| //===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This implements the SelectionDAG class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/Constants.h" |
| #include "llvm/GlobalValue.h" |
| #include "llvm/Assembly/Writer.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Target/MRegisterInfo.h" |
| #include "llvm/Target/TargetLowering.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include <iostream> |
| #include <set> |
| #include <cmath> |
| #include <algorithm> |
| using namespace llvm; |
| |
| static bool isCommutativeBinOp(unsigned Opcode) { |
| switch (Opcode) { |
| case ISD::ADD: |
| case ISD::MUL: |
| case ISD::AND: |
| case ISD::OR: |
| case ISD::XOR: return true; |
| default: return false; // FIXME: Need commutative info for user ops! |
| } |
| } |
| |
| static bool isAssociativeBinOp(unsigned Opcode) { |
| switch (Opcode) { |
| case ISD::ADD: |
| case ISD::MUL: |
| case ISD::AND: |
| case ISD::OR: |
| case ISD::XOR: return true; |
| default: return false; // FIXME: Need associative info for user ops! |
| } |
| } |
| |
| // isInvertibleForFree - Return true if there is no cost to emitting the logical |
| // inverse of this node. |
| static bool isInvertibleForFree(SDOperand N) { |
| if (isa<ConstantSDNode>(N.Val)) return true; |
| if (N.Val->getOpcode() == ISD::SETCC && N.Val->hasOneUse()) |
| return true; |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ConstantFPSDNode Class |
| //===----------------------------------------------------------------------===// |
| |
| /// isExactlyValue - We don't rely on operator== working on double values, as |
| /// it returns true for things that are clearly not equal, like -0.0 and 0.0. |
| /// As such, this method can be used to do an exact bit-for-bit comparison of |
| /// two floating point values. |
| bool ConstantFPSDNode::isExactlyValue(double V) const { |
| return DoubleToBits(V) == DoubleToBits(Value); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ISD Class |
| //===----------------------------------------------------------------------===// |
| |
| /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X) |
| /// when given the operation for (X op Y). |
| ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { |
| // To perform this operation, we just need to swap the L and G bits of the |
| // operation. |
| unsigned OldL = (Operation >> 2) & 1; |
| unsigned OldG = (Operation >> 1) & 1; |
| return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits |
| (OldL << 1) | // New G bit |
| (OldG << 2)); // New L bit. |
| } |
| |
| /// getSetCCInverse - Return the operation corresponding to !(X op Y), where |
| /// 'op' is a valid SetCC operation. |
| ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) { |
| unsigned Operation = Op; |
| if (isInteger) |
| Operation ^= 7; // Flip L, G, E bits, but not U. |
| else |
| Operation ^= 15; // Flip all of the condition bits. |
| if (Operation > ISD::SETTRUE2) |
| Operation &= ~8; // Don't let N and U bits get set. |
| return ISD::CondCode(Operation); |
| } |
| |
| |
| /// isSignedOp - For an integer comparison, return 1 if the comparison is a |
| /// signed operation and 2 if the result is an unsigned comparison. Return zero |
| /// if the operation does not depend on the sign of the input (setne and seteq). |
| static int isSignedOp(ISD::CondCode Opcode) { |
| switch (Opcode) { |
| default: assert(0 && "Illegal integer setcc operation!"); |
| case ISD::SETEQ: |
| case ISD::SETNE: return 0; |
| case ISD::SETLT: |
| case ISD::SETLE: |
| case ISD::SETGT: |
| case ISD::SETGE: return 1; |
| case ISD::SETULT: |
| case ISD::SETULE: |
| case ISD::SETUGT: |
| case ISD::SETUGE: return 2; |
| } |
| } |
| |
| /// getSetCCOrOperation - Return the result of a logical OR between different |
| /// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function |
| /// returns SETCC_INVALID if it is not possible to represent the resultant |
| /// comparison. |
| ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, |
| bool isInteger) { |
| if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) |
| // Cannot fold a signed integer setcc with an unsigned integer setcc. |
| return ISD::SETCC_INVALID; |
| |
| unsigned Op = Op1 | Op2; // Combine all of the condition bits. |
| |
| // If the N and U bits get set then the resultant comparison DOES suddenly |
| // care about orderedness, and is true when ordered. |
| if (Op > ISD::SETTRUE2) |
| Op &= ~16; // Clear the N bit. |
| return ISD::CondCode(Op); |
| } |
| |
| /// getSetCCAndOperation - Return the result of a logical AND between different |
| /// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This |
| /// function returns zero if it is not possible to represent the resultant |
| /// comparison. |
| ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, |
| bool isInteger) { |
| if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) |
| // Cannot fold a signed setcc with an unsigned setcc. |
| return ISD::SETCC_INVALID; |
| |
| // Combine all of the condition bits. |
| return ISD::CondCode(Op1 & Op2); |
| } |
| |
| const TargetMachine &SelectionDAG::getTarget() const { |
| return TLI.getTargetMachine(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // SelectionDAG Class |
| //===----------------------------------------------------------------------===// |
| |
| /// RemoveDeadNodes - This method deletes all unreachable nodes in the |
| /// SelectionDAG, including nodes (like loads) that have uses of their token |
| /// chain but no other uses and no side effect. If a node is passed in as an |
| /// argument, it is used as the seed for node deletion. |
| void SelectionDAG::RemoveDeadNodes(SDNode *N) { |
| std::set<SDNode*> AllNodeSet(AllNodes.begin(), AllNodes.end()); |
| |
| // Create a dummy node (which is not added to allnodes), that adds a reference |
| // to the root node, preventing it from being deleted. |
| SDNode *DummyNode = new SDNode(ISD::EntryToken, getRoot()); |
| |
| // If we have a hint to start from, use it. |
| if (N) DeleteNodeIfDead(N, &AllNodeSet); |
| |
| Restart: |
| unsigned NumNodes = AllNodeSet.size(); |
| for (std::set<SDNode*>::iterator I = AllNodeSet.begin(), E = AllNodeSet.end(); |
| I != E; ++I) { |
| // Try to delete this node. |
| DeleteNodeIfDead(*I, &AllNodeSet); |
| |
| // If we actually deleted any nodes, do not use invalid iterators in |
| // AllNodeSet. |
| if (AllNodeSet.size() != NumNodes) |
| goto Restart; |
| } |
| |
| // Restore AllNodes. |
| if (AllNodes.size() != NumNodes) |
| AllNodes.assign(AllNodeSet.begin(), AllNodeSet.end()); |
| |
| // If the root changed (e.g. it was a dead load, update the root). |
| setRoot(DummyNode->getOperand(0)); |
| |
| // Now that we are done with the dummy node, delete it. |
| DummyNode->getOperand(0).Val->removeUser(DummyNode); |
| delete DummyNode; |
| } |
| |
| |
| void SelectionDAG::DeleteNodeIfDead(SDNode *N, void *NodeSet) { |
| if (!N->use_empty()) |
| return; |
| |
| // Okay, we really are going to delete this node. First take this out of the |
| // appropriate CSE map. |
| RemoveNodeFromCSEMaps(N); |
| |
| // Next, brutally remove the operand list. This is safe to do, as there are |
| // no cycles in the graph. |
| while (!N->Operands.empty()) { |
| SDNode *O = N->Operands.back().Val; |
| N->Operands.pop_back(); |
| O->removeUser(N); |
| |
| // Now that we removed this operand, see if there are no uses of it left. |
| DeleteNodeIfDead(O, NodeSet); |
| } |
| |
| // Remove the node from the nodes set and delete it. |
| std::set<SDNode*> &AllNodeSet = *(std::set<SDNode*>*)NodeSet; |
| AllNodeSet.erase(N); |
| |
| // Now that the node is gone, check to see if any of the operands of this node |
| // are dead now. |
| delete N; |
| } |
| |
| /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that |
| /// correspond to it. This is useful when we're about to delete or repurpose |
| /// the node. We don't want future request for structurally identical nodes |
| /// to return N anymore. |
| void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { |
| switch (N->getOpcode()) { |
| case ISD::Constant: |
| Constants.erase(std::make_pair(cast<ConstantSDNode>(N)->getValue(), |
| N->getValueType(0))); |
| break; |
| case ISD::TargetConstant: |
| TargetConstants.erase(std::make_pair(cast<ConstantSDNode>(N)->getValue(), |
| N->getValueType(0))); |
| break; |
| case ISD::ConstantFP: { |
| uint64_t V = DoubleToBits(cast<ConstantFPSDNode>(N)->getValue()); |
| ConstantFPs.erase(std::make_pair(V, N->getValueType(0))); |
| break; |
| } |
| case ISD::CONDCODE: |
| assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && |
| "Cond code doesn't exist!"); |
| CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0; |
| break; |
| case ISD::GlobalAddress: |
| GlobalValues.erase(cast<GlobalAddressSDNode>(N)->getGlobal()); |
| break; |
| case ISD::TargetGlobalAddress: |
| TargetGlobalValues.erase(cast<GlobalAddressSDNode>(N)->getGlobal()); |
| break; |
| case ISD::FrameIndex: |
| FrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex()); |
| break; |
| case ISD::TargetFrameIndex: |
| TargetFrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex()); |
| break; |
| case ISD::ConstantPool: |
| ConstantPoolIndices.erase(cast<ConstantPoolSDNode>(N)->get()); |
| break; |
| case ISD::TargetConstantPool: |
| TargetConstantPoolIndices.erase(cast<ConstantPoolSDNode>(N)->get()); |
| break; |
| case ISD::BasicBlock: |
| BBNodes.erase(cast<BasicBlockSDNode>(N)->getBasicBlock()); |
| break; |
| case ISD::ExternalSymbol: |
| ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); |
| break; |
| case ISD::VALUETYPE: |
| ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0; |
| break; |
| case ISD::Register: |
| RegNodes[cast<RegisterSDNode>(N)->getReg()] = 0; |
| break; |
| case ISD::SRCVALUE: { |
| SrcValueSDNode *SVN = cast<SrcValueSDNode>(N); |
| ValueNodes.erase(std::make_pair(SVN->getValue(), SVN->getOffset())); |
| break; |
| } |
| case ISD::LOAD: |
| Loads.erase(std::make_pair(N->getOperand(1), |
| std::make_pair(N->getOperand(0), |
| N->getValueType(0)))); |
| break; |
| default: |
| if (N->getNumOperands() == 1) |
| UnaryOps.erase(std::make_pair(N->getOpcode(), |
| std::make_pair(N->getOperand(0), |
| N->getValueType(0)))); |
| else if (N->getNumOperands() == 2) |
| BinaryOps.erase(std::make_pair(N->getOpcode(), |
| std::make_pair(N->getOperand(0), |
| N->getOperand(1)))); |
| else if (N->getNumValues() == 1) { |
| std::vector<SDOperand> Ops(N->op_begin(), N->op_end()); |
| OneResultNodes.erase(std::make_pair(N->getOpcode(), |
| std::make_pair(N->getValueType(0), |
| Ops))); |
| } else { |
| // Remove the node from the ArbitraryNodes map. |
| std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end()); |
| std::vector<SDOperand> Ops(N->op_begin(), N->op_end()); |
| ArbitraryNodes.erase(std::make_pair(N->getOpcode(), |
| std::make_pair(RV, Ops))); |
| } |
| break; |
| } |
| } |
| |
| /// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps. It |
| /// has been taken out and modified in some way. If the specified node already |
| /// exists in the CSE maps, do not modify the maps, but return the existing node |
| /// instead. If it doesn't exist, add it and return null. |
| /// |
| SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) { |
| assert(N->getNumOperands() && "This is a leaf node!"); |
| if (N->getOpcode() == ISD::LOAD) { |
| SDNode *&L = Loads[std::make_pair(N->getOperand(1), |
| std::make_pair(N->getOperand(0), |
| N->getValueType(0)))]; |
| if (L) return L; |
| L = N; |
| } else if (N->getNumOperands() == 1) { |
| SDNode *&U = UnaryOps[std::make_pair(N->getOpcode(), |
| std::make_pair(N->getOperand(0), |
| N->getValueType(0)))]; |
| if (U) return U; |
| U = N; |
| } else if (N->getNumOperands() == 2) { |
| SDNode *&B = BinaryOps[std::make_pair(N->getOpcode(), |
| std::make_pair(N->getOperand(0), |
| N->getOperand(1)))]; |
| if (B) return B; |
| B = N; |
| } else if (N->getNumValues() == 1) { |
| std::vector<SDOperand> Ops(N->op_begin(), N->op_end()); |
| SDNode *&ORN = OneResultNodes[std::make_pair(N->getOpcode(), |
| std::make_pair(N->getValueType(0), Ops))]; |
| if (ORN) return ORN; |
| ORN = N; |
| } else { |
| // Remove the node from the ArbitraryNodes map. |
| std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end()); |
| std::vector<SDOperand> Ops(N->op_begin(), N->op_end()); |
| SDNode *&AN = ArbitraryNodes[std::make_pair(N->getOpcode(), |
| std::make_pair(RV, Ops))]; |
| if (AN) return AN; |
| AN = N; |
| } |
| return 0; |
| |
| } |
| |
| |
| |
| SelectionDAG::~SelectionDAG() { |
| for (unsigned i = 0, e = AllNodes.size(); i != e; ++i) |
| delete AllNodes[i]; |
| } |
| |
| SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) { |
| if (Op.getValueType() == VT) return Op; |
| int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT)); |
| return getNode(ISD::AND, Op.getValueType(), Op, |
| getConstant(Imm, Op.getValueType())); |
| } |
| |
| SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT) { |
| assert(MVT::isInteger(VT) && "Cannot create FP integer constant!"); |
| // Mask out any bits that are not valid for this constant. |
| if (VT != MVT::i64) |
| Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1; |
| |
| SDNode *&N = Constants[std::make_pair(Val, VT)]; |
| if (N) return SDOperand(N, 0); |
| N = new ConstantSDNode(false, Val, VT); |
| AllNodes.push_back(N); |
| return SDOperand(N, 0); |
| } |
| |
| SDOperand SelectionDAG::getTargetConstant(uint64_t Val, MVT::ValueType VT) { |
| assert(MVT::isInteger(VT) && "Cannot create FP integer constant!"); |
| // Mask out any bits that are not valid for this constant. |
| if (VT != MVT::i64) |
| Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1; |
| |
| SDNode *&N = TargetConstants[std::make_pair(Val, VT)]; |
| if (N) return SDOperand(N, 0); |
| N = new ConstantSDNode(true, Val, VT); |
| AllNodes.push_back(N); |
| return SDOperand(N, 0); |
| } |
| |
| SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT) { |
| assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!"); |
| if (VT == MVT::f32) |
| Val = (float)Val; // Mask out extra precision. |
| |
| // Do the map lookup using the actual bit pattern for the floating point |
| // value, so that we don't have problems with 0.0 comparing equal to -0.0, and |
| // we don't have issues with SNANs. |
| SDNode *&N = ConstantFPs[std::make_pair(DoubleToBits(Val), VT)]; |
| if (N) return SDOperand(N, 0); |
| N = new ConstantFPSDNode(Val, VT); |
| AllNodes.push_back(N); |
| return SDOperand(N, 0); |
| } |
| |
| |
| |
| SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV, |
| MVT::ValueType VT) { |
| SDNode *&N = GlobalValues[GV]; |
| if (N) return SDOperand(N, 0); |
| N = new GlobalAddressSDNode(false, GV, VT); |
| AllNodes.push_back(N); |
| return SDOperand(N, 0); |
| } |
| |
| SDOperand SelectionDAG::getTargetGlobalAddress(const GlobalValue *GV, |
| MVT::ValueType VT) { |
| SDNode *&N = TargetGlobalValues[GV]; |
| if (N) return SDOperand(N, 0); |
| N = new GlobalAddressSDNode(true, GV, VT); |
| AllNodes.push_back(N); |
| return SDOperand(N, 0); |
| } |
| |
| SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT) { |
| SDNode *&N = FrameIndices[FI]; |
| if (N) return SDOperand(N, 0); |
| N = new FrameIndexSDNode(FI, VT, false); |
| AllNodes.push_back(N); |
| return SDOperand(N, 0); |
| } |
| |
| SDOperand SelectionDAG::getTargetFrameIndex(int FI, MVT::ValueType VT) { |
| SDNode *&N = TargetFrameIndices[FI]; |
| if (N) return SDOperand(N, 0); |
| N = new FrameIndexSDNode(FI, VT, true); |
| AllNodes.push_back(N); |
| return SDOperand(N, 0); |
| } |
| |
| SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT) { |
| SDNode *&N = ConstantPoolIndices[C]; |
| if (N) return SDOperand(N, 0); |
| N = new ConstantPoolSDNode(C, VT, false); |
| AllNodes.push_back(N); |
| return SDOperand(N, 0); |
| } |
| |
| SDOperand SelectionDAG::getTargetConstantPool(Constant *C, MVT::ValueType VT) { |
| SDNode *&N = TargetConstantPoolIndices[C]; |
| if (N) return SDOperand(N, 0); |
| N = new ConstantPoolSDNode(C, VT, true); |
| AllNodes.push_back(N); |
| return SDOperand(N, 0); |
| } |
| |
| SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { |
| SDNode *&N = BBNodes[MBB]; |
| if (N) return SDOperand(N, 0); |
| N = new BasicBlockSDNode(MBB); |
| AllNodes.push_back(N); |
| return SDOperand(N, 0); |
| } |
| |
| SDOperand SelectionDAG::getValueType(MVT::ValueType VT) { |
| if ((unsigned)VT >= ValueTypeNodes.size()) |
| ValueTypeNodes.resize(VT+1); |
| if (ValueTypeNodes[VT] == 0) { |
| ValueTypeNodes[VT] = new VTSDNode(VT); |
| AllNodes.push_back(ValueTypeNodes[VT]); |
| } |
| |
| return SDOperand(ValueTypeNodes[VT], 0); |
| } |
| |
| SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) { |
| SDNode *&N = ExternalSymbols[Sym]; |
| if (N) return SDOperand(N, 0); |
| N = new ExternalSymbolSDNode(Sym, VT); |
| AllNodes.push_back(N); |
| return SDOperand(N, 0); |
| } |
| |
| SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) { |
| if ((unsigned)Cond >= CondCodeNodes.size()) |
| CondCodeNodes.resize(Cond+1); |
| |
| if (CondCodeNodes[Cond] == 0) { |
| CondCodeNodes[Cond] = new CondCodeSDNode(Cond); |
| AllNodes.push_back(CondCodeNodes[Cond]); |
| } |
| return SDOperand(CondCodeNodes[Cond], 0); |
| } |
| |
| SDOperand SelectionDAG::getRegister(unsigned Reg, MVT::ValueType VT) { |
| if (Reg >= RegNodes.size()) |
| RegNodes.resize(Reg+1); |
| RegisterSDNode *&Result = RegNodes[Reg]; |
| if (Result) { |
| assert(Result->getValueType(0) == VT && |
| "Inconsistent value types for machine registers"); |
| } else { |
| Result = new RegisterSDNode(Reg, VT); |
| AllNodes.push_back(Result); |
| } |
| return SDOperand(Result, 0); |
| } |
| |
| SDOperand SelectionDAG::SimplifySetCC(MVT::ValueType VT, SDOperand N1, |
| SDOperand N2, ISD::CondCode Cond) { |
| // These setcc operations always fold. |
| switch (Cond) { |
| default: break; |
| case ISD::SETFALSE: |
| case ISD::SETFALSE2: return getConstant(0, VT); |
| case ISD::SETTRUE: |
| case ISD::SETTRUE2: return getConstant(1, VT); |
| } |
| |
| if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) { |
| uint64_t C2 = N2C->getValue(); |
| if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) { |
| uint64_t C1 = N1C->getValue(); |
| |
| // Sign extend the operands if required |
| if (ISD::isSignedIntSetCC(Cond)) { |
| C1 = N1C->getSignExtended(); |
| C2 = N2C->getSignExtended(); |
| } |
| |
| switch (Cond) { |
| default: assert(0 && "Unknown integer setcc!"); |
| case ISD::SETEQ: return getConstant(C1 == C2, VT); |
| case ISD::SETNE: return getConstant(C1 != C2, VT); |
| case ISD::SETULT: return getConstant(C1 < C2, VT); |
| case ISD::SETUGT: return getConstant(C1 > C2, VT); |
| case ISD::SETULE: return getConstant(C1 <= C2, VT); |
| case ISD::SETUGE: return getConstant(C1 >= C2, VT); |
| case ISD::SETLT: return getConstant((int64_t)C1 < (int64_t)C2, VT); |
| case ISD::SETGT: return getConstant((int64_t)C1 > (int64_t)C2, VT); |
| case ISD::SETLE: return getConstant((int64_t)C1 <= (int64_t)C2, VT); |
| case ISD::SETGE: return getConstant((int64_t)C1 >= (int64_t)C2, VT); |
| } |
| } else { |
| // If the LHS is a ZERO_EXTEND, perform the comparison on the input. |
| if (N1.getOpcode() == ISD::ZERO_EXTEND) { |
| unsigned InSize = MVT::getSizeInBits(N1.getOperand(0).getValueType()); |
| |
| // If the comparison constant has bits in the upper part, the |
| // zero-extended value could never match. |
| if (C2 & (~0ULL << InSize)) { |
| unsigned VSize = MVT::getSizeInBits(N1.getValueType()); |
| switch (Cond) { |
| case ISD::SETUGT: |
| case ISD::SETUGE: |
| case ISD::SETEQ: return getConstant(0, VT); |
| case ISD::SETULT: |
| case ISD::SETULE: |
| case ISD::SETNE: return getConstant(1, VT); |
| case ISD::SETGT: |
| case ISD::SETGE: |
| // True if the sign bit of C2 is set. |
| return getConstant((C2 & (1ULL << VSize)) != 0, VT); |
| case ISD::SETLT: |
| case ISD::SETLE: |
| // True if the sign bit of C2 isn't set. |
| return getConstant((C2 & (1ULL << VSize)) == 0, VT); |
| default: |
| break; |
| } |
| } |
| |
| // Otherwise, we can perform the comparison with the low bits. |
| switch (Cond) { |
| case ISD::SETEQ: |
| case ISD::SETNE: |
| case ISD::SETUGT: |
| case ISD::SETUGE: |
| case ISD::SETULT: |
| case ISD::SETULE: |
| return getSetCC(VT, N1.getOperand(0), |
| getConstant(C2, N1.getOperand(0).getValueType()), |
| Cond); |
| default: |
| break; // todo, be more careful with signed comparisons |
| } |
| } else if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG && |
| (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { |
| MVT::ValueType ExtSrcTy = cast<VTSDNode>(N1.getOperand(1))->getVT(); |
| unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy); |
| MVT::ValueType ExtDstTy = N1.getValueType(); |
| unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy); |
| |
| // If the extended part has any inconsistent bits, it cannot ever |
| // compare equal. In other words, they have to be all ones or all |
| // zeros. |
| uint64_t ExtBits = |
| (~0ULL >> 64-ExtSrcTyBits) & (~0ULL << (ExtDstTyBits-1)); |
| if ((C2 & ExtBits) != 0 && (C2 & ExtBits) != ExtBits) |
| return getConstant(Cond == ISD::SETNE, VT); |
| |
| // Otherwise, make this a use of a zext. |
| return getSetCC(VT, getZeroExtendInReg(N1.getOperand(0), ExtSrcTy), |
| getConstant(C2 & (~0ULL >> 64-ExtSrcTyBits), ExtDstTy), |
| Cond); |
| } |
| |
| uint64_t MinVal, MaxVal; |
| unsigned OperandBitSize = MVT::getSizeInBits(N2C->getValueType(0)); |
| if (ISD::isSignedIntSetCC(Cond)) { |
| MinVal = 1ULL << (OperandBitSize-1); |
| if (OperandBitSize != 1) // Avoid X >> 64, which is undefined. |
| MaxVal = ~0ULL >> (65-OperandBitSize); |
| else |
| MaxVal = 0; |
| } else { |
| MinVal = 0; |
| MaxVal = ~0ULL >> (64-OperandBitSize); |
| } |
| |
| // Canonicalize GE/LE comparisons to use GT/LT comparisons. |
| if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { |
| if (C2 == MinVal) return getConstant(1, VT); // X >= MIN --> true |
| --C2; // X >= C1 --> X > (C1-1) |
| return getSetCC(VT, N1, getConstant(C2, N2.getValueType()), |
| (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT); |
| } |
| |
| if (Cond == ISD::SETLE || Cond == ISD::SETULE) { |
| if (C2 == MaxVal) return getConstant(1, VT); // X <= MAX --> true |
| ++C2; // X <= C1 --> X < (C1+1) |
| return getSetCC(VT, N1, getConstant(C2, N2.getValueType()), |
| (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT); |
| } |
| |
| if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal) |
| return getConstant(0, VT); // X < MIN --> false |
| |
| // Canonicalize setgt X, Min --> setne X, Min |
| if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MinVal) |
| return getSetCC(VT, N1, N2, ISD::SETNE); |
| |
| // If we have setult X, 1, turn it into seteq X, 0 |
| if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal+1) |
| return getSetCC(VT, N1, getConstant(MinVal, N1.getValueType()), |
| ISD::SETEQ); |
| // If we have setugt X, Max-1, turn it into seteq X, Max |
| else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MaxVal-1) |
| return getSetCC(VT, N1, getConstant(MaxVal, N1.getValueType()), |
| ISD::SETEQ); |
| |
| // If we have "setcc X, C1", check to see if we can shrink the immediate |
| // by changing cc. |
| |
| // SETUGT X, SINTMAX -> SETLT X, 0 |
| if (Cond == ISD::SETUGT && OperandBitSize != 1 && |
| C2 == (~0ULL >> (65-OperandBitSize))) |
| return getSetCC(VT, N1, getConstant(0, N2.getValueType()), ISD::SETLT); |
| |
| // FIXME: Implement the rest of these. |
| |
| |
| // Fold bit comparisons when we can. |
| if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && |
| VT == N1.getValueType() && N1.getOpcode() == ISD::AND) |
| if (ConstantSDNode *AndRHS = |
| dyn_cast<ConstantSDNode>(N1.getOperand(1))) { |
| if (Cond == ISD::SETNE && C2 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 |
| // Perform the xform if the AND RHS is a single bit. |
| if ((AndRHS->getValue() & (AndRHS->getValue()-1)) == 0) { |
| return getNode(ISD::SRL, VT, N1, |
| getConstant(Log2_64(AndRHS->getValue()), |
| TLI.getShiftAmountTy())); |
| } |
| } else if (Cond == ISD::SETEQ && C2 == AndRHS->getValue()) { |
| // (X & 8) == 8 --> (X & 8) >> 3 |
| // Perform the xform if C2 is a single bit. |
| if ((C2 & (C2-1)) == 0) { |
| return getNode(ISD::SRL, VT, N1, |
| getConstant(Log2_64(C2),TLI.getShiftAmountTy())); |
| } |
| } |
| } |
| } |
| } else if (isa<ConstantSDNode>(N1.Val)) { |
| // Ensure that the constant occurs on the RHS. |
| return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond)); |
| } |
| |
| if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val)) |
| if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) { |
| double C1 = N1C->getValue(), C2 = N2C->getValue(); |
| |
| switch (Cond) { |
| default: break; // FIXME: Implement the rest of these! |
| case ISD::SETEQ: return getConstant(C1 == C2, VT); |
| case ISD::SETNE: return getConstant(C1 != C2, VT); |
| case ISD::SETLT: return getConstant(C1 < C2, VT); |
| case ISD::SETGT: return getConstant(C1 > C2, VT); |
| case ISD::SETLE: return getConstant(C1 <= C2, VT); |
| case ISD::SETGE: return getConstant(C1 >= C2, VT); |
| } |
| } else { |
| // Ensure that the constant occurs on the RHS. |
| return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond)); |
| } |
| |
| if (N1 == N2) { |
| // We can always fold X == Y for integer setcc's. |
| if (MVT::isInteger(N1.getValueType())) |
| return getConstant(ISD::isTrueWhenEqual(Cond), VT); |
| unsigned UOF = ISD::getUnorderedFlavor(Cond); |
| if (UOF == 2) // FP operators that are undefined on NaNs. |
| return getConstant(ISD::isTrueWhenEqual(Cond), VT); |
| if (UOF == unsigned(ISD::isTrueWhenEqual(Cond))) |
| return getConstant(UOF, VT); |
| // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO |
| // if it is not already. |
| ISD::CondCode NewCond = UOF == 0 ? ISD::SETUO : ISD::SETO; |
| if (NewCond != Cond) |
| return getSetCC(VT, N1, N2, NewCond); |
| } |
| |
| if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && |
| MVT::isInteger(N1.getValueType())) { |
| if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || |
| N1.getOpcode() == ISD::XOR) { |
| // Simplify (X+Y) == (X+Z) --> Y == Z |
| if (N1.getOpcode() == N2.getOpcode()) { |
| if (N1.getOperand(0) == N2.getOperand(0)) |
| return getSetCC(VT, N1.getOperand(1), N2.getOperand(1), Cond); |
| if (N1.getOperand(1) == N2.getOperand(1)) |
| return getSetCC(VT, N1.getOperand(0), N2.getOperand(0), Cond); |
| if (isCommutativeBinOp(N1.getOpcode())) { |
| // If X op Y == Y op X, try other combinations. |
| if (N1.getOperand(0) == N2.getOperand(1)) |
| return getSetCC(VT, N1.getOperand(1), N2.getOperand(0), Cond); |
| if (N1.getOperand(1) == N2.getOperand(0)) |
| return getSetCC(VT, N1.getOperand(1), N2.getOperand(1), Cond); |
| } |
| } |
| |
| // FIXME: move this stuff to the DAG Combiner when it exists! |
| |
| // Simplify (X+Z) == X --> Z == 0 |
| if (N1.getOperand(0) == N2) |
| return getSetCC(VT, N1.getOperand(1), |
| getConstant(0, N1.getValueType()), Cond); |
| if (N1.getOperand(1) == N2) { |
| if (isCommutativeBinOp(N1.getOpcode())) |
| return getSetCC(VT, N1.getOperand(0), |
| getConstant(0, N1.getValueType()), Cond); |
| else { |
| assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); |
| // (Z-X) == X --> Z == X<<1 |
| return getSetCC(VT, N1.getOperand(0), |
| getNode(ISD::SHL, N2.getValueType(), |
| N2, getConstant(1, TLI.getShiftAmountTy())), |
| Cond); |
| } |
| } |
| } |
| |
| if (N2.getOpcode() == ISD::ADD || N2.getOpcode() == ISD::SUB || |
| N2.getOpcode() == ISD::XOR) { |
| // Simplify X == (X+Z) --> Z == 0 |
| if (N2.getOperand(0) == N1) { |
| return getSetCC(VT, N2.getOperand(1), |
| getConstant(0, N2.getValueType()), Cond); |
| } else if (N2.getOperand(1) == N1) { |
| if (isCommutativeBinOp(N2.getOpcode())) { |
| return getSetCC(VT, N2.getOperand(0), |
| getConstant(0, N2.getValueType()), Cond); |
| } else { |
| assert(N2.getOpcode() == ISD::SUB && "Unexpected operation!"); |
| // X == (Z-X) --> X<<1 == Z |
| return getSetCC(VT, getNode(ISD::SHL, N2.getValueType(), N1, |
| getConstant(1, TLI.getShiftAmountTy())), |
| N2.getOperand(0), Cond); |
| } |
| } |
| } |
| } |
| |
| // Fold away ALL boolean setcc's. |
| if (N1.getValueType() == MVT::i1) { |
| switch (Cond) { |
| default: assert(0 && "Unknown integer setcc!"); |
| case ISD::SETEQ: // X == Y -> (X^Y)^1 |
| N1 = getNode(ISD::XOR, MVT::i1, |
| getNode(ISD::XOR, MVT::i1, N1, N2), |
| getConstant(1, MVT::i1)); |
| break; |
| case ISD::SETNE: // X != Y --> (X^Y) |
| N1 = getNode(ISD::XOR, MVT::i1, N1, N2); |
| break; |
| case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> X^1 & Y |
| case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> X^1 & Y |
| N1 = getNode(ISD::AND, MVT::i1, N2, |
| getNode(ISD::XOR, MVT::i1, N1, getConstant(1, MVT::i1))); |
| break; |
| case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> Y^1 & X |
| case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> Y^1 & X |
| N1 = getNode(ISD::AND, MVT::i1, N1, |
| getNode(ISD::XOR, MVT::i1, N2, getConstant(1, MVT::i1))); |
| break; |
| case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> X^1 | Y |
| case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> X^1 | Y |
| N1 = getNode(ISD::OR, MVT::i1, N2, |
| getNode(ISD::XOR, MVT::i1, N1, getConstant(1, MVT::i1))); |
| break; |
| case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> Y^1 | X |
| case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> Y^1 | X |
| N1 = getNode(ISD::OR, MVT::i1, N1, |
| getNode(ISD::XOR, MVT::i1, N2, getConstant(1, MVT::i1))); |
| break; |
| } |
| if (VT != MVT::i1) |
| N1 = getNode(ISD::ZERO_EXTEND, VT, N1); |
| return N1; |
| } |
| |
| // Could not fold it. |
| return SDOperand(); |
| } |
| |
| SDOperand SelectionDAG::SimplifySelectCC(SDOperand N1, SDOperand N2, |
| SDOperand N3, SDOperand N4, |
| ISD::CondCode CC) { |
| MVT::ValueType VT = N3.getValueType(); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val); |
| ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val); |
| ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val); |
| ConstantSDNode *N4C = dyn_cast<ConstantSDNode>(N4.Val); |
| |
| // Check to see if we can simplify the select into an fabs node |
| if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2)) { |
| // Allow either -0.0 or 0.0 |
| if (CFP->getValue() == 0.0) { |
| // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs |
| if ((CC == ISD::SETGE || CC == ISD::SETGT) && |
| N1 == N3 && N4.getOpcode() == ISD::FNEG && |
| N1 == N4.getOperand(0)) |
| return getNode(ISD::FABS, VT, N1); |
| |
| // select (setl[te] X, +/-0.0), fneg(X), X -> fabs |
| if ((CC == ISD::SETLT || CC == ISD::SETLE) && |
| N1 == N4 && N3.getOpcode() == ISD::FNEG && |
| N3.getOperand(0) == N4) |
| return getNode(ISD::FABS, VT, N4); |
| } |
| } |
| |
| // check to see if we're select_cc'ing a select_cc. |
| // this allows us to turn: |
| // select_cc set[eq,ne] (select_cc cc, lhs, rhs, 1, 0), 0, true, false -> |
| // select_cc cc, lhs, rhs, true, false |
| if ((N1C && N1C->isNullValue() && N2.getOpcode() == ISD::SELECT_CC) || |
| (N2C && N2C->isNullValue() && N1.getOpcode() == ISD::SELECT_CC) && |
| (CC == ISD::SETEQ || CC == ISD::SETNE)) { |
| SDOperand SCC = N1C ? N2 : N1; |
| ConstantSDNode *SCCT = dyn_cast<ConstantSDNode>(SCC.getOperand(2)); |
| ConstantSDNode *SCCF = dyn_cast<ConstantSDNode>(SCC.getOperand(3)); |
| if (SCCT && SCCF && SCCF->isNullValue() && SCCT->getValue() == 1ULL) { |
| if (CC == ISD::SETEQ) std::swap(N3, N4); |
| return getNode(ISD::SELECT_CC, N3.getValueType(), SCC.getOperand(0), |
| SCC.getOperand(1), N3, N4, SCC.getOperand(4)); |
| } |
| } |
| |
| // Check to see if we can perform the "gzip trick", transforming |
| // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A |
| if (N2C && N2C->isNullValue() && N4C && N4C->isNullValue() && |
| MVT::isInteger(N1.getValueType()) && |
| MVT::isInteger(N3.getValueType()) && CC == ISD::SETLT) { |
| MVT::ValueType XType = N1.getValueType(); |
| MVT::ValueType AType = N3.getValueType(); |
| if (XType >= AType) { |
| // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a |
| // single-bit constant. FIXME: remove once the dag combiner |
| // exists. |
| if (N3C && ((N3C->getValue() & (N3C->getValue()-1)) == 0)) { |
| unsigned ShCtV = Log2_64(N3C->getValue()); |
| ShCtV = MVT::getSizeInBits(XType)-ShCtV-1; |
| SDOperand ShCt = getConstant(ShCtV, TLI.getShiftAmountTy()); |
| SDOperand Shift = getNode(ISD::SRL, XType, N1, ShCt); |
| if (XType > AType) |
| Shift = getNode(ISD::TRUNCATE, AType, Shift); |
| return getNode(ISD::AND, AType, Shift, N3); |
| } |
| SDOperand Shift = getNode(ISD::SRA, XType, N1, |
| getConstant(MVT::getSizeInBits(XType)-1, |
| TLI.getShiftAmountTy())); |
| if (XType > AType) |
| Shift = getNode(ISD::TRUNCATE, AType, Shift); |
| return getNode(ISD::AND, AType, Shift, N3); |
| } |
| } |
| |
| // Check to see if this is the equivalent of setcc |
| if (N4C && N4C->isNullValue() && N3C && (N3C->getValue() == 1ULL)) { |
| MVT::ValueType XType = N1.getValueType(); |
| if (TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultTy())) |
| return getSetCC(TLI.getSetCCResultTy(), N1, N2, CC); |
| |
| // seteq X, 0 -> srl (ctlz X, log2(size(X))) |
| if (N2C && N2C->isNullValue() && CC == ISD::SETEQ && |
| TLI.isOperationLegal(ISD::CTLZ, XType)) { |
| SDOperand Ctlz = getNode(ISD::CTLZ, XType, N1); |
| return getNode(ISD::SRL, XType, Ctlz, |
| getConstant(Log2_32(MVT::getSizeInBits(XType)), |
| TLI.getShiftAmountTy())); |
| } |
| // setgt X, 0 -> srl (and (-X, ~X), size(X)-1) |
| if (N2C && N2C->isNullValue() && CC == ISD::SETGT) { |
| SDOperand NegN1 = getNode(ISD::SUB, XType, getConstant(0, XType), N1); |
| SDOperand NotN1 = getNode(ISD::XOR, XType, N1, getConstant(~0ULL, XType)); |
| return getNode(ISD::SRL, XType, getNode(ISD::AND, XType, NegN1, NotN1), |
| getConstant(MVT::getSizeInBits(XType)-1, |
| TLI.getShiftAmountTy())); |
| } |
| // setgt X, -1 -> xor (srl (X, size(X)-1), 1) |
| if (N2C && N2C->isAllOnesValue() && CC == ISD::SETGT) { |
| SDOperand Sign = getNode(ISD::SRL, XType, N1, |
| getConstant(MVT::getSizeInBits(XType)-1, |
| TLI.getShiftAmountTy())); |
| return getNode(ISD::XOR, XType, Sign, getConstant(1, XType)); |
| } |
| } |
| |
| // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X -> |
| // Y = sra (X, size(X)-1); xor (add (X, Y), Y) |
| if (N2C && N2C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE) && |
| N1 == N4 && N3.getOpcode() == ISD::SUB && N1 == N3.getOperand(1)) { |
| if (ConstantSDNode *SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0))) { |
| MVT::ValueType XType = N1.getValueType(); |
| if (SubC->isNullValue() && MVT::isInteger(XType)) { |
| SDOperand Shift = getNode(ISD::SRA, XType, N1, |
| getConstant(MVT::getSizeInBits(XType)-1, |
| TLI.getShiftAmountTy())); |
| return getNode(ISD::XOR, XType, getNode(ISD::ADD, XType, N1, Shift), |
| Shift); |
| } |
| } |
| } |
| |
| // Could not fold it. |
| return SDOperand(); |
| } |
| |
| /// getNode - Gets or creates the specified node. |
| /// |
| SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) { |
| SDNode *N = new SDNode(Opcode, VT); |
| AllNodes.push_back(N); |
| return SDOperand(N, 0); |
| } |
| |
| SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT, |
| SDOperand Operand) { |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) { |
| uint64_t Val = C->getValue(); |
| switch (Opcode) { |
| default: break; |
| case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT); |
| case ISD::ZERO_EXTEND: return getConstant(Val, VT); |
| case ISD::TRUNCATE: return getConstant(Val, VT); |
| case ISD::SINT_TO_FP: return getConstantFP(C->getSignExtended(), VT); |
| case ISD::UINT_TO_FP: return getConstantFP(C->getValue(), VT); |
| } |
| } |
| |
| if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) |
| switch (Opcode) { |
| case ISD::FNEG: |
| return getConstantFP(-C->getValue(), VT); |
| case ISD::FP_ROUND: |
| case ISD::FP_EXTEND: |
| return getConstantFP(C->getValue(), VT); |
| case ISD::FP_TO_SINT: |
| return getConstant((int64_t)C->getValue(), VT); |
| case ISD::FP_TO_UINT: |
| return getConstant((uint64_t)C->getValue(), VT); |
| } |
| |
| unsigned OpOpcode = Operand.Val->getOpcode(); |
| switch (Opcode) { |
| case ISD::TokenFactor: |
| return Operand; // Factor of one node? No factor. |
| case ISD::SIGN_EXTEND: |
| if (Operand.getValueType() == VT) return Operand; // noop extension |
| if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) |
| return getNode(OpOpcode, VT, Operand.Val->getOperand(0)); |
| break; |
| case ISD::ZERO_EXTEND: |
| if (Operand.getValueType() == VT) return Operand; // noop extension |
| if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x) |
| return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0)); |
| break; |
| case ISD::TRUNCATE: |
| if (Operand.getValueType() == VT) return Operand; // noop truncate |
| if (OpOpcode == ISD::TRUNCATE) |
| return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0)); |
| else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND) { |
| // If the source is smaller than the dest, we still need an extend. |
| if (Operand.Val->getOperand(0).getValueType() < VT) |
| return getNode(OpOpcode, VT, Operand.Val->getOperand(0)); |
| else if (Operand.Val->getOperand(0).getValueType() > VT) |
| return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0)); |
| else |
| return Operand.Val->getOperand(0); |
| } |
| break; |
| case ISD::FNEG: |
| if (OpOpcode == ISD::SUB) // -(X-Y) -> (Y-X) |
| return getNode(ISD::SUB, VT, Operand.Val->getOperand(1), |
| Operand.Val->getOperand(0)); |
| if (OpOpcode == ISD::FNEG) // --X -> X |
| return Operand.Val->getOperand(0); |
| break; |
| case ISD::FABS: |
| if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X) |
| return getNode(ISD::FABS, VT, Operand.Val->getOperand(0)); |
| break; |
| } |
| |
| SDNode *N; |
| if (VT != MVT::Flag) { // Don't CSE flag producing nodes |
| SDNode *&E = UnaryOps[std::make_pair(Opcode, std::make_pair(Operand, VT))]; |
| if (E) return SDOperand(E, 0); |
| E = N = new SDNode(Opcode, Operand); |
| } else { |
| N = new SDNode(Opcode, Operand); |
| } |
| N->setValueTypes(VT); |
| AllNodes.push_back(N); |
| return SDOperand(N, 0); |
| } |
| |
| /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use |
| /// this predicate to simplify operations downstream. V and Mask are known to |
| /// be the same type. |
| static bool MaskedValueIsZero(const SDOperand &Op, uint64_t Mask, |
| const TargetLowering &TLI) { |
| unsigned SrcBits; |
| if (Mask == 0) return true; |
| |
| // If we know the result of a setcc has the top bits zero, use this info. |
| switch (Op.getOpcode()) { |
| case ISD::Constant: |
| return (cast<ConstantSDNode>(Op)->getValue() & Mask) == 0; |
| |
| case ISD::SETCC: |
| return ((Mask & 1) == 0) && |
| TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult; |
| |
| case ISD::ZEXTLOAD: |
| SrcBits = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(3))->getVT()); |
| return (Mask & ((1ULL << SrcBits)-1)) == 0; // Returning only the zext bits. |
| case ISD::ZERO_EXTEND: |
| SrcBits = MVT::getSizeInBits(Op.getOperand(0).getValueType()); |
| return MaskedValueIsZero(Op.getOperand(0),Mask & ((1ULL << SrcBits)-1),TLI); |
| |
| case ISD::AND: |
| // (X & C1) & C2 == 0 iff C1 & C2 == 0. |
| if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1))) |
| return MaskedValueIsZero(Op.getOperand(0),AndRHS->getValue() & Mask, TLI); |
| |
| // FALL THROUGH |
| case ISD::OR: |
| case ISD::XOR: |
| return MaskedValueIsZero(Op.getOperand(0), Mask, TLI) && |
| MaskedValueIsZero(Op.getOperand(1), Mask, TLI); |
| case ISD::SELECT: |
| return MaskedValueIsZero(Op.getOperand(1), Mask, TLI) && |
| MaskedValueIsZero(Op.getOperand(2), Mask, TLI); |
| case ISD::SELECT_CC: |
| return MaskedValueIsZero(Op.getOperand(2), Mask, TLI) && |
| MaskedValueIsZero(Op.getOperand(3), Mask, TLI); |
| case ISD::SRL: |
| // (ushr X, C1) & C2 == 0 iff X & (C2 << C1) == 0 |
| if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| uint64_t NewVal = Mask << ShAmt->getValue(); |
| SrcBits = MVT::getSizeInBits(Op.getValueType()); |
| if (SrcBits != 64) NewVal &= (1ULL << SrcBits)-1; |
| return MaskedValueIsZero(Op.getOperand(0), NewVal, TLI); |
| } |
| return false; |
| case ISD::SHL: |
| // (ushl X, C1) & C2 == 0 iff X & (C2 >> C1) == 0 |
| if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| uint64_t NewVal = Mask >> ShAmt->getValue(); |
| return MaskedValueIsZero(Op.getOperand(0), NewVal, TLI); |
| } |
| return false; |
| case ISD::CTTZ: |
| case ISD::CTLZ: |
| case ISD::CTPOP: |
| // Bit counting instructions can not set the high bits of the result |
| // register. The max number of bits sets depends on the input. |
| return (Mask & (MVT::getSizeInBits(Op.getValueType())*2-1)) == 0; |
| |
| // TODO we could handle some SRA cases here. |
| default: break; |
| } |
| |
| return false; |
| } |
| |
| |
| |
| SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT, |
| SDOperand N1, SDOperand N2) { |
| #ifndef NDEBUG |
| switch (Opcode) { |
| case ISD::TokenFactor: |
| assert(VT == MVT::Other && N1.getValueType() == MVT::Other && |
| N2.getValueType() == MVT::Other && "Invalid token factor!"); |
| break; |
| case ISD::AND: |
| case ISD::OR: |
| case ISD::XOR: |
| case ISD::UDIV: |
| case ISD::UREM: |
| case ISD::MULHU: |
| case ISD::MULHS: |
| assert(MVT::isInteger(VT) && "This operator does not apply to FP types!"); |
| // fall through |
| case ISD::ADD: |
| case ISD::SUB: |
| case ISD::MUL: |
| case ISD::SDIV: |
| case ISD::SREM: |
| assert(N1.getValueType() == N2.getValueType() && |
| N1.getValueType() == VT && "Binary operator types must match!"); |
| break; |
| |
| case ISD::SHL: |
| case ISD::SRA: |
| case ISD::SRL: |
| assert(VT == N1.getValueType() && |
| "Shift operators return type must be the same as their first arg"); |
| assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) && |
| VT != MVT::i1 && "Shifts only work on integers"); |
| break; |
| case ISD::FP_ROUND_INREG: { |
| MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT(); |
| assert(VT == N1.getValueType() && "Not an inreg round!"); |
| assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) && |
| "Cannot FP_ROUND_INREG integer types"); |
| assert(EVT <= VT && "Not rounding down!"); |
| break; |
| } |
| case ISD::SIGN_EXTEND_INREG: { |
| MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT(); |
| assert(VT == N1.getValueType() && "Not an inreg extend!"); |
| assert(MVT::isInteger(VT) && MVT::isInteger(EVT) && |
| "Cannot *_EXTEND_INREG FP types"); |
| assert(EVT <= VT && "Not extending!"); |
| } |
| |
| default: break; |
| } |
| #endif |
| |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val); |
| ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val); |
| if (N1C) { |
| if (N2C) { |
| uint64_t C1 = N1C->getValue(), C2 = N2C->getValue(); |
| switch (Opcode) { |
| case ISD::ADD: return getConstant(C1 + C2, VT); |
| case ISD::SUB: return getConstant(C1 - C2, VT); |
| case ISD::MUL: return getConstant(C1 * C2, VT); |
| case ISD::UDIV: |
| if (C2) return getConstant(C1 / C2, VT); |
| break; |
| case ISD::UREM : |
| if (C2) return getConstant(C1 % C2, VT); |
| break; |
| case ISD::SDIV : |
| if (C2) return getConstant(N1C->getSignExtended() / |
| N2C->getSignExtended(), VT); |
| break; |
| case ISD::SREM : |
| if (C2) return getConstant(N1C->getSignExtended() % |
| N2C->getSignExtended(), VT); |
| break; |
| case ISD::AND : return getConstant(C1 & C2, VT); |
| case ISD::OR : return getConstant(C1 | C2, VT); |
| case ISD::XOR : return getConstant(C1 ^ C2, VT); |
| case ISD::SHL : return getConstant(C1 << (int)C2, VT); |
| case ISD::SRL : return getConstant(C1 >> (unsigned)C2, VT); |
| case ISD::SRA : return getConstant(N1C->getSignExtended() >>(int)C2, VT); |
| default: break; |
| } |
| |
| } else { // Cannonicalize constant to RHS if commutative |
| if (isCommutativeBinOp(Opcode)) { |
| std::swap(N1C, N2C); |
| std::swap(N1, N2); |
| } |
| } |
| |
| switch (Opcode) { |
| default: break; |
| case ISD::SHL: // shl 0, X -> 0 |
| if (N1C->isNullValue()) return N1; |
| break; |
| case ISD::SRL: // srl 0, X -> 0 |
| if (N1C->isNullValue()) return N1; |
| break; |
| case ISD::SRA: // sra -1, X -> -1 |
| if (N1C->isAllOnesValue()) return N1; |
| break; |
| case ISD::SIGN_EXTEND_INREG: // SIGN_EXTEND_INREG N1C, EVT |
| // Extending a constant? Just return the extended constant. |
| SDOperand Tmp = getNode(ISD::TRUNCATE, cast<VTSDNode>(N2)->getVT(), N1); |
| return getNode(ISD::SIGN_EXTEND, VT, Tmp); |
| } |
| } |
| |
| if (N2C) { |
| uint64_t C2 = N2C->getValue(); |
| |
| switch (Opcode) { |
| case ISD::ADD: |
| if (!C2) return N1; // add X, 0 -> X |
| break; |
| case ISD::SUB: |
| if (!C2) return N1; // sub X, 0 -> X |
| return getNode(ISD::ADD, VT, N1, getConstant(-C2, VT)); |
| case ISD::MUL: |
| if (!C2) return N2; // mul X, 0 -> 0 |
| if (N2C->isAllOnesValue()) // mul X, -1 -> 0-X |
| return getNode(ISD::SUB, VT, getConstant(0, VT), N1); |
| |
| // FIXME: Move this to the DAG combiner when it exists. |
| if ((C2 & C2-1) == 0) { |
| SDOperand ShAmt = getConstant(Log2_64(C2), TLI.getShiftAmountTy()); |
| return getNode(ISD::SHL, VT, N1, ShAmt); |
| } |
| break; |
| |
| case ISD::MULHU: |
| case ISD::MULHS: |
| if (!C2) return N2; // mul X, 0 -> 0 |
| |
| if (C2 == 1) // 0X*01 -> 0X hi(0X) == 0 |
| return getConstant(0, VT); |
| |
| // Many others could be handled here, including -1, powers of 2, etc. |
| break; |
| |
| case ISD::UDIV: |
| // FIXME: Move this to the DAG combiner when it exists. |
| if ((C2 & C2-1) == 0 && C2) { |
| SDOperand ShAmt = getConstant(Log2_64(C2), TLI.getShiftAmountTy()); |
| return getNode(ISD::SRL, VT, N1, ShAmt); |
| } |
| break; |
| |
| case ISD::SHL: |
| case ISD::SRL: |
| case ISD::SRA: |
| // If the shift amount is bigger than the size of the data, then all the |
| // bits are shifted out. Simplify to undef. |
| if (C2 >= MVT::getSizeInBits(N1.getValueType())) { |
| return getNode(ISD::UNDEF, N1.getValueType()); |
| } |
| if (C2 == 0) return N1; |
| |
| if (Opcode == ISD::SRA) { |
| // If the sign bit is known to be zero, switch this to a SRL. |
| if (MaskedValueIsZero(N1, |
| 1ULL << (MVT::getSizeInBits(N1.getValueType())-1), |
| TLI)) |
| return getNode(ISD::SRL, N1.getValueType(), N1, N2); |
| } else { |
| // If the part left over is known to be zero, the whole thing is zero. |
| uint64_t TypeMask = ~0ULL >> (64-MVT::getSizeInBits(N1.getValueType())); |
| if (Opcode == ISD::SRL) { |
| if (MaskedValueIsZero(N1, TypeMask << C2, TLI)) |
| return getConstant(0, N1.getValueType()); |
| } else if (Opcode == ISD::SHL) { |
| if (MaskedValueIsZero(N1, TypeMask >> C2, TLI)) |
| return getConstant(0, N1.getValueType()); |
| } |
| } |
| |
| if (Opcode == ISD::SHL && N1.getNumOperands() == 2) |
| if (ConstantSDNode *OpSA = dyn_cast<ConstantSDNode>(N1.getOperand(1))) { |
| unsigned OpSAC = OpSA->getValue(); |
| if (N1.getOpcode() == ISD::SHL) { |
| if (C2+OpSAC >= MVT::getSizeInBits(N1.getValueType())) |
| return getConstant(0, N1.getValueType()); |
| return getNode(ISD::SHL, N1.getValueType(), N1.getOperand(0), |
| getConstant(C2+OpSAC, N2.getValueType())); |
| } else if (N1.getOpcode() == ISD::SRL) { |
| // (X >> C1) << C2: if C2 > C1, ((X & ~0<<C1) << C2-C1) |
| SDOperand Mask = getNode(ISD::AND, VT, N1.getOperand(0), |
| getConstant(~0ULL << OpSAC, VT)); |
| if (C2 > OpSAC) { |
| return getNode(ISD::SHL, VT, Mask, |
| getConstant(C2-OpSAC, N2.getValueType())); |
| } else { |
| // (X >> C1) << C2: if C2 <= C1, ((X & ~0<<C1) >> C1-C2) |
| return getNode(ISD::SRL, VT, Mask, |
| getConstant(OpSAC-C2, N2.getValueType())); |
| } |
| } else if (N1.getOpcode() == ISD::SRA) { |
| // if C1 == C2, just mask out low bits. |
| if (C2 == OpSAC) |
| return getNode(ISD::AND, VT, N1.getOperand(0), |
| getConstant(~0ULL << C2, VT)); |
| } |
| } |
| break; |
| |
| case ISD::AND: |
| if (!C2) return N2; // X and 0 -> 0 |
| if (N2C->isAllOnesValue()) |
| return N1; // X and -1 -> X |
| |
| if (MaskedValueIsZero(N1, C2, TLI)) // X and 0 -> 0 |
| return getConstant(0, VT); |
| |
| { |
| uint64_t NotC2 = ~C2; |
| if (VT != MVT::i64) |
| NotC2 &= (1ULL << MVT::getSizeInBits(VT))-1; |
| |
| if (MaskedValueIsZero(N1, NotC2, TLI)) |
| return N1; // if (X & ~C2) -> 0, the and is redundant |
| } |
| |
| // FIXME: Should add a corresponding version of this for |
| // ZERO_EXTEND/SIGN_EXTEND by converting them to an ANY_EXTEND node which |
| // we don't have yet. |
| |
| // and (sign_extend_inreg x:16:32), 1 -> and x, 1 |
| if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { |
| // If we are masking out the part of our input that was extended, just |
| // mask the input to the extension directly. |
| unsigned ExtendBits = |
| MVT::getSizeInBits(cast<VTSDNode>(N1.getOperand(1))->getVT()); |
| if ((C2 & (~0ULL << ExtendBits)) == 0) |
| return getNode(ISD::AND, VT, N1.getOperand(0), N2); |
| } else if (N1.getOpcode() == ISD::OR) { |
| if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) |
| if ((ORI->getValue() & C2) == C2) { |
| // If the 'or' is setting all of the bits that we are masking for, |
| // we know the result of the AND will be the AND mask itself. |
| return N2; |
| } |
| } |
| break; |
| case ISD::OR: |
| if (!C2)return N1; // X or 0 -> X |
| if (N2C->isAllOnesValue()) |
| return N2; // X or -1 -> -1 |
| break; |
| case ISD::XOR: |
| if (!C2) return N1; // X xor 0 -> X |
| if (N2C->isAllOnesValue()) { |
| if (N1.Val->getOpcode() == ISD::SETCC){ |
| SDNode *SetCC = N1.Val; |
| // !(X op Y) -> (X !op Y) |
| bool isInteger = MVT::isInteger(SetCC->getOperand(0).getValueType()); |
| ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get(); |
| return getSetCC(SetCC->getValueType(0), |
| SetCC->getOperand(0), SetCC->getOperand(1), |
| ISD::getSetCCInverse(CC, isInteger)); |
| } else if (N1.getOpcode() == ISD::AND || N1.getOpcode() == ISD::OR) { |
| SDNode *Op = N1.Val; |
| // !(X or Y) -> (!X and !Y) iff X or Y are freely invertible |
| // !(X and Y) -> (!X or !Y) iff X or Y are freely invertible |
| SDOperand LHS = Op->getOperand(0), RHS = Op->getOperand(1); |
| if (isInvertibleForFree(RHS) || isInvertibleForFree(LHS)) { |
| LHS = getNode(ISD::XOR, VT, LHS, N2); // RHS = ~LHS |
| RHS = getNode(ISD::XOR, VT, RHS, N2); // RHS = ~RHS |
| if (Op->getOpcode() == ISD::AND) |
| return getNode(ISD::OR, VT, LHS, RHS); |
| return getNode(ISD::AND, VT, LHS, RHS); |
| } |
| } |
| // X xor -1 -> not(x) ? |
| } |
| break; |
| } |
| |
| // Reassociate ((X op C1) op C2) if possible. |
| if (N1.getOpcode() == Opcode && isAssociativeBinOp(Opcode)) |
| if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N1.Val->getOperand(1))) |
| return getNode(Opcode, VT, N1.Val->getOperand(0), |
| getNode(Opcode, VT, N2, N1.Val->getOperand(1))); |
| } |
| |
| ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val); |
| ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val); |
| if (N1CFP) { |
| if (N2CFP) { |
| double C1 = N1CFP->getValue(), C2 = N2CFP->getValue(); |
| switch (Opcode) { |
| case ISD::ADD: return getConstantFP(C1 + C2, VT); |
| case ISD::SUB: return getConstantFP(C1 - C2, VT); |
| case ISD::MUL: return getConstantFP(C1 * C2, VT); |
| case ISD::SDIV: |
| if (C2) return getConstantFP(C1 / C2, VT); |
| break; |
| case ISD::SREM : |
| if (C2) return getConstantFP(fmod(C1, C2), VT); |
| break; |
| default: break; |
| } |
| |
| } else { // Cannonicalize constant to RHS if commutative |
| if (isCommutativeBinOp(Opcode)) { |
| std::swap(N1CFP, N2CFP); |
| std::swap(N1, N2); |
| } |
| } |
| |
| if (Opcode == ISD::FP_ROUND_INREG) |
| return getNode(ISD::FP_EXTEND, VT, |
| getNode(ISD::FP_ROUND, cast<VTSDNode>(N2)->getVT(), N1)); |
| } |
| |
| // Finally, fold operations that do not require constants. |
| switch (Opcode) { |
| case ISD::TokenFactor: |
| if (N1.getOpcode() == ISD::EntryToken) |
| return N2; |
| if (N2.getOpcode() == ISD::EntryToken) |
| return N1; |
| break; |
| |
| case ISD::AND: |
| case ISD::OR: |
| if (N1.Val->getOpcode() == ISD::SETCC && N2.Val->getOpcode() == ISD::SETCC){ |
| SDNode *LHS = N1.Val, *RHS = N2.Val; |
| SDOperand LL = LHS->getOperand(0), RL = RHS->getOperand(0); |
| SDOperand LR = LHS->getOperand(1), RR = RHS->getOperand(1); |
| ISD::CondCode Op1 = cast<CondCodeSDNode>(LHS->getOperand(2))->get(); |
| ISD::CondCode Op2 = cast<CondCodeSDNode>(RHS->getOperand(2))->get(); |
| |
| if (LR == RR && isa<ConstantSDNode>(LR) && |
| Op2 == Op1 && MVT::isInteger(LL.getValueType())) { |
| // (X != 0) | (Y != 0) -> (X|Y != 0) |
| // (X == 0) & (Y == 0) -> (X|Y == 0) |
| // (X < 0) | (Y < 0) -> (X|Y < 0) |
| if (cast<ConstantSDNode>(LR)->getValue() == 0 && |
| ((Op2 == ISD::SETEQ && Opcode == ISD::AND) || |
| (Op2 == ISD::SETNE && Opcode == ISD::OR) || |
| (Op2 == ISD::SETLT && Opcode == ISD::OR))) |
| return getSetCC(VT, getNode(ISD::OR, LR.getValueType(), LL, RL), LR, |
| Op2); |
| |
| if (cast<ConstantSDNode>(LR)->isAllOnesValue()) { |
| // (X == -1) & (Y == -1) -> (X&Y == -1) |
| // (X != -1) | (Y != -1) -> (X&Y != -1) |
| // (X > -1) | (Y > -1) -> (X&Y > -1) |
| if ((Opcode == ISD::AND && Op2 == ISD::SETEQ) || |
| (Opcode == ISD::OR && Op2 == ISD::SETNE) || |
| (Opcode == ISD::OR && Op2 == ISD::SETGT)) |
| return getSetCC(VT, getNode(ISD::AND, LR.getValueType(), LL, RL), |
| LR, Op2); |
| // (X > -1) & (Y > -1) -> (X|Y > -1) |
| if (Opcode == ISD::AND && Op2 == ISD::SETGT) |
| return getSetCC(VT, getNode(ISD::OR, LR.getValueType(), LL, RL), |
| LR, Op2); |
| } |
| } |
| |
| // (X op1 Y) | (Y op2 X) -> (X op1 Y) | (X swapop2 Y) |
| if (LL == RR && LR == RL) { |
| Op2 = ISD::getSetCCSwappedOperands(Op2); |
| goto MatchedBackwards; |
| } |
| |
| if (LL == RL && LR == RR) { |
| MatchedBackwards: |
| ISD::CondCode Result; |
| bool isInteger = MVT::isInteger(LL.getValueType()); |
| if (Opcode == ISD::OR) |
| Result = ISD::getSetCCOrOperation(Op1, Op2, isInteger); |
| else |
| Result = ISD::getSetCCAndOperation(Op1, Op2, isInteger); |
| |
| if (Result != ISD::SETCC_INVALID) |
| return getSetCC(LHS->getValueType(0), LL, LR, Result); |
| } |
| } |
| |
| // and/or zext(a), zext(b) -> zext(and/or a, b) |
| if (N1.getOpcode() == ISD::ZERO_EXTEND && |
| N2.getOpcode() == ISD::ZERO_EXTEND && |
| N1.getOperand(0).getValueType() == N2.getOperand(0).getValueType()) |
| return getNode(ISD::ZERO_EXTEND, VT, |
| getNode(Opcode, N1.getOperand(0).getValueType(), |
| N1.getOperand(0), N2.getOperand(0))); |
| break; |
| case ISD::XOR: |
| if (N1 == N2) return getConstant(0, VT); // xor X, Y -> 0 |
| break; |
| case ISD::ADD: |
| if (N2.getOpcode() == ISD::FNEG) // (A+ (-B) -> A-B |
| return getNode(ISD::SUB, VT, N1, N2.getOperand(0)); |
| if (N1.getOpcode() == ISD::FNEG) // ((-A)+B) -> B-A |
| return getNode(ISD::SUB, VT, N2, N1.getOperand(0)); |
| if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) && |
| cast<ConstantSDNode>(N1.getOperand(0))->getValue() == 0) |
| return getNode(ISD::SUB, VT, N2, N1.getOperand(1)); // (0-A)+B -> B-A |
| if (N2.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N2.getOperand(0)) && |
| cast<ConstantSDNode>(N2.getOperand(0))->getValue() == 0) |
| return getNode(ISD::SUB, VT, N1, N2.getOperand(1)); // A+(0-B) -> A-B |
| if (N2.getOpcode() == ISD::SUB && N1 == N2.Val->getOperand(1) && |
| !MVT::isFloatingPoint(N2.getValueType())) |
| return N2.Val->getOperand(0); // A+(B-A) -> B |
| break; |
| case ISD::SUB: |
| if (N1.getOpcode() == ISD::ADD) { |
| if (N1.Val->getOperand(0) == N2 && |
| !MVT::isFloatingPoint(N2.getValueType())) |
| return N1.Val->getOperand(1); // (A+B)-A == B |
| if (N1.Val->getOperand(1) == N2 && |
| !MVT::isFloatingPoint(N2.getValueType())) |
| return N1.Val->getOperand(0); // (A+B)-B == A |
| } |
| if (N2.getOpcode() == ISD::FNEG) // (A- (-B) -> A+B |
| return getNode(ISD::ADD, VT, N1, N2.getOperand(0)); |
| break; |
| case ISD::FP_ROUND_INREG: |
| if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding. |
| break; |
| case ISD::SIGN_EXTEND_INREG: { |
| MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT(); |
| if (EVT == VT) return N1; // Not actually extending |
| |
| // If we are sign extending an extension, use the original source. |
| if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) |
| if (cast<VTSDNode>(N1.getOperand(1))->getVT() <= EVT) |
| return N1; |
| |
| // If we are sign extending a sextload, return just the load. |
| if (N1.getOpcode() == ISD::SEXTLOAD) |
| if (cast<VTSDNode>(N1.getOperand(3))->getVT() <= EVT) |
| return N1; |
| |
| // If we are extending the result of a setcc, and we already know the |
| // contents of the top bits, eliminate the extension. |
| if (N1.getOpcode() == ISD::SETCC && |
| TLI.getSetCCResultContents() == |
| TargetLowering::ZeroOrNegativeOneSetCCResult) |
| return N1; |
| |
| // If we are sign extending the result of an (and X, C) operation, and we |
| // know the extended bits are zeros already, don't do the extend. |
| if (N1.getOpcode() == ISD::AND) |
| if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getOperand(1))) { |
| uint64_t Mask = N1C->getValue(); |
| unsigned NumBits = MVT::getSizeInBits(EVT); |
| if ((Mask & (~0ULL << (NumBits-1))) == 0) |
| return N1; |
| } |
| break; |
| } |
| |
| // FIXME: figure out how to safely handle things like |
| // int foo(int x) { return 1 << (x & 255); } |
| // int bar() { return foo(256); } |
| #if 0 |
| case ISD::SHL: |
| case ISD::SRL: |
| case ISD::SRA: |
| if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG && |
| cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1) |
| return getNode(Opcode, VT, N1, N2.getOperand(0)); |
| else if (N2.getOpcode() == ISD::AND) |
| if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) { |
| // If the and is only masking out bits that cannot effect the shift, |
| // eliminate the and. |
| unsigned NumBits = MVT::getSizeInBits(VT); |
| if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) |
| return getNode(Opcode, VT, N1, N2.getOperand(0)); |
| } |
| break; |
| #endif |
| } |
| |
| // Memoize this node if possible. |
| SDNode *N; |
| if (Opcode != ISD::CALLSEQ_START && Opcode != ISD::CALLSEQ_END && |
| VT != MVT::Flag) { |
| SDNode *&BON = BinaryOps[std::make_pair(Opcode, std::make_pair(N1, N2))]; |
| if (BON) return SDOperand(BON, 0); |
| |
| BON = N = new SDNode(Opcode, N1, N2); |
| } else { |
| N = new SDNode(Opcode, N1, N2); |
| } |
| |
| N->setValueTypes(VT); |
| AllNodes.push_back(N); |
| return SDOperand(N, 0); |
| } |
| |
| // setAdjCallChain - This method changes the token chain of an |
| // CALLSEQ_START/END node to be the specified operand. |
| void SDNode::setAdjCallChain(SDOperand N) { |
| assert(N.getValueType() == MVT::Other); |
| assert((getOpcode() == ISD::CALLSEQ_START || |
| getOpcode() == ISD::CALLSEQ_END) && "Cannot adjust this node!"); |
| |
| Operands[0].Val->removeUser(this); |
| Operands[0] = N; |
| N.Val->Uses.push_back(this); |
| } |
| |
| |
| |
| SDOperand SelectionDAG::getLoad(MVT::ValueType VT, |
| SDOperand Chain, SDOperand Ptr, |
| SDOperand SV) { |
| SDNode *&N = Loads[std::make_pair(Ptr, std::make_pair(Chain, VT))]; |
| if (N) return SDOperand(N, 0); |
| N = new SDNode(ISD::LOAD, Chain, Ptr, SV); |
| |
| // Loads have a token chain. |
| N->setValueTypes(VT, MVT::Other); |
| AllNodes.push_back(N); |
| return SDOperand(N, 0); |
| } |
| |
| |
| SDOperand SelectionDAG::getExtLoad(unsigned Opcode, MVT::ValueType VT, |
| SDOperand Chain, SDOperand Ptr, SDOperand SV, |
| MVT::ValueType EVT) { |
| std::vector<SDOperand> Ops; |
| Ops.reserve(4); |
| Ops.push_back(Chain); |
| Ops.push_back(Ptr); |
| Ops.push_back(SV); |
| Ops.push_back(getValueType(EVT)); |
| std::vector<MVT::ValueType> VTs; |
| VTs.reserve(2); |
| VTs.push_back(VT); VTs.push_back(MVT::Other); // Add token chain. |
| return getNode(Opcode, VTs, Ops); |
| } |
| |
| SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT, |
| SDOperand N1, SDOperand N2, SDOperand N3) { |
| // Perform various simplifications. |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val); |
| ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val); |
| ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val); |
| switch (Opcode) { |
| case ISD::SETCC: { |
| // Use SimplifySetCC to simplify SETCC's. |
| SDOperand Simp = SimplifySetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get()); |
| if (Simp.Val) return Simp; |
| break; |
| } |
| case ISD::SELECT: |
| if (N1C) |
| if (N1C->getValue()) |
| return N2; // select true, X, Y -> X |
| else |
| return N3; // select false, X, Y -> Y |
| |
| if (N2 == N3) return N2; // select C, X, X -> X |
| |
| if (VT == MVT::i1) { // Boolean SELECT |
| if (N2C) { |
| if (N2C->getValue()) // select C, 1, X -> C | X |
| return getNode(ISD::OR, VT, N1, N3); |
| else // select C, 0, X -> ~C & X |
| return getNode(ISD::AND, VT, |
| getNode(ISD::XOR, N1.getValueType(), N1, |
| getConstant(1, N1.getValueType())), N3); |
| } else if (N3C) { |
| if (N3C->getValue()) // select C, X, 1 -> ~C | X |
| return getNode(ISD::OR, VT, |
| getNode(ISD::XOR, N1.getValueType(), N1, |
| getConstant(1, N1.getValueType())), N2); |
| else // select C, X, 0 -> C & X |
| return getNode(ISD::AND, VT, N1, N2); |
| } |
| |
| if (N1 == N2) // X ? X : Y --> X ? 1 : Y --> X | Y |
| return getNode(ISD::OR, VT, N1, N3); |
| if (N1 == N3) // X ? Y : X --> X ? Y : 0 --> X & Y |
| return getNode(ISD::AND, VT, N1, N2); |
| } |
| if (N1.getOpcode() == ISD::SETCC) { |
| SDOperand Simp = SimplifySelectCC(N1.getOperand(0), N1.getOperand(1), N2, |
| N3, cast<CondCodeSDNode>(N1.getOperand(2))->get()); |
| if (Simp.Val) return Simp; |
| } |
| break; |
| case ISD::BRCOND: |
| if (N2C) |
| if (N2C->getValue()) // Unconditional branch |
| return getNode(ISD::BR, MVT::Other, N1, N3); |
| else |
| return N1; // Never-taken branch |
| break; |
| } |
| |
| std::vector<SDOperand> Ops; |
| Ops.reserve(3); |
| Ops.push_back(N1); |
| Ops.push_back(N2); |
| Ops.push_back(N3); |
| |
| // Memoize node if it doesn't produce a flag. |
| SDNode *N; |
| if (VT != MVT::Flag) { |
| SDNode *&E = OneResultNodes[std::make_pair(Opcode,std::make_pair(VT, Ops))]; |
| if (E) return SDOperand(E, 0); |
| E = N = new SDNode(Opcode, N1, N2, N3); |
| } else { |
| N = new SDNode(Opcode, N1, N2, N3); |
| } |
| N->setValueTypes(VT); |
| AllNodes.push_back(N); |
| return SDOperand(N, 0); |
| } |
| |
| SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT, |
| SDOperand N1, SDOperand N2, SDOperand N3, |
| SDOperand N4) { |
| std::vector<SDOperand> Ops; |
| Ops.reserve(4); |
| Ops.push_back(N1); |
| Ops.push_back(N2); |
| Ops.push_back(N3); |
| Ops.push_back(N4); |
| return getNode(Opcode, VT, Ops); |
| } |
| |
| SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT, |
| SDOperand N1, SDOperand N2, SDOperand N3, |
| SDOperand N4, SDOperand N5) { |
| std::vector<SDOperand> Ops; |
| Ops.reserve(5); |
| Ops.push_back(N1); |
| Ops.push_back(N2); |
| Ops.push_back(N3); |
| Ops.push_back(N4); |
| Ops.push_back(N5); |
| return getNode(Opcode, VT, Ops); |
| } |
| |
| |
| SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) { |
| assert((!V || isa<PointerType>(V->getType())) && |
| "SrcValue is not a pointer?"); |
| SDNode *&N = ValueNodes[std::make_pair(V, Offset)]; |
| if (N) return SDOperand(N, 0); |
| |
| N = new SrcValueSDNode(V, Offset); |
| AllNodes.push_back(N); |
| return SDOperand(N, 0); |
| } |
| |
| SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT, |
| std::vector<SDOperand> &Ops) { |
| switch (Ops.size()) { |
| case 0: return getNode(Opcode, VT); |
| case 1: return getNode(Opcode, VT, Ops[0]); |
| case 2: return getNode(Opcode, VT, Ops[0], Ops[1]); |
| case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]); |
| default: break; |
| } |
| |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Ops[1].Val); |
| switch (Opcode) { |
| default: break; |
| case ISD::BRCONDTWOWAY: |
| if (N1C) |
| if (N1C->getValue()) // Unconditional branch to true dest. |
| return getNode(ISD::BR, MVT::Other, Ops[0], Ops[2]); |
| else // Unconditional branch to false dest. |
| return getNode(ISD::BR, MVT::Other, Ops[0], Ops[3]); |
| break; |
| case ISD::BRTWOWAY_CC: |
| assert(Ops.size() == 6 && "BRTWOWAY_CC takes 6 operands!"); |
| assert(Ops[2].getValueType() == Ops[3].getValueType() && |
| "LHS and RHS of comparison must have same type!"); |
| break; |
| case ISD::TRUNCSTORE: { |
| assert(Ops.size() == 5 && "TRUNCSTORE takes 5 operands!"); |
| MVT::ValueType EVT = cast<VTSDNode>(Ops[4])->getVT(); |
| #if 0 // FIXME: If the target supports EVT natively, convert to a truncate/store |
| // If this is a truncating store of a constant, convert to the desired type |
| // and store it instead. |
| if (isa<Constant>(Ops[0])) { |
| SDOperand Op = getNode(ISD::TRUNCATE, EVT, N1); |
| if (isa<Constant>(Op)) |
| N1 = Op; |
| } |
| // Also for ConstantFP? |
| #endif |
| if (Ops[0].getValueType() == EVT) // Normal store? |
| return getNode(ISD::STORE, VT, Ops[0], Ops[1], Ops[2], Ops[3]); |
| assert(Ops[1].getValueType() > EVT && "Not a truncation?"); |
| assert(MVT::isInteger(Ops[1].getValueType()) == MVT::isInteger(EVT) && |
| "Can't do FP-INT conversion!"); |
| break; |
| } |
| case ISD::SELECT_CC: { |
| assert(Ops.size() == 5 && "TRUNCSTORE takes 5 operands!"); |
| assert(Ops[0].getValueType() == Ops[1].getValueType() && |
| "LHS and RHS of condition must have same type!"); |
| assert(Ops[2].getValueType() == Ops[3].getValueType() && |
| "True and False arms of SelectCC must have same type!"); |
| assert(Ops[2].getValueType() == VT && |
| "select_cc node must be of same type as true and false value!"); |
| SDOperand Simp = SimplifySelectCC(Ops[0], Ops[1], Ops[2], Ops[3], |
| cast<CondCodeSDNode>(Ops[4])->get()); |
| if (Simp.Val) return Simp; |
| break; |
| } |
| case ISD::BR_CC: { |
| assert(Ops.size() == 5 && "TRUNCSTORE takes 5 operands!"); |
| assert(Ops[2].getValueType() == Ops[3].getValueType() && |
| "LHS/RHS of comparison should match types!"); |
| // Use SimplifySetCC to simplify SETCC's. |
| SDOperand Simp = SimplifySetCC(MVT::i1, Ops[2], Ops[3], |
| cast<CondCodeSDNode>(Ops[1])->get()); |
| if (Simp.Val) { |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Simp)) { |
| if (C->getValue() & 1) // Unconditional branch |
| return getNode(ISD::BR, MVT::Other, Ops[0], Ops[4]); |
| else |
| return Ops[0]; // Unconditional Fall through |
| } else if (Simp.Val->getOpcode() == ISD::SETCC) { |
| Ops[2] = Simp.getOperand(0); |
| Ops[3] = Simp.getOperand(1); |
| Ops[1] = Simp.getOperand(2); |
| } |
| } |
| break; |
| } |
| } |
| |
| // Memoize nodes. |
| SDNode *N; |
| if (VT != MVT::Flag) { |
| SDNode *&E = |
| OneResultNodes[std::make_pair(Opcode, std::make_pair(VT, Ops))]; |
| if (E) return SDOperand(E, 0); |
| E = N = new SDNode(Opcode, Ops); |
| } else { |
| N = new SDNode(Opcode, Ops); |
| } |
| N->setValueTypes(VT); |
| AllNodes.push_back(N); |
| return SDOperand(N, 0); |
| } |
| |
| SDOperand SelectionDAG::getNode(unsigned Opcode, |
| std::vector<MVT::ValueType> &ResultTys, |
| std::vector<SDOperand> &Ops) { |
| if (ResultTys.size() == 1) |
| return getNode(Opcode, ResultTys[0], Ops); |
| |
| switch (Opcode) { |
| case ISD::EXTLOAD: |
| case ISD::SEXTLOAD: |
| case ISD::ZEXTLOAD: { |
| MVT::ValueType EVT = cast<VTSDNode>(Ops[3])->getVT(); |
| assert(Ops.size() == 4 && ResultTys.size() == 2 && "Bad *EXTLOAD!"); |
| // If they are asking for an extending load from/to the same thing, return a |
| // normal load. |
| if (ResultTys[0] == EVT) |
| return getLoad(ResultTys[0], Ops[0], Ops[1], Ops[2]); |
| assert(EVT < ResultTys[0] && |
| "Should only be an extending load, not truncating!"); |
| assert((Opcode == ISD::EXTLOAD || MVT::isInteger(ResultTys[0])) && |
| "Cannot sign/zero extend a FP load!"); |
| assert(MVT::isInteger(ResultTys[0]) == MVT::isInteger(EVT) && |
| "Cannot convert from FP to Int or Int -> FP!"); |
| break; |
| } |
| |
| // FIXME: figure out how to safely handle things like |
| // int foo(int x) { return 1 << (x & 255); } |
| // int bar() { return foo(256); } |
| #if 0 |
| case ISD::SRA_PARTS: |
| case ISD::SRL_PARTS: |
| case ISD::SHL_PARTS: |
| if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && |
| cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) |
| return getNode(Opcode, VT, N1, N2, N3.getOperand(0)); |
| else if (N3.getOpcode() == ISD::AND) |
| if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { |
| // If the and is only masking out bits that cannot effect the shift, |
| // eliminate the and. |
| unsigned NumBits = MVT::getSizeInBits(VT)*2; |
| if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) |
| return getNode(Opcode, VT, N1, N2, N3.getOperand(0)); |
| } |
| break; |
| #endif |
| } |
| |
| // Memoize the node unless it returns a flag. |
| SDNode *N; |
| if (ResultTys.back() != MVT::Flag) { |
| SDNode *&E = |
| ArbitraryNodes[std::make_pair(Opcode, std::make_pair(ResultTys, Ops))]; |
| if (E) return SDOperand(E, 0); |
| E = N = new SDNode(Opcode, Ops); |
| } else { |
| N = new SDNode(Opcode, Ops); |
| } |
| N->setValueTypes(ResultTys); |
| AllNodes.push_back(N); |
| return SDOperand(N, 0); |
| } |
| |
| |
| /// SelectNodeTo - These are used for target selectors to *mutate* the |
| /// specified node to have the specified return type, Target opcode, and |
| /// operands. Note that target opcodes are stored as |
| /// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field. |
| void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, |
| MVT::ValueType VT) { |
| RemoveNodeFromCSEMaps(N); |
| N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc); |
| N->setValueTypes(VT); |
| } |
| void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, |
| MVT::ValueType VT, SDOperand Op1) { |
| RemoveNodeFromCSEMaps(N); |
| N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc); |
| N->setValueTypes(VT); |
| N->setOperands(Op1); |
| } |
| void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, |
| MVT::ValueType VT, SDOperand Op1, |
| SDOperand Op2) { |
| RemoveNodeFromCSEMaps(N); |
| N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc); |
| N->setValueTypes(VT); |
| N->setOperands(Op1, Op2); |
| } |
| void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, |
| MVT::ValueType VT1, MVT::ValueType VT2, |
| SDOperand Op1, SDOperand Op2) { |
| RemoveNodeFromCSEMaps(N); |
| N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc); |
| N->setValueTypes(VT1, VT2); |
| N->setOperands(Op1, Op2); |
| } |
| void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, |
| MVT::ValueType VT, SDOperand Op1, |
| SDOperand Op2, SDOperand Op3) { |
| RemoveNodeFromCSEMaps(N); |
| N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc); |
| N->setValueTypes(VT); |
| N->setOperands(Op1, Op2, Op3); |
| } |
| void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, |
| MVT::ValueType VT1, MVT::ValueType VT2, |
| SDOperand Op1, SDOperand Op2, SDOperand Op3) { |
| RemoveNodeFromCSEMaps(N); |
| N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc); |
| N->setValueTypes(VT1, VT2); |
| N->setOperands(Op1, Op2, Op3); |
| } |
| |
| void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, |
| MVT::ValueType VT, SDOperand Op1, |
| SDOperand Op2, SDOperand Op3, SDOperand Op4) { |
| RemoveNodeFromCSEMaps(N); |
| N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc); |
| N->setValueTypes(VT); |
| N->setOperands(Op1, Op2, Op3, Op4); |
| } |
| void SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, |
| MVT::ValueType VT, SDOperand Op1, |
| SDOperand Op2, SDOperand Op3, SDOperand Op4, |
| SDOperand Op5) { |
| RemoveNodeFromCSEMaps(N); |
| N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc); |
| N->setValueTypes(VT); |
| N->setOperands(Op1, Op2, Op3, Op4, Op5); |
| } |
| |
| /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. |
| /// This can cause recursive merging of nodes in the DAG. |
| /// |
| /// This version assumes From/To have a single result value. |
| /// |
| void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN) { |
| SDNode *From = FromN.Val, *To = ToN.Val; |
| assert(From->getNumValues() == 1 && To->getNumValues() == 1 && |
| "Cannot replace with this method!"); |
| assert(From != To && "Cannot replace uses of with self"); |
| assert(From->getValueType(0) == To->getValueType(0) && |
| "Replacing with different values"); |
| |
| while (!From->use_empty()) { |
| // Process users until they are all gone. |
| SDNode *U = *From->use_begin(); |
| |
| // This node is about to morph, remove its old self from the CSE maps. |
| RemoveNodeFromCSEMaps(U); |
| |
| for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i) |
| if (U->getOperand(i).Val == From) { |
| From->removeUser(U); |
| U->Operands[i].Val = To; |
| To->addUser(U); |
| } |
| |
| // Now that we have modified U, add it back to the CSE maps. If it already |
| // exists there, recursively merge the results together. |
| if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) |
| ReplaceAllUsesWith(U, Existing); |
| // U is now dead. |
| } |
| } |
| |
| /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. |
| /// This can cause recursive merging of nodes in the DAG. |
| /// |
| /// This version assumes From/To have matching types and numbers of result |
| /// values. |
| /// |
| void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) { |
| assert(From != To && "Cannot replace uses of with self"); |
| assert(From->getNumValues() == To->getNumValues() && |
| "Cannot use this version of ReplaceAllUsesWith!"); |
| if (From->getNumValues() == 1) { // If possible, use the faster version. |
| ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0)); |
| return; |
| } |
| |
| while (!From->use_empty()) { |
| // Process users until they are all gone. |
| SDNode *U = *From->use_begin(); |
| |
| // This node is about to morph, remove its old self from the CSE maps. |
| RemoveNodeFromCSEMaps(U); |
| |
| for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i) |
| if (U->getOperand(i).Val == From) { |
| From->removeUser(U); |
| U->Operands[i].Val = To; |
| To->addUser(U); |
| } |
| |
| // Now that we have modified U, add it back to the CSE maps. If it already |
| // exists there, recursively merge the results together. |
| if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) |
| ReplaceAllUsesWith(U, Existing); |
| // U is now dead. |
| } |
| } |
| |
| /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. |
| /// This can cause recursive merging of nodes in the DAG. |
| /// |
| /// This version can replace From with any result values. To must match the |
| /// number and types of values returned by From. |
| void SelectionDAG::ReplaceAllUsesWith(SDNode *From, |
| const std::vector<SDOperand> &To) { |
| assert(From->getNumValues() == To.size() && |
| "Incorrect number of values to replace with!"); |
| if (To.size() == 1) { |
| // Degenerate case handled above. |
| ReplaceAllUsesWith(SDOperand(From, 0), To[0]); |
| return; |
| } |
| |
| while (!From->use_empty()) { |
| // Process users until they are all gone. |
| SDNode *U = *From->use_begin(); |
| |
| // This node is about to morph, remove its old self from the CSE maps. |
| RemoveNodeFromCSEMaps(U); |
| |
| for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i) |
| if (U->getOperand(i).Val == From) { |
| const SDOperand &ToOp = To[U->getOperand(i).ResNo]; |
| assert(U->getOperand(i).getValueType() == ToOp.getValueType()); |
| From->removeUser(U); |
| U->Operands[i] = ToOp; |
| ToOp.Val->addUser(U); |
| } |
| |
| // Now that we have modified U, add it back to the CSE maps. If it already |
| // exists there, recursively merge the results together. |
| if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) |
| ReplaceAllUsesWith(U, Existing); |
| // U is now dead. |
| } |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // SDNode Class |
| //===----------------------------------------------------------------------===// |
| |
| /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the |
| /// indicated value. This method ignores uses of other values defined by this |
| /// operation. |
| bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) { |
| assert(Value < getNumValues() && "Bad value!"); |
| |
| // If there is only one value, this is easy. |
| if (getNumValues() == 1) |
| return use_size() == NUses; |
| if (Uses.size() < NUses) return false; |
| |
| SDOperand TheValue(this, Value); |
| |
| std::set<SDNode*> UsersHandled; |
| |
| for (std::vector<SDNode*>::iterator UI = Uses.begin(), E = Uses.end(); |
| UI != E; ++UI) { |
| SDNode *User = *UI; |
| if (User->getNumOperands() == 1 || |
| UsersHandled.insert(User).second) // First time we've seen this? |
| for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) |
| if (User->getOperand(i) == TheValue) { |
| if (NUses == 0) |
| return false; // too many uses |
| --NUses; |
| } |
| } |
| |
| // Found exactly the right number of uses? |
| return NUses == 0; |
| } |
| |
| |
| const char *SDNode::getOperationName(const SelectionDAG *G) const { |
| switch (getOpcode()) { |
| default: |
| if (getOpcode() < ISD::BUILTIN_OP_END) |
| return "<<Unknown DAG Node>>"; |
| else { |
| if (G) |
| if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo()) |
| return TII->getName(getOpcode()-ISD::BUILTIN_OP_END); |
| return "<<Unknown Target Node>>"; |
| } |
| |
| case ISD::PCMARKER: return "PCMarker"; |
| case ISD::SRCVALUE: return "SrcValue"; |
| case ISD::VALUETYPE: return "ValueType"; |
| case ISD::EntryToken: return "EntryToken"; |
| case ISD::TokenFactor: return "TokenFactor"; |
| case ISD::Constant: return "Constant"; |
| case ISD::TargetConstant: return "TargetConstant"; |
| case ISD::ConstantFP: return "ConstantFP"; |
| case ISD::GlobalAddress: return "GlobalAddress"; |
| case ISD::TargetGlobalAddress: return "TargetGlobalAddress"; |
| case ISD::FrameIndex: return "FrameIndex"; |
| case ISD::TargetFrameIndex: return "TargetFrameIndex"; |
| case ISD::BasicBlock: return "BasicBlock"; |
| case ISD::Register: return "Register"; |
| case ISD::ExternalSymbol: return "ExternalSymbol"; |
| case ISD::ConstantPool: return "ConstantPool"; |
| case ISD::TargetConstantPool: return "TargetConstantPool"; |
| case ISD::CopyToReg: return "CopyToReg"; |
| case ISD::CopyFromReg: return "CopyFromReg"; |
| case ISD::ImplicitDef: return "ImplicitDef"; |
| case ISD::UNDEF: return "undef"; |
| |
| // Unary operators |
| case ISD::FABS: return "fabs"; |
| case ISD::FNEG: return "fneg"; |
| case ISD::FSQRT: return "fsqrt"; |
| case ISD::FSIN: return "fsin"; |
| case ISD::FCOS: return "fcos"; |
| |
| // Binary operators |
| case ISD::ADD: return "add"; |
| case ISD::SUB: return "sub"; |
| case ISD::MUL: return "mul"; |
| case ISD::MULHU: return "mulhu"; |
| case ISD::MULHS: return "mulhs"; |
| case ISD::SDIV: return "sdiv"; |
| case ISD::UDIV: return "udiv"; |
| case ISD::SREM: return "srem"; |
| case ISD::UREM: return "urem"; |
| case ISD::AND: return "and"; |
| case ISD::OR: return "or"; |
| case ISD::XOR: return "xor"; |
| case ISD::SHL: return "shl"; |
| case ISD::SRA: return "sra"; |
| case ISD::SRL: return "srl"; |
| |
| case ISD::SETCC: return "setcc"; |
| case ISD::SELECT: return "select"; |
| case ISD::SELECT_CC: return "select_cc"; |
| case ISD::ADD_PARTS: return "add_parts"; |
| case ISD::SUB_PARTS: return "sub_parts"; |
| case ISD::SHL_PARTS: return "shl_parts"; |
| case ISD::SRA_PARTS: return "sra_parts"; |
| case ISD::SRL_PARTS: return "srl_parts"; |
| |
| // Conversion operators. |
| case ISD::SIGN_EXTEND: return "sign_extend"; |
| case ISD::ZERO_EXTEND: return "zero_extend"; |
| case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg"; |
| case ISD::TRUNCATE: return "truncate"; |
| case ISD::FP_ROUND: return "fp_round"; |
| case ISD::FP_ROUND_INREG: return "fp_round_inreg"; |
| case ISD::FP_EXTEND: return "fp_extend"; |
| |
| case ISD::SINT_TO_FP: return "sint_to_fp"; |
| case ISD::UINT_TO_FP: return "uint_to_fp"; |
| case ISD::FP_TO_SINT: return "fp_to_sint"; |
| case ISD::FP_TO_UINT: return "fp_to_uint"; |
| |
| // Control flow instructions |
| case ISD::BR: return "br"; |
| case ISD::BRCOND: return "brcond"; |
| case ISD::BRCONDTWOWAY: return "brcondtwoway"; |
| case ISD::BR_CC: return "br_cc"; |
| case ISD::BRTWOWAY_CC: return "brtwoway_cc"; |
| case ISD::RET: return "ret"; |
| case ISD::CALL: return "call"; |
| case ISD::TAILCALL:return "tailcall"; |
| case ISD::CALLSEQ_START: return "callseq_start"; |
| case ISD::CALLSEQ_END: return "callseq_end"; |
| |
| // Other operators |
| case ISD::LOAD: return "load"; |
| case ISD::STORE: return "store"; |
| case ISD::EXTLOAD: return "extload"; |
| case ISD::SEXTLOAD: return "sextload"; |
| case ISD::ZEXTLOAD: return "zextload"; |
| case ISD::TRUNCSTORE: return "truncstore"; |
| |
| case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc"; |
| case ISD::EXTRACT_ELEMENT: return "extract_element"; |
| case ISD::BUILD_PAIR: return "build_pair"; |
| case ISD::MEMSET: return "memset"; |
| case ISD::MEMCPY: return "memcpy"; |
| case ISD::MEMMOVE: return "memmove"; |
| |
| // Bit counting |
| case ISD::CTPOP: return "ctpop"; |
| case ISD::CTTZ: return "cttz"; |
| case ISD::CTLZ: return "ctlz"; |
| |
| // IO Intrinsics |
| case ISD::READPORT: return "readport"; |
| case ISD::WRITEPORT: return "writeport"; |
| case ISD::READIO: return "readio"; |
| case ISD::WRITEIO: return "writeio"; |
| |
| case ISD::CONDCODE: |
| switch (cast<CondCodeSDNode>(this)->get()) { |
| default: assert(0 && "Unknown setcc condition!"); |
| case ISD::SETOEQ: return "setoeq"; |
| case ISD::SETOGT: return "setogt"; |
| case ISD::SETOGE: return "setoge"; |
| case ISD::SETOLT: return "setolt"; |
| case ISD::SETOLE: return "setole"; |
| case ISD::SETONE: return "setone"; |
| |
| case ISD::SETO: return "seto"; |
| case ISD::SETUO: return "setuo"; |
| case ISD::SETUEQ: return "setue"; |
| case ISD::SETUGT: return "setugt"; |
| case ISD::SETUGE: return "setuge"; |
| case ISD::SETULT: return "setult"; |
| case ISD::SETULE: return "setule"; |
| case ISD::SETUNE: return "setune"; |
| |
| case ISD::SETEQ: return "seteq"; |
| case ISD::SETGT: return "setgt"; |
| case ISD::SETGE: return "setge"; |
| case ISD::SETLT: return "setlt"; |
| case ISD::SETLE: return "setle"; |
| case ISD::SETNE: return "setne"; |
| } |
| } |
| } |
| |
| void SDNode::dump() const { dump(0); } |
| void SDNode::dump(const SelectionDAG *G) const { |
| std::cerr << (void*)this << ": "; |
| |
| for (unsigned i = 0, e = getNumValues(); i != e; ++i) { |
| if (i) std::cerr << ","; |
| if (getValueType(i) == MVT::Other) |
| std::cerr << "ch"; |
| else |
| std::cerr << MVT::getValueTypeString(getValueType(i)); |
| } |
| std::cerr << " = " << getOperationName(G); |
| |
| std::cerr << " "; |
| for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
| if (i) std::cerr << ", "; |
| std::cerr << (void*)getOperand(i).Val; |
| if (unsigned RN = getOperand(i).ResNo) |
| std::cerr << ":" << RN; |
| } |
| |
| if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) { |
| std::cerr << "<" << CSDN->getValue() << ">"; |
| } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) { |
| std::cerr << "<" << CSDN->getValue() << ">"; |
| } else if (const GlobalAddressSDNode *GADN = |
| dyn_cast<GlobalAddressSDNode>(this)) { |
| std::cerr << "<"; |
| WriteAsOperand(std::cerr, GADN->getGlobal()) << ">"; |
| } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) { |
| std::cerr << "<" << FIDN->getIndex() << ">"; |
| } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){ |
| std::cerr << "<" << *CP->get() << ">"; |
| } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) { |
| std::cerr << "<"; |
| const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock(); |
| if (LBB) |
| std::cerr << LBB->getName() << " "; |
| std::cerr << (const void*)BBDN->getBasicBlock() << ">"; |
| } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) { |
| if (G && MRegisterInfo::isPhysicalRegister(R->getReg())) { |
| std::cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg()); |
| } else { |
| std::cerr << " #" << R->getReg(); |
| } |
| } else if (const ExternalSymbolSDNode *ES = |
| dyn_cast<ExternalSymbolSDNode>(this)) { |
| std::cerr << "'" << ES->getSymbol() << "'"; |
| } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) { |
| if (M->getValue()) |
| std::cerr << "<" << M->getValue() << ":" << M->getOffset() << ">"; |
| else |
| std::cerr << "<null:" << M->getOffset() << ">"; |
| } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) { |
| std::cerr << ":" << getValueTypeString(N->getVT()); |
| } |
| } |
| |
| static void DumpNodes(SDNode *N, unsigned indent, const SelectionDAG *G) { |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) |
| if (N->getOperand(i).Val->hasOneUse()) |
| DumpNodes(N->getOperand(i).Val, indent+2, G); |
| else |
| std::cerr << "\n" << std::string(indent+2, ' ') |
| << (void*)N->getOperand(i).Val << ": <multiple use>"; |
| |
| |
| std::cerr << "\n" << std::string(indent, ' '); |
| N->dump(G); |
| } |
| |
| void SelectionDAG::dump() const { |
| std::cerr << "SelectionDAG has " << AllNodes.size() << " nodes:"; |
| std::vector<SDNode*> Nodes(AllNodes); |
| std::sort(Nodes.begin(), Nodes.end()); |
| |
| for (unsigned i = 0, e = Nodes.size(); i != e; ++i) { |
| if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val) |
| DumpNodes(Nodes[i], 2, this); |
| } |
| |
| DumpNodes(getRoot().Val, 2, this); |
| |
| std::cerr << "\n\n"; |
| } |
| |