRefVecMap,
+				   const TargetMachine& target)
+{
+  const Instruction& instr = * node->getInstr();	// No dummy nodes here!
+  const MachineInstr& minstr = * node->getMachineInstr();
+  
+  // Add incoming edges for the following:
+  // (1) operands of the machine instruction, including hidden operands
+  // (2) machine register dependences
+  // (3) other resource dependences for the machine instruction, if any
+  // Also, note any uses or defs of machine registers.
+  // 
+  for (unsigned i=0, numOps=minstr.getNumOperands(); i < numOps; i++)
+    {
+      const MachineOperand& mop = minstr.getOperand(i);
+      
+      // if this writes to a machine register other than the hardwired
+      // "zero" register used on many processors, record the reference.
+      if (mop.getOperandType() == MachineOperand::MO_MachineRegister
+	  && (! (target.zeroRegNum >= 0
+		 && mop.getMachineRegNum()==(unsigned) target.zeroRegNum)))
+	{
+	  regToRefVecMap[mop.getMachineRegNum()].
+	    push_back(make_pair(node, i));
+	}
+      
+      // ignore all other def operands
+      if (minstr.operandIsDefined(i))
+	continue;
+      
+      switch(mop.getOperandType())
+	{
+	case MachineOperand::MO_VirtualRegister:
+	case MachineOperand::MO_CCRegister:
+	  if (mop.getVRegValue())
+	    addSSAEdge(node, mop.getVRegValue(), target);
+	  break;
+	  
+	case MachineOperand::MO_MachineRegister:
+	  break; 
+	  
+	case MachineOperand::MO_SignExtendedImmed:
+	case MachineOperand::MO_UnextendedImmed:
+	case MachineOperand::MO_PCRelativeDisp:
+	  break;	// nothing to do for immediate fields
+	  
+	default:
+	  assert(0 && "Unknown machine operand type in SchedGraph builder");
+	  break;
+	}
+    }
+  
+  // add all true, anti, 
+  // and output dependences for this register.  but ignore
+
+}
+
+
+void
+SchedGraph::buildGraph(const TargetMachine& target)
+{
+  const MachineInstrInfo& mii = target.getInstrInfo();
+  const BasicBlock* bb = bbVec[0];
+  
+  assert(bbVec.size() == 1 && "Only handling a single basic block here");
+  
+  // Use this data structures to note all LLVM memory instructions.
+  // We use this to add memory dependence edges without a second full walk.
+  // 
+  vector<const Instruction*> memVec;
+  
+  // Use this data structures to note any uses or definitions of
+  // machine registers so we can add edges for those later without
+  // extra passes over the nodes.
+  // The vector holds an ordered list of references to the machine reg,
+  // ordered according to control-flow order.  This only works for a
+  // single basic block, hence the assertion.  Each reference is identified
+  // by the pair: <node, operand-number>.
+  // 
+  NodeToRegRefMap regToRefVecMap;
+  
+  // Make a dummy root node.  We'll add edges to the real roots later.
+  graphRoot = new SchedGraphNode(0, NULL, NULL, target);
+  graphLeaf = new SchedGraphNode(1, NULL, NULL, target);
+
+  //----------------------------------------------------------------
+  // First add nodes for all the machine instructions in the basic block.
+  // This greatly simplifies identifing which edges to add.
+  // Also, remember the load/store instructions to add memory deps later.
+  //----------------------------------------------------------------
+  
+  for (BasicBlock::const_iterator II = bb->begin(); II != bb->end(); ++II)
+    {
+      const Instruction *instr = *II;
+      const MachineCodeForVMInstr& mvec = instr->getMachineInstrVec();
+      for (unsigned i=0, N=mvec.size(); i < N; i++)
+	if (! mii.isDummyPhiInstr(mvec[i]->getOpCode()))
+	  {
+	    SchedGraphNode* node = new SchedGraphNode(getNumNodes(),
+						      instr, mvec[i], target);
+	    this->noteGraphNodeForInstr(mvec[i], node);
+	  }
+      
+      if (instr->getOpcode() == Instruction::Load ||
+	  instr->getOpcode() == Instruction::Store) 
+	memVec.push_back(instr);
+    } 
+  
+  //----------------------------------------------------------------
+  // Now add the edges.
+  //----------------------------------------------------------------
+      
+  // First, add edges to the terminator instruction of the basic block.
+  this->addCDEdges(bb->getTerminator(), target);
+      
+  // Then add memory dep edges: store->load, load->store, and store->store
+  this->addMemEdges(memVec, target);
+      
+  // Then add other edges for all instructions in the block.
+  for (SchedGraph::iterator GI = this->begin(); GI != this->end(); ++GI)
+    {
+      SchedGraphNode* node = (*GI).second;
+      addEdgesForInstruction(node, regToRefVecMap, target);
+    }
+  
+  // Then add edges for dependences on machine registers
+  this->addMachineRegEdges(regToRefVecMap, target);
+  
+  // Finally, add edges from the dummy root and to dummy leaf
+  this->addDummyEdges();		
+}
+
+
+// 
+// class SchedGraphSet
+// 
+
+/*ctor*/
+SchedGraphSet::SchedGraphSet(const Method* _method,
+			     const TargetMachine& target) :
+  method(_method)
+{
+  buildGraphsForMethod(method, target);
+}
+
+
+/*dtor*/
+SchedGraphSet::~SchedGraphSet()
+{
+  // delete all the graphs
+  for (iterator I=begin(); I != end(); ++I)
+    delete (*I).second;
+}
+
+
+void
+SchedGraphSet::dump() const
+{
+  cout << "======== Sched graphs for method `"
+       << (method->hasName()? method->getName() : "???")
+       << "' ========" << endl << endl;
+  
+  for (const_iterator I=begin(); I != end(); ++I)
+    (*I).second->dump();
+  
+  cout << endl << "====== End graphs for method `"
+       << (method->hasName()? method->getName() : "")
+       << "' ========" << endl << endl;
+}
+
+
+void
+SchedGraphSet::buildGraphsForMethod(const Method *method,
+				    const TargetMachine& target)
+{
+  for (Method::const_iterator BI = method->begin(); BI != method->end(); ++BI)
+    {
+      SchedGraph* graph = new SchedGraph(*BI, target);
+      this->noteGraphForBlock(*BI, graph);
+    }   
+}
+
+
+
+ostream&
+operator<<(ostream& os, const SchedGraphEdge& edge)
+{
+  os << "edge [" << edge.src->getNodeId() << "] -> ["
+     << edge.sink->getNodeId() << "] : ";
+  
+  switch(edge.depType) {
+  case SchedGraphEdge::CtrlDep:		os<< "Control Dep"; break;
+  case SchedGraphEdge::DefUseDep:	os<< "Reg Value " << edge.val; break;
+  case SchedGraphEdge::MemoryDep:	os<< "Mem Value " << edge.val; break;
+  case SchedGraphEdge::MachineRegister: os<< "Reg " <<edge.machineRegNum;break;
+  case SchedGraphEdge::MachineResource: os<<"Resource "<<edge.resourceId;break;
+  default: assert(0); break;
+  }
+  
+  os << " : delay = " << edge.minDelay << endl;
+  
+  return os;
+}
+
+ostream&
+operator<<(ostream& os, const SchedGraphNode& node)
+{
+  printIndent(4, os);
+  os << "Node " << node.nodeId << " : "
+     << "latency = " << node.latency << endl;
+  
+  printIndent(6, os);
+  
+  if (node.getMachineInstr() == NULL)
+    os << "(Dummy node)" << endl;
+  else
+    {
+      os << *node.getMachineInstr() << endl;
+  
+      printIndent(6, os);
+      os << node.inEdges.size() << " Incoming Edges:" << endl;
+      for (unsigned i=0, N=node.inEdges.size(); i < N; i++)
+	{
+	  printIndent(8, os);
+	  os << * node.inEdges[i];
+	}
+  
+      printIndent(6, os);
+      os << node.outEdges.size() << " Outgoing Edges:" << endl;
+      for (unsigned i=0, N=node.outEdges.size(); i < N; i++)
+	{
+	  printIndent(8, os);
+	  os << * node.outEdges[i];
+	}
+    }
+  
+  return os;
+}