| //===-- ScheduleDAGSimple.cpp - Implement a trivial DAG scheduler ---------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by James M. Laskey and is distributed under the |
| // University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This implements a simple two pass scheduler. The first pass attempts to push |
| // backward any lengthy instructions and critical paths. The second pass packs |
| // instructions into semi-optimal time slots. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "sched" |
| #include "llvm/CodeGen/ScheduleDAG.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Support/Debug.h" |
| #include <algorithm> |
| using namespace llvm; |
| |
| namespace { |
| //===----------------------------------------------------------------------===// |
| /// |
| /// BitsIterator - Provides iteration through individual bits in a bit vector. |
| /// |
| template<class T> |
| class BitsIterator { |
| private: |
| T Bits; // Bits left to iterate through |
| |
| public: |
| /// Ctor. |
| BitsIterator(T Initial) : Bits(Initial) {} |
| |
| /// Next - Returns the next bit set or zero if exhausted. |
| inline T Next() { |
| // Get the rightmost bit set |
| T Result = Bits & -Bits; |
| // Remove from rest |
| Bits &= ~Result; |
| // Return single bit or zero |
| return Result; |
| } |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| |
| |
| //===----------------------------------------------------------------------===// |
| /// |
| /// ResourceTally - Manages the use of resources over time intervals. Each |
| /// item (slot) in the tally vector represents the resources used at a given |
| /// moment. A bit set to 1 indicates that a resource is in use, otherwise |
| /// available. An assumption is made that the tally is large enough to schedule |
| /// all current instructions (asserts otherwise.) |
| /// |
| template<class T> |
| class ResourceTally { |
| private: |
| std::vector<T> Tally; // Resources used per slot |
| typedef typename std::vector<T>::iterator Iter; |
| // Tally iterator |
| |
| /// SlotsAvailable - Returns true if all units are available. |
| /// |
| bool SlotsAvailable(Iter Begin, unsigned N, unsigned ResourceSet, |
| unsigned &Resource) { |
| assert(N && "Must check availability with N != 0"); |
| // Determine end of interval |
| Iter End = Begin + N; |
| assert(End <= Tally.end() && "Tally is not large enough for schedule"); |
| |
| // Iterate thru each resource |
| BitsIterator<T> Resources(ResourceSet & ~*Begin); |
| while (unsigned Res = Resources.Next()) { |
| // Check if resource is available for next N slots |
| Iter Interval = End; |
| do { |
| Interval--; |
| if (*Interval & Res) break; |
| } while (Interval != Begin); |
| |
| // If available for N |
| if (Interval == Begin) { |
| // Success |
| Resource = Res; |
| return true; |
| } |
| } |
| |
| // No luck |
| Resource = 0; |
| return false; |
| } |
| |
| /// RetrySlot - Finds a good candidate slot to retry search. |
| Iter RetrySlot(Iter Begin, unsigned N, unsigned ResourceSet) { |
| assert(N && "Must check availability with N != 0"); |
| // Determine end of interval |
| Iter End = Begin + N; |
| assert(End <= Tally.end() && "Tally is not large enough for schedule"); |
| |
| while (Begin != End--) { |
| // Clear units in use |
| ResourceSet &= ~*End; |
| // If no units left then we should go no further |
| if (!ResourceSet) return End + 1; |
| } |
| // Made it all the way through |
| return Begin; |
| } |
| |
| /// FindAndReserveStages - Return true if the stages can be completed. If |
| /// so mark as busy. |
| bool FindAndReserveStages(Iter Begin, |
| InstrStage *Stage, InstrStage *StageEnd) { |
| // If at last stage then we're done |
| if (Stage == StageEnd) return true; |
| // Get number of cycles for current stage |
| unsigned N = Stage->Cycles; |
| // Check to see if N slots are available, if not fail |
| unsigned Resource; |
| if (!SlotsAvailable(Begin, N, Stage->Units, Resource)) return false; |
| // Check to see if remaining stages are available, if not fail |
| if (!FindAndReserveStages(Begin + N, Stage + 1, StageEnd)) return false; |
| // Reserve resource |
| Reserve(Begin, N, Resource); |
| // Success |
| return true; |
| } |
| |
| /// Reserve - Mark busy (set) the specified N slots. |
| void Reserve(Iter Begin, unsigned N, unsigned Resource) { |
| // Determine end of interval |
| Iter End = Begin + N; |
| assert(End <= Tally.end() && "Tally is not large enough for schedule"); |
| |
| // Set resource bit in each slot |
| for (; Begin < End; Begin++) |
| *Begin |= Resource; |
| } |
| |
| /// FindSlots - Starting from Begin, locate consecutive slots where all stages |
| /// can be completed. Returns the address of first slot. |
| Iter FindSlots(Iter Begin, InstrStage *StageBegin, InstrStage *StageEnd) { |
| // Track position |
| Iter Cursor = Begin; |
| |
| // Try all possible slots forward |
| while (true) { |
| // Try at cursor, if successful return position. |
| if (FindAndReserveStages(Cursor, StageBegin, StageEnd)) return Cursor; |
| // Locate a better position |
| Cursor = RetrySlot(Cursor + 1, StageBegin->Cycles, StageBegin->Units); |
| } |
| } |
| |
| public: |
| /// Initialize - Resize and zero the tally to the specified number of time |
| /// slots. |
| inline void Initialize(unsigned N) { |
| Tally.assign(N, 0); // Initialize tally to all zeros. |
| } |
| |
| // FindAndReserve - Locate an ideal slot for the specified stages and mark |
| // as busy. |
| unsigned FindAndReserve(unsigned Slot, InstrStage *StageBegin, |
| InstrStage *StageEnd) { |
| // Where to begin |
| Iter Begin = Tally.begin() + Slot; |
| // Find a free slot |
| Iter Where = FindSlots(Begin, StageBegin, StageEnd); |
| // Distance is slot number |
| unsigned Final = Where - Tally.begin(); |
| return Final; |
| } |
| |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| /// |
| /// ScheduleDAGSimple - Simple two pass scheduler. |
| /// |
| class ScheduleDAGSimple : public ScheduleDAG { |
| private: |
| ResourceTally<unsigned> Tally; // Resource usage tally |
| unsigned NSlots; // Total latency |
| static const unsigned NotFound = ~0U; // Search marker |
| |
| public: |
| |
| // Ctor. |
| ScheduleDAGSimple(SchedHeuristics hstc, SelectionDAG &dag, |
| MachineBasicBlock *bb, const TargetMachine &tm) |
| : ScheduleDAG(hstc, dag, bb, tm), Tally(), NSlots(0) { |
| assert(&TII && "Target doesn't provide instr info?"); |
| assert(&MRI && "Target doesn't provide register info?"); |
| } |
| |
| virtual ~ScheduleDAGSimple() {}; |
| |
| void Schedule(); |
| |
| private: |
| static bool isDefiner(NodeInfo *A, NodeInfo *B); |
| void IncludeNode(NodeInfo *NI); |
| void VisitAll(); |
| void GatherSchedulingInfo(); |
| void FakeGroupDominators(); |
| bool isStrongDependency(NodeInfo *A, NodeInfo *B); |
| bool isWeakDependency(NodeInfo *A, NodeInfo *B); |
| void ScheduleBackward(); |
| void ScheduleForward(); |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| /// Special case itineraries. |
| /// |
| enum { |
| CallLatency = 40, // To push calls back in time |
| |
| RSInteger = 0xC0000000, // Two integer units |
| RSFloat = 0x30000000, // Two float units |
| RSLoadStore = 0x0C000000, // Two load store units |
| RSBranch = 0x02000000 // One branch unit |
| }; |
| static InstrStage CallStage = { CallLatency, RSBranch }; |
| static InstrStage LoadStage = { 5, RSLoadStore }; |
| static InstrStage StoreStage = { 2, RSLoadStore }; |
| static InstrStage IntStage = { 2, RSInteger }; |
| static InstrStage FloatStage = { 3, RSFloat }; |
| //===----------------------------------------------------------------------===// |
| |
| } // namespace |
| |
| //===----------------------------------------------------------------------===// |
| |
| |
| //===----------------------------------------------------------------------===// |
| /// isDefiner - Return true if node A is a definer for B. |
| /// |
| bool ScheduleDAGSimple::isDefiner(NodeInfo *A, NodeInfo *B) { |
| // While there are A nodes |
| NodeGroupIterator NII(A); |
| while (NodeInfo *NI = NII.next()) { |
| // Extract node |
| SDNode *Node = NI->Node; |
| // While there operands in nodes of B |
| NodeGroupOpIterator NGOI(B); |
| while (!NGOI.isEnd()) { |
| SDOperand Op = NGOI.next(); |
| // If node from A defines a node in B |
| if (Node == Op.Val) return true; |
| } |
| } |
| return false; |
| } |
| |
| /// IncludeNode - Add node to NodeInfo vector. |
| /// |
| void ScheduleDAGSimple::IncludeNode(NodeInfo *NI) { |
| // Get node |
| SDNode *Node = NI->Node; |
| // Ignore entry node |
| if (Node->getOpcode() == ISD::EntryToken) return; |
| // Check current count for node |
| int Count = NI->getPending(); |
| // If the node is already in list |
| if (Count < 0) return; |
| // Decrement count to indicate a visit |
| Count--; |
| // If count has gone to zero then add node to list |
| if (!Count) { |
| // Add node |
| if (NI->isInGroup()) { |
| Ordering.push_back(NI->Group->getDominator()); |
| } else { |
| Ordering.push_back(NI); |
| } |
| // indicate node has been added |
| Count--; |
| } |
| // Mark as visited with new count |
| NI->setPending(Count); |
| } |
| |
| /// GatherSchedulingInfo - Get latency and resource information about each node. |
| /// |
| void ScheduleDAGSimple::GatherSchedulingInfo() { |
| // Get instruction itineraries for the target |
| const InstrItineraryData &InstrItins = TM.getInstrItineraryData(); |
| |
| // For each node |
| for (unsigned i = 0, N = NodeCount; i < N; i++) { |
| // Get node info |
| NodeInfo* NI = &Info[i]; |
| SDNode *Node = NI->Node; |
| |
| // If there are itineraries and it is a machine instruction |
| if (InstrItins.isEmpty() || Heuristic == simpleNoItinScheduling) { |
| // If machine opcode |
| if (Node->isTargetOpcode()) { |
| // Get return type to guess which processing unit |
| MVT::ValueType VT = Node->getValueType(0); |
| // Get machine opcode |
| MachineOpCode TOpc = Node->getTargetOpcode(); |
| NI->IsCall = TII->isCall(TOpc); |
| NI->IsLoad = TII->isLoad(TOpc); |
| NI->IsStore = TII->isStore(TOpc); |
| |
| if (TII->isLoad(TOpc)) NI->StageBegin = &LoadStage; |
| else if (TII->isStore(TOpc)) NI->StageBegin = &StoreStage; |
| else if (MVT::isInteger(VT)) NI->StageBegin = &IntStage; |
| else if (MVT::isFloatingPoint(VT)) NI->StageBegin = &FloatStage; |
| if (NI->StageBegin) NI->StageEnd = NI->StageBegin + 1; |
| } |
| } else if (Node->isTargetOpcode()) { |
| // get machine opcode |
| MachineOpCode TOpc = Node->getTargetOpcode(); |
| // Check to see if it is a call |
| NI->IsCall = TII->isCall(TOpc); |
| // Get itinerary stages for instruction |
| unsigned II = TII->getSchedClass(TOpc); |
| NI->StageBegin = InstrItins.begin(II); |
| NI->StageEnd = InstrItins.end(II); |
| } |
| |
| // One slot for the instruction itself |
| NI->Latency = 1; |
| |
| // Add long latency for a call to push it back in time |
| if (NI->IsCall) NI->Latency += CallLatency; |
| |
| // Sum up all the latencies |
| for (InstrStage *Stage = NI->StageBegin, *E = NI->StageEnd; |
| Stage != E; Stage++) { |
| NI->Latency += Stage->Cycles; |
| } |
| |
| // Sum up all the latencies for max tally size |
| NSlots += NI->Latency; |
| } |
| |
| // Unify metrics if in a group |
| if (HasGroups) { |
| for (unsigned i = 0, N = NodeCount; i < N; i++) { |
| NodeInfo* NI = &Info[i]; |
| |
| if (NI->isInGroup()) { |
| NodeGroup *Group = NI->Group; |
| |
| if (!Group->getDominator()) { |
| NIIterator NGI = Group->group_begin(), NGE = Group->group_end(); |
| NodeInfo *Dominator = *NGI; |
| unsigned Latency = 0; |
| |
| for (NGI++; NGI != NGE; NGI++) { |
| NodeInfo* NGNI = *NGI; |
| Latency += NGNI->Latency; |
| if (Dominator->Latency < NGNI->Latency) Dominator = NGNI; |
| } |
| |
| Dominator->Latency = Latency; |
| Group->setDominator(Dominator); |
| } |
| } |
| } |
| } |
| } |
| |
| /// VisitAll - Visit each node breadth-wise to produce an initial ordering. |
| /// Note that the ordering in the Nodes vector is reversed. |
| void ScheduleDAGSimple::VisitAll() { |
| // Add first element to list |
| NodeInfo *NI = getNI(DAG.getRoot().Val); |
| if (NI->isInGroup()) { |
| Ordering.push_back(NI->Group->getDominator()); |
| } else { |
| Ordering.push_back(NI); |
| } |
| |
| // Iterate through all nodes that have been added |
| for (unsigned i = 0; i < Ordering.size(); i++) { // note: size() varies |
| // Visit all operands |
| NodeGroupOpIterator NGI(Ordering[i]); |
| while (!NGI.isEnd()) { |
| // Get next operand |
| SDOperand Op = NGI.next(); |
| // Get node |
| SDNode *Node = Op.Val; |
| // Ignore passive nodes |
| if (isPassiveNode(Node)) continue; |
| // Check out node |
| IncludeNode(getNI(Node)); |
| } |
| } |
| |
| // Add entry node last (IncludeNode filters entry nodes) |
| if (DAG.getEntryNode().Val != DAG.getRoot().Val) |
| Ordering.push_back(getNI(DAG.getEntryNode().Val)); |
| |
| // Reverse the order |
| std::reverse(Ordering.begin(), Ordering.end()); |
| } |
| |
| /// FakeGroupDominators - Set dominators for non-scheduling. |
| /// |
| void ScheduleDAGSimple::FakeGroupDominators() { |
| for (unsigned i = 0, N = NodeCount; i < N; i++) { |
| NodeInfo* NI = &Info[i]; |
| |
| if (NI->isInGroup()) { |
| NodeGroup *Group = NI->Group; |
| |
| if (!Group->getDominator()) { |
| Group->setDominator(NI); |
| } |
| } |
| } |
| } |
| |
| /// isStrongDependency - Return true if node A has results used by node B. |
| /// I.E., B must wait for latency of A. |
| bool ScheduleDAGSimple::isStrongDependency(NodeInfo *A, NodeInfo *B) { |
| // If A defines for B then it's a strong dependency or |
| // if a load follows a store (may be dependent but why take a chance.) |
| return isDefiner(A, B) || (A->IsStore && B->IsLoad); |
| } |
| |
| /// isWeakDependency Return true if node A produces a result that will |
| /// conflict with operands of B. It is assumed that we have called |
| /// isStrongDependency prior. |
| bool ScheduleDAGSimple::isWeakDependency(NodeInfo *A, NodeInfo *B) { |
| // TODO check for conflicting real registers and aliases |
| #if 0 // FIXME - Since we are in SSA form and not checking register aliasing |
| return A->Node->getOpcode() == ISD::EntryToken || isStrongDependency(B, A); |
| #else |
| return A->Node->getOpcode() == ISD::EntryToken; |
| #endif |
| } |
| |
| /// ScheduleBackward - Schedule instructions so that any long latency |
| /// instructions and the critical path get pushed back in time. Time is run in |
| /// reverse to allow code reuse of the Tally and eliminate the overhead of |
| /// biasing every slot indices against NSlots. |
| void ScheduleDAGSimple::ScheduleBackward() { |
| // Size and clear the resource tally |
| Tally.Initialize(NSlots); |
| // Get number of nodes to schedule |
| unsigned N = Ordering.size(); |
| |
| // For each node being scheduled |
| for (unsigned i = N; 0 < i--;) { |
| NodeInfo *NI = Ordering[i]; |
| // Track insertion |
| unsigned Slot = NotFound; |
| |
| // Compare against those previously scheduled nodes |
| unsigned j = i + 1; |
| for (; j < N; j++) { |
| // Get following instruction |
| NodeInfo *Other = Ordering[j]; |
| |
| // Check dependency against previously inserted nodes |
| if (isStrongDependency(NI, Other)) { |
| Slot = Other->Slot + Other->Latency; |
| break; |
| } else if (isWeakDependency(NI, Other)) { |
| Slot = Other->Slot; |
| break; |
| } |
| } |
| |
| // If independent of others (or first entry) |
| if (Slot == NotFound) Slot = 0; |
| |
| #if 0 // FIXME - measure later |
| // Find a slot where the needed resources are available |
| if (NI->StageBegin != NI->StageEnd) |
| Slot = Tally.FindAndReserve(Slot, NI->StageBegin, NI->StageEnd); |
| #endif |
| |
| // Set node slot |
| NI->Slot = Slot; |
| |
| // Insert sort based on slot |
| j = i + 1; |
| for (; j < N; j++) { |
| // Get following instruction |
| NodeInfo *Other = Ordering[j]; |
| // Should we look further (remember slots are in reverse time) |
| if (Slot >= Other->Slot) break; |
| // Shuffle other into ordering |
| Ordering[j - 1] = Other; |
| } |
| // Insert node in proper slot |
| if (j != i + 1) Ordering[j - 1] = NI; |
| } |
| } |
| |
| /// ScheduleForward - Schedule instructions to maximize packing. |
| /// |
| void ScheduleDAGSimple::ScheduleForward() { |
| // Size and clear the resource tally |
| Tally.Initialize(NSlots); |
| // Get number of nodes to schedule |
| unsigned N = Ordering.size(); |
| |
| // For each node being scheduled |
| for (unsigned i = 0; i < N; i++) { |
| NodeInfo *NI = Ordering[i]; |
| // Track insertion |
| unsigned Slot = NotFound; |
| |
| // Compare against those previously scheduled nodes |
| unsigned j = i; |
| for (; 0 < j--;) { |
| // Get following instruction |
| NodeInfo *Other = Ordering[j]; |
| |
| // Check dependency against previously inserted nodes |
| if (isStrongDependency(Other, NI)) { |
| Slot = Other->Slot + Other->Latency; |
| break; |
| } else if (Other->IsCall || isWeakDependency(Other, NI)) { |
| Slot = Other->Slot; |
| break; |
| } |
| } |
| |
| // If independent of others (or first entry) |
| if (Slot == NotFound) Slot = 0; |
| |
| // Find a slot where the needed resources are available |
| if (NI->StageBegin != NI->StageEnd) |
| Slot = Tally.FindAndReserve(Slot, NI->StageBegin, NI->StageEnd); |
| |
| // Set node slot |
| NI->Slot = Slot; |
| |
| // Insert sort based on slot |
| j = i; |
| for (; 0 < j--;) { |
| // Get prior instruction |
| NodeInfo *Other = Ordering[j]; |
| // Should we look further |
| if (Slot >= Other->Slot) break; |
| // Shuffle other into ordering |
| Ordering[j + 1] = Other; |
| } |
| // Insert node in proper slot |
| if (j != i) Ordering[j + 1] = NI; |
| } |
| } |
| |
| /// Schedule - Order nodes according to selected style. |
| /// |
| void ScheduleDAGSimple::Schedule() { |
| // Set up minimum info for scheduling |
| PrepareNodeInfo(); |
| // Construct node groups for flagged nodes |
| IdentifyGroups(); |
| |
| // Test to see if scheduling should occur |
| bool ShouldSchedule = NodeCount > 3 && Heuristic != noScheduling; |
| // Don't waste time if is only entry and return |
| if (ShouldSchedule) { |
| // Get latency and resource requirements |
| GatherSchedulingInfo(); |
| } else if (HasGroups) { |
| // Make sure all the groups have dominators |
| FakeGroupDominators(); |
| } |
| |
| // Breadth first walk of DAG |
| VisitAll(); |
| |
| #ifndef NDEBUG |
| static unsigned Count = 0; |
| Count++; |
| for (unsigned i = 0, N = Ordering.size(); i < N; i++) { |
| NodeInfo *NI = Ordering[i]; |
| NI->Preorder = i; |
| } |
| #endif |
| |
| // Don't waste time if is only entry and return |
| if (ShouldSchedule) { |
| // Push back long instructions and critical path |
| ScheduleBackward(); |
| |
| // Pack instructions to maximize resource utilization |
| ScheduleForward(); |
| } |
| |
| DEBUG(printChanges(Count)); |
| |
| // Emit in scheduled order |
| EmitAll(); |
| } |
| |
| |
| /// createSimpleDAGScheduler - This creates a simple two pass instruction |
| /// scheduler. |
| llvm::ScheduleDAG* llvm::createSimpleDAGScheduler(SchedHeuristics Heuristic, |
| SelectionDAG &DAG, |
| MachineBasicBlock *BB) { |
| return new ScheduleDAGSimple(Heuristic, DAG, BB, DAG.getTarget()); |
| } |