Reimplement isPotentiallyReachable to make nocapture deduction much stronger.
Adds unit tests for it too.

Split BasicBlockUtils into an analysis-half and a transforms-half, and put the
analysis bits into a new Analysis/CFG.{h,cpp}. Promote isPotentiallyReachable
into llvm::isPotentiallyReachable and move it into Analysis/CFG.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187283 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Analysis/AliasAnalysis.cpp b/lib/Analysis/AliasAnalysis.cpp
index 5be5613..b8b6d37 100644
--- a/lib/Analysis/AliasAnalysis.cpp
+++ b/lib/Analysis/AliasAnalysis.cpp
@@ -26,6 +26,7 @@
 
 #include "llvm/Analysis/AliasAnalysis.h"
 #include "llvm/Analysis/CaptureTracking.h"
+#include "llvm/Analysis/CFG.h"
 #include "llvm/Analysis/Dominators.h"
 #include "llvm/Analysis/ValueTracking.h"
 #include "llvm/IR/BasicBlock.h"
@@ -361,26 +362,6 @@
 }
 
 namespace {
-  /// Determine whether there is a path from From to To within a single
-  /// function. Returns false only if we can prove that once 'From' has been
-  /// executed then 'To' can not be executed. Conservatively returns true.
-  static bool isPotentiallyReachable(const BasicBlock *From,
-                                     const BasicBlock *To) {
-    const unsigned MaxCheck = 5;
-    const BasicBlock *Current = From;
-    for (unsigned I = 0; I < MaxCheck; I++) {
-      unsigned NumSuccs = Current->getTerminator()->getNumSuccessors();
-      if (NumSuccs > 1)
-        return true;
-      if (NumSuccs == 0)
-        return false;
-      Current = Current->getTerminator()->getSuccessor(0);
-      if (Current == To)
-        return true;
-    }
-    return true;
-  }
-
   /// Only find pointer captures which happen before the given instruction. Uses
   /// the dominator tree to determine whether one instruction is before another.
   /// Only support the case where the Value is defined in the same basic block
@@ -402,7 +383,7 @@
       // there is no need to explore the use if BeforeHere dominates use.
       // Check whether there is a path from I to BeforeHere.
       if (BeforeHere != I && DT->dominates(BeforeHere, I) &&
-          !isPotentiallyReachable(BB, BeforeHere->getParent()))
+          !isPotentiallyReachable(I, BeforeHere, DT))
         return false;
       return true;
     }
@@ -414,7 +395,7 @@
       if (BeforeHere != I && !DT->isReachableFromEntry(BB))
         return false;
       if (BeforeHere != I && DT->dominates(BeforeHere, I) &&
-          !isPotentiallyReachable(BB, BeforeHere->getParent()))
+          !isPotentiallyReachable(I, BeforeHere, DT))
         return false;
       Captured = true;
       return true;
diff --git a/lib/Analysis/CFG.cpp b/lib/Analysis/CFG.cpp
new file mode 100644
index 0000000..a5ed21a
--- /dev/null
+++ b/lib/Analysis/CFG.cpp
@@ -0,0 +1,227 @@
+//===-- CFG.cpp - BasicBlock analysis --------------------------------------==//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This family of functions performs analyses on basic blocks, and instructions
+// contained within basic blocks.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/CFG.h"
+
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/Analysis/Dominators.h"
+#include "llvm/Analysis/LoopInfo.h"
+
+using namespace llvm;
+
+/// FindFunctionBackedges - Analyze the specified function to find all of the
+/// loop backedges in the function and return them.  This is a relatively cheap
+/// (compared to computing dominators and loop info) analysis.
+///
+/// The output is added to Result, as pairs of <from,to> edge info.
+void llvm::FindFunctionBackedges(const Function &F,
+     SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) {
+  const BasicBlock *BB = &F.getEntryBlock();
+  if (succ_begin(BB) == succ_end(BB))
+    return;
+
+  SmallPtrSet<const BasicBlock*, 8> Visited;
+  SmallVector<std::pair<const BasicBlock*, succ_const_iterator>, 8> VisitStack;
+  SmallPtrSet<const BasicBlock*, 8> InStack;
+
+  Visited.insert(BB);
+  VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
+  InStack.insert(BB);
+  do {
+    std::pair<const BasicBlock*, succ_const_iterator> &Top = VisitStack.back();
+    const BasicBlock *ParentBB = Top.first;
+    succ_const_iterator &I = Top.second;
+
+    bool FoundNew = false;
+    while (I != succ_end(ParentBB)) {
+      BB = *I++;
+      if (Visited.insert(BB)) {
+        FoundNew = true;
+        break;
+      }
+      // Successor is in VisitStack, it's a back edge.
+      if (InStack.count(BB))
+        Result.push_back(std::make_pair(ParentBB, BB));
+    }
+
+    if (FoundNew) {
+      // Go down one level if there is a unvisited successor.
+      InStack.insert(BB);
+      VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
+    } else {
+      // Go up one level.
+      InStack.erase(VisitStack.pop_back_val().first);
+    }
+  } while (!VisitStack.empty());
+}
+
+/// GetSuccessorNumber - Search for the specified successor of basic block BB
+/// and return its position in the terminator instruction's list of
+/// successors.  It is an error to call this with a block that is not a
+/// successor.
+unsigned llvm::GetSuccessorNumber(BasicBlock *BB, BasicBlock *Succ) {
+  TerminatorInst *Term = BB->getTerminator();
+#ifndef NDEBUG
+  unsigned e = Term->getNumSuccessors();
+#endif
+  for (unsigned i = 0; ; ++i) {
+    assert(i != e && "Didn't find edge?");
+    if (Term->getSuccessor(i) == Succ)
+      return i;
+  }
+}
+
+/// isCriticalEdge - Return true if the specified edge is a critical edge.
+/// Critical edges are edges from a block with multiple successors to a block
+/// with multiple predecessors.
+bool llvm::isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum,
+                          bool AllowIdenticalEdges) {
+  assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!");
+  if (TI->getNumSuccessors() == 1) return false;
+
+  const BasicBlock *Dest = TI->getSuccessor(SuccNum);
+  const_pred_iterator I = pred_begin(Dest), E = pred_end(Dest);
+
+  // If there is more than one predecessor, this is a critical edge...
+  assert(I != E && "No preds, but we have an edge to the block?");
+  const BasicBlock *FirstPred = *I;
+  ++I;        // Skip one edge due to the incoming arc from TI.
+  if (!AllowIdenticalEdges)
+    return I != E;
+
+  // If AllowIdenticalEdges is true, then we allow this edge to be considered
+  // non-critical iff all preds come from TI's block.
+  while (I != E) {
+    const BasicBlock *P = *I;
+    if (P != FirstPred)
+      return true;
+    // Note: leave this as is until no one ever compiles with either gcc 4.0.1
+    // or Xcode 2. This seems to work around the pred_iterator assert in PR 2207
+    E = pred_end(P);
+    ++I;
+  }
+  return false;
+}
+
+// LoopInfo contains a mapping from basic block to the innermost loop. Find
+// the outermost loop in the loop nest that contains BB.
+static const Loop *getOutermostLoop(LoopInfo *LI, const BasicBlock *BB) {
+  const Loop *L = LI->getLoopFor(BB);
+  if (L) {
+    while (const Loop *Parent = L->getParentLoop())
+      L = Parent;
+  }
+  return L;
+}
+
+// True if there is a loop which contains both BB1 and BB2.
+static bool loopContainsBoth(LoopInfo *LI,
+                             const BasicBlock *BB1, const BasicBlock *BB2) {
+  const Loop *L1 = getOutermostLoop(LI, BB1);
+  const Loop *L2 = getOutermostLoop(LI, BB2);
+  return L1 != NULL && L1 == L2;
+}
+
+static bool isPotentiallyReachableSameBlock(const Instruction *A,
+                                            const Instruction *B,
+                                            LoopInfo *LI) {
+  // The same block case is special because it's the only time we're looking
+  // within a single block to see which comes first. Once we start looking at
+  // multiple blocks, the first instruction of the block is reachable, so we
+  // only need to determine reachability between whole blocks.
+
+  const BasicBlock *BB = A->getParent();
+  // If the block is in a loop then we can reach any instruction in the block
+  // from any other instruction in the block by going around the backedge.
+  // Check whether we're in a loop (or aren't sure).
+
+  // Can't be in a loop if it's the entry block -- the entry block may not
+  // have predecessors.
+  bool HasLoop = BB != &BB->getParent()->getEntryBlock();
+
+  // Can't be in a loop if LoopInfo doesn't know about it.
+  if (LI && HasLoop) {
+    HasLoop = LI->getLoopFor(BB) != 0;
+  }
+  if (HasLoop)
+    return true;
+
+  // Linear scan, start at 'A', see whether we hit 'B' or the end first.
+  for (BasicBlock::const_iterator I = A, E = BB->end(); I != E; ++I) {
+    if (&*I == B)
+      return true;
+  }
+  return false;
+}
+
+bool llvm::isPotentiallyReachable(const Instruction *A, const Instruction *B,
+                                  DominatorTree *DT, LoopInfo *LI) {
+  assert(A->getParent()->getParent() == B->getParent()->getParent() &&
+         "This analysis is function-local!");
+
+  const BasicBlock *StopBB = B->getParent();
+
+  if (A->getParent() == B->getParent())
+    return isPotentiallyReachableSameBlock(A, B, LI);
+
+  if (A->getParent() == &A->getParent()->getParent()->getEntryBlock())
+    return true;
+  if (B->getParent() == &A->getParent()->getParent()->getEntryBlock())
+    return false;
+
+  // When the stop block is unreachable, it's dominated from everywhere,
+  // regardless of whether there's a path between the two blocks.
+  if (DT && !DT->isReachableFromEntry(StopBB))
+    DT = 0;
+
+  // Limit the number of blocks we visit. The goal is to avoid run-away compile
+  // times on large CFGs without hampering sensible code. Arbitrarily chosen.
+  unsigned Limit = 32;
+
+  SmallSet<const BasicBlock*, 64> Visited;
+  SmallVector<BasicBlock*, 32> Worklist;
+  Worklist.push_back(const_cast<BasicBlock*>(A->getParent()));
+
+  do {
+    BasicBlock *BB = Worklist.pop_back_val();
+    if (!Visited.insert(BB))
+      continue;
+    if (BB == StopBB)
+      return true;
+    if (DT && DT->dominates(BB, StopBB))
+      return true;
+    if (LI && loopContainsBoth(LI, BB, StopBB))
+      return true;
+
+    if (!--Limit) {
+      // We haven't been able to prove it one way or the other. Conservatively
+      // answer true -- that there is potentially a path.
+      return true;
+    }
+
+    if (const Loop *Outer = LI ? getOutermostLoop(LI, BB) : 0) {
+      // All blocks in a single loop are reachable from all other blocks. From
+      // any of these blocks, we can skip directly to the exits of the loop,
+      // ignoring any other blocks inside the loop body.
+      Outer->getExitBlocks(Worklist);
+    } else {
+      for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
+        Worklist.push_back(*I);
+    }
+  } while (!Worklist.empty());
+
+  // We have exhaustived all possible paths and are certain that 'To' can not
+  // be reached from 'From'.
+  return false;
+}