| //===-- RegAllocGreedy.cpp - greedy register allocator --------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the RAGreedy function pass for register allocation in |
| // optimized builds. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "regalloc" |
| #include "AllocationOrder.h" |
| #include "LiveIntervalUnion.h" |
| #include "LiveRangeEdit.h" |
| #include "RegAllocBase.h" |
| #include "Spiller.h" |
| #include "SpillPlacement.h" |
| #include "SplitKit.h" |
| #include "VirtRegMap.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Function.h" |
| #include "llvm/PassAnalysisSupport.h" |
| #include "llvm/CodeGen/CalcSpillWeights.h" |
| #include "llvm/CodeGen/EdgeBundles.h" |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h" |
| #include "llvm/CodeGen/LiveStackAnalysis.h" |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/CodeGen/MachineLoopRanges.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/CodeGen/RegAllocRegistry.h" |
| #include "llvm/CodeGen/RegisterCoalescer.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Support/Timer.h" |
| |
| #include <queue> |
| |
| using namespace llvm; |
| |
| STATISTIC(NumGlobalSplits, "Number of split global live ranges"); |
| STATISTIC(NumLocalSplits, "Number of split local live ranges"); |
| STATISTIC(NumReassigned, "Number of interferences reassigned"); |
| STATISTIC(NumEvicted, "Number of interferences evicted"); |
| |
| static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", |
| createGreedyRegisterAllocator); |
| |
| namespace { |
| class RAGreedy : public MachineFunctionPass, |
| public RegAllocBase, |
| private LiveRangeEdit::Delegate { |
| |
| // context |
| MachineFunction *MF; |
| BitVector ReservedRegs; |
| |
| // analyses |
| SlotIndexes *Indexes; |
| LiveStacks *LS; |
| MachineDominatorTree *DomTree; |
| MachineLoopInfo *Loops; |
| MachineLoopRanges *LoopRanges; |
| EdgeBundles *Bundles; |
| SpillPlacement *SpillPlacer; |
| |
| // state |
| std::auto_ptr<Spiller> SpillerInstance; |
| std::priority_queue<std::pair<unsigned, unsigned> > Queue; |
| |
| // Live ranges pass through a number of stages as we try to allocate them. |
| // Some of the stages may also create new live ranges: |
| // |
| // - Region splitting. |
| // - Per-block splitting. |
| // - Local splitting. |
| // - Spilling. |
| // |
| // Ranges produced by one of the stages skip the previous stages when they are |
| // dequeued. This improves performance because we can skip interference checks |
| // that are unlikely to give any results. It also guarantees that the live |
| // range splitting algorithm terminates, something that is otherwise hard to |
| // ensure. |
| enum LiveRangeStage { |
| RS_Original, ///< Never seen before, never split. |
| RS_Second, ///< Second time in the queue. |
| RS_Region, ///< Produced by region splitting. |
| RS_Block, ///< Produced by per-block splitting. |
| RS_Local, ///< Produced by local splitting. |
| RS_Spill ///< Produced by spilling. |
| }; |
| |
| IndexedMap<unsigned char, VirtReg2IndexFunctor> LRStage; |
| |
| LiveRangeStage getStage(const LiveInterval &VirtReg) const { |
| return LiveRangeStage(LRStage[VirtReg.reg]); |
| } |
| |
| template<typename Iterator> |
| void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) { |
| LRStage.resize(MRI->getNumVirtRegs()); |
| for (;Begin != End; ++Begin) |
| LRStage[(*Begin)->reg] = NewStage; |
| } |
| |
| // splitting state. |
| std::auto_ptr<SplitAnalysis> SA; |
| std::auto_ptr<SplitEditor> SE; |
| |
| /// All basic blocks where the current register is live. |
| SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints; |
| |
| typedef std::pair<SlotIndex, SlotIndex> IndexPair; |
| |
| /// Global live range splitting candidate info. |
| struct GlobalSplitCandidate { |
| unsigned PhysReg; |
| SmallVector<IndexPair, 8> Interference; |
| BitVector LiveBundles; |
| }; |
| |
| /// Candidate info for for each PhysReg in AllocationOrder. |
| /// This vector never shrinks, but grows to the size of the largest register |
| /// class. |
| SmallVector<GlobalSplitCandidate, 32> GlobalCand; |
| |
| /// For every instruction in SA->UseSlots, store the previous non-copy |
| /// instruction. |
| SmallVector<SlotIndex, 8> PrevSlot; |
| |
| public: |
| RAGreedy(); |
| |
| /// Return the pass name. |
| virtual const char* getPassName() const { |
| return "Greedy Register Allocator"; |
| } |
| |
| /// RAGreedy analysis usage. |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const; |
| virtual void releaseMemory(); |
| virtual Spiller &spiller() { return *SpillerInstance; } |
| virtual void enqueue(LiveInterval *LI); |
| virtual LiveInterval *dequeue(); |
| virtual unsigned selectOrSplit(LiveInterval&, |
| SmallVectorImpl<LiveInterval*>&); |
| |
| /// Perform register allocation. |
| virtual bool runOnMachineFunction(MachineFunction &mf); |
| |
| static char ID; |
| |
| private: |
| void LRE_WillEraseInstruction(MachineInstr*); |
| bool LRE_CanEraseVirtReg(unsigned); |
| |
| bool checkUncachedInterference(LiveInterval&, unsigned); |
| LiveInterval *getSingleInterference(LiveInterval&, unsigned); |
| bool reassignVReg(LiveInterval &InterferingVReg, unsigned OldPhysReg); |
| |
| void mapGlobalInterference(unsigned, SmallVectorImpl<IndexPair>&); |
| float calcSplitConstraints(const SmallVectorImpl<IndexPair>&); |
| |
| float calcGlobalSplitCost(const BitVector&); |
| void splitAroundRegion(LiveInterval&, unsigned, const BitVector&, |
| SmallVectorImpl<LiveInterval*>&); |
| void calcGapWeights(unsigned, SmallVectorImpl<float>&); |
| SlotIndex getPrevMappedIndex(const MachineInstr*); |
| void calcPrevSlots(); |
| unsigned nextSplitPoint(unsigned); |
| bool canEvictInterference(LiveInterval&, unsigned, float&); |
| |
| unsigned tryReassign(LiveInterval&, AllocationOrder&, |
| SmallVectorImpl<LiveInterval*>&); |
| unsigned tryEvict(LiveInterval&, AllocationOrder&, |
| SmallVectorImpl<LiveInterval*>&); |
| unsigned tryRegionSplit(LiveInterval&, AllocationOrder&, |
| SmallVectorImpl<LiveInterval*>&); |
| unsigned tryLocalSplit(LiveInterval&, AllocationOrder&, |
| SmallVectorImpl<LiveInterval*>&); |
| unsigned trySplit(LiveInterval&, AllocationOrder&, |
| SmallVectorImpl<LiveInterval*>&); |
| }; |
| } // end anonymous namespace |
| |
| char RAGreedy::ID = 0; |
| |
| FunctionPass* llvm::createGreedyRegisterAllocator() { |
| return new RAGreedy(); |
| } |
| |
| RAGreedy::RAGreedy(): MachineFunctionPass(ID), LRStage(RS_Original) { |
| initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); |
| initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); |
| initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); |
| initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry()); |
| initializeRegisterCoalescerAnalysisGroup(*PassRegistry::getPassRegistry()); |
| initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry()); |
| initializeLiveStacksPass(*PassRegistry::getPassRegistry()); |
| initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry()); |
| initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry()); |
| initializeMachineLoopRangesPass(*PassRegistry::getPassRegistry()); |
| initializeVirtRegMapPass(*PassRegistry::getPassRegistry()); |
| initializeEdgeBundlesPass(*PassRegistry::getPassRegistry()); |
| initializeSpillPlacementPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesCFG(); |
| AU.addRequired<AliasAnalysis>(); |
| AU.addPreserved<AliasAnalysis>(); |
| AU.addRequired<LiveIntervals>(); |
| AU.addRequired<SlotIndexes>(); |
| AU.addPreserved<SlotIndexes>(); |
| if (StrongPHIElim) |
| AU.addRequiredID(StrongPHIEliminationID); |
| AU.addRequiredTransitive<RegisterCoalescer>(); |
| AU.addRequired<CalculateSpillWeights>(); |
| AU.addRequired<LiveStacks>(); |
| AU.addPreserved<LiveStacks>(); |
| AU.addRequired<MachineDominatorTree>(); |
| AU.addPreserved<MachineDominatorTree>(); |
| AU.addRequired<MachineLoopInfo>(); |
| AU.addPreserved<MachineLoopInfo>(); |
| AU.addRequired<MachineLoopRanges>(); |
| AU.addPreserved<MachineLoopRanges>(); |
| AU.addRequired<VirtRegMap>(); |
| AU.addPreserved<VirtRegMap>(); |
| AU.addRequired<EdgeBundles>(); |
| AU.addRequired<SpillPlacement>(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // LiveRangeEdit delegate methods |
| //===----------------------------------------------------------------------===// |
| |
| void RAGreedy::LRE_WillEraseInstruction(MachineInstr *MI) { |
| // LRE itself will remove from SlotIndexes and parent basic block. |
| VRM->RemoveMachineInstrFromMaps(MI); |
| } |
| |
| bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) { |
| if (unsigned PhysReg = VRM->getPhys(VirtReg)) { |
| unassign(LIS->getInterval(VirtReg), PhysReg); |
| return true; |
| } |
| // Unassigned virtreg is probably in the priority queue. |
| // RegAllocBase will erase it after dequeueing. |
| return false; |
| } |
| |
| void RAGreedy::releaseMemory() { |
| SpillerInstance.reset(0); |
| LRStage.clear(); |
| RegAllocBase::releaseMemory(); |
| } |
| |
| void RAGreedy::enqueue(LiveInterval *LI) { |
| // Prioritize live ranges by size, assigning larger ranges first. |
| // The queue holds (size, reg) pairs. |
| const unsigned Size = LI->getSize(); |
| const unsigned Reg = LI->reg; |
| assert(TargetRegisterInfo::isVirtualRegister(Reg) && |
| "Can only enqueue virtual registers"); |
| unsigned Prio; |
| |
| LRStage.grow(Reg); |
| if (LRStage[Reg] == RS_Original) |
| // 1st generation ranges are handled first, long -> short. |
| Prio = (1u << 31) + Size; |
| else |
| // Repeat offenders are handled second, short -> long |
| Prio = (1u << 30) - Size; |
| |
| // Boost ranges that have a physical register hint. |
| const unsigned Hint = VRM->getRegAllocPref(Reg); |
| if (TargetRegisterInfo::isPhysicalRegister(Hint)) |
| Prio |= (1u << 30); |
| |
| Queue.push(std::make_pair(Prio, Reg)); |
| } |
| |
| LiveInterval *RAGreedy::dequeue() { |
| if (Queue.empty()) |
| return 0; |
| LiveInterval *LI = &LIS->getInterval(Queue.top().second); |
| Queue.pop(); |
| return LI; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Register Reassignment |
| //===----------------------------------------------------------------------===// |
| |
| // Check interference without using the cache. |
| bool RAGreedy::checkUncachedInterference(LiveInterval &VirtReg, |
| unsigned PhysReg) { |
| for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) { |
| LiveIntervalUnion::Query subQ(&VirtReg, &PhysReg2LiveUnion[*AliasI]); |
| if (subQ.checkInterference()) |
| return true; |
| } |
| return false; |
| } |
| |
| /// getSingleInterference - Return the single interfering virtual register |
| /// assigned to PhysReg. Return 0 if more than one virtual register is |
| /// interfering. |
| LiveInterval *RAGreedy::getSingleInterference(LiveInterval &VirtReg, |
| unsigned PhysReg) { |
| // Check physreg and aliases. |
| LiveInterval *Interference = 0; |
| for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) { |
| LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI); |
| if (Q.checkInterference()) { |
| if (Interference) |
| return 0; |
| if (Q.collectInterferingVRegs(2) > 1) |
| return 0; |
| Interference = Q.interferingVRegs().front(); |
| } |
| } |
| return Interference; |
| } |
| |
| // Attempt to reassign this virtual register to a different physical register. |
| // |
| // FIXME: we are not yet caching these "second-level" interferences discovered |
| // in the sub-queries. These interferences can change with each call to |
| // selectOrSplit. However, we could implement a "may-interfere" cache that |
| // could be conservatively dirtied when we reassign or split. |
| // |
| // FIXME: This may result in a lot of alias queries. We could summarize alias |
| // live intervals in their parent register's live union, but it's messy. |
| bool RAGreedy::reassignVReg(LiveInterval &InterferingVReg, |
| unsigned WantedPhysReg) { |
| assert(TargetRegisterInfo::isVirtualRegister(InterferingVReg.reg) && |
| "Can only reassign virtual registers"); |
| assert(TRI->regsOverlap(WantedPhysReg, VRM->getPhys(InterferingVReg.reg)) && |
| "inconsistent phys reg assigment"); |
| |
| AllocationOrder Order(InterferingVReg.reg, *VRM, ReservedRegs); |
| while (unsigned PhysReg = Order.next()) { |
| // Don't reassign to a WantedPhysReg alias. |
| if (TRI->regsOverlap(PhysReg, WantedPhysReg)) |
| continue; |
| |
| if (checkUncachedInterference(InterferingVReg, PhysReg)) |
| continue; |
| |
| // Reassign the interfering virtual reg to this physical reg. |
| unsigned OldAssign = VRM->getPhys(InterferingVReg.reg); |
| DEBUG(dbgs() << "reassigning: " << InterferingVReg << " from " << |
| TRI->getName(OldAssign) << " to " << TRI->getName(PhysReg) << '\n'); |
| unassign(InterferingVReg, OldAssign); |
| assign(InterferingVReg, PhysReg); |
| ++NumReassigned; |
| return true; |
| } |
| return false; |
| } |
| |
| /// tryReassign - Try to reassign a single interference to a different physreg. |
| /// @param VirtReg Currently unassigned virtual register. |
| /// @param Order Physregs to try. |
| /// @return Physreg to assign VirtReg, or 0. |
| unsigned RAGreedy::tryReassign(LiveInterval &VirtReg, AllocationOrder &Order, |
| SmallVectorImpl<LiveInterval*> &NewVRegs){ |
| NamedRegionTimer T("Reassign", TimerGroupName, TimePassesIsEnabled); |
| |
| Order.rewind(); |
| while (unsigned PhysReg = Order.next()) { |
| LiveInterval *InterferingVReg = getSingleInterference(VirtReg, PhysReg); |
| if (!InterferingVReg) |
| continue; |
| if (TargetRegisterInfo::isPhysicalRegister(InterferingVReg->reg)) |
| continue; |
| if (reassignVReg(*InterferingVReg, PhysReg)) |
| return PhysReg; |
| } |
| return 0; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Interference eviction |
| //===----------------------------------------------------------------------===// |
| |
| /// canEvict - Return true if all interferences between VirtReg and PhysReg can |
| /// be evicted. Set maxWeight to the maximal spill weight of an interference. |
| bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg, |
| float &MaxWeight) { |
| float Weight = 0; |
| for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI) { |
| LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI); |
| // If there is 10 or more interferences, chances are one is smaller. |
| if (Q.collectInterferingVRegs(10) >= 10) |
| return false; |
| |
| // Check if any interfering live range is heavier than VirtReg. |
| for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) { |
| LiveInterval *Intf = Q.interferingVRegs()[i]; |
| if (TargetRegisterInfo::isPhysicalRegister(Intf->reg)) |
| return false; |
| if (Intf->weight >= VirtReg.weight) |
| return false; |
| Weight = std::max(Weight, Intf->weight); |
| } |
| } |
| MaxWeight = Weight; |
| return true; |
| } |
| |
| /// tryEvict - Try to evict all interferences for a physreg. |
| /// @param VirtReg Currently unassigned virtual register. |
| /// @param Order Physregs to try. |
| /// @return Physreg to assign VirtReg, or 0. |
| unsigned RAGreedy::tryEvict(LiveInterval &VirtReg, |
| AllocationOrder &Order, |
| SmallVectorImpl<LiveInterval*> &NewVRegs){ |
| NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled); |
| |
| // Keep track of the lightest single interference seen so far. |
| float BestWeight = 0; |
| unsigned BestPhys = 0; |
| |
| Order.rewind(); |
| while (unsigned PhysReg = Order.next()) { |
| float Weight = 0; |
| if (!canEvictInterference(VirtReg, PhysReg, Weight)) |
| continue; |
| |
| // This is an eviction candidate. |
| DEBUG(dbgs() << "max " << PrintReg(PhysReg, TRI) << " interference = " |
| << Weight << '\n'); |
| if (BestPhys && Weight >= BestWeight) |
| continue; |
| |
| // Best so far. |
| BestPhys = PhysReg; |
| BestWeight = Weight; |
| // Stop if the hint can be used. |
| if (Order.isHint(PhysReg)) |
| break; |
| } |
| |
| if (!BestPhys) |
| return 0; |
| |
| DEBUG(dbgs() << "evicting " << PrintReg(BestPhys, TRI) << " interference\n"); |
| for (const unsigned *AliasI = TRI->getOverlaps(BestPhys); *AliasI; ++AliasI) { |
| LiveIntervalUnion::Query &Q = query(VirtReg, *AliasI); |
| assert(Q.seenAllInterferences() && "Didn't check all interfererences."); |
| for (unsigned i = 0, e = Q.interferingVRegs().size(); i != e; ++i) { |
| LiveInterval *Intf = Q.interferingVRegs()[i]; |
| unassign(*Intf, VRM->getPhys(Intf->reg)); |
| ++NumEvicted; |
| NewVRegs.push_back(Intf); |
| } |
| } |
| return BestPhys; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Region Splitting |
| //===----------------------------------------------------------------------===// |
| |
| /// mapGlobalInterference - Compute a map of the interference from PhysReg and |
| /// its aliases in each block in SA->LiveBlocks. |
| /// If LiveBlocks[i] is live-in, Ranges[i].first is the first interference. |
| /// If LiveBlocks[i] is live-out, Ranges[i].second is the last interference. |
| void RAGreedy::mapGlobalInterference(unsigned PhysReg, |
| SmallVectorImpl<IndexPair> &Ranges) { |
| Ranges.assign(SA->LiveBlocks.size(), IndexPair()); |
| LiveInterval &VirtReg = const_cast<LiveInterval&>(SA->getParent()); |
| for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) { |
| if (!query(VirtReg, *AI).checkInterference()) |
| continue; |
| LiveIntervalUnion::SegmentIter IntI = |
| PhysReg2LiveUnion[*AI].find(VirtReg.beginIndex()); |
| if (!IntI.valid()) |
| continue; |
| for (unsigned i = 0, e = SA->LiveBlocks.size(); i != e; ++i) { |
| const SplitAnalysis::BlockInfo &BI = SA->LiveBlocks[i]; |
| IndexPair &IP = Ranges[i]; |
| |
| // Skip interference-free blocks. |
| if (IntI.start() >= BI.Stop) |
| continue; |
| |
| // First interference in block. |
| if (BI.LiveIn) { |
| IntI.advanceTo(BI.Start); |
| if (!IntI.valid()) |
| break; |
| if (IntI.start() >= BI.Stop) |
| continue; |
| if (!IP.first.isValid() || IntI.start() < IP.first) |
| IP.first = IntI.start(); |
| } |
| |
| // Last interference in block. |
| if (BI.LiveOut) { |
| IntI.advanceTo(BI.Stop); |
| if (!IntI.valid() || IntI.start() >= BI.Stop) |
| --IntI; |
| if (IntI.stop() <= BI.Start) |
| continue; |
| if (!IP.second.isValid() || IntI.stop() > IP.second) |
| IP.second = IntI.stop(); |
| } |
| } |
| } |
| } |
| |
| /// calcSplitConstraints - Fill out the SplitConstraints vector based on the |
| /// interference pattern in Intf. Return the static cost of this split, |
| /// assuming that all preferences in SplitConstraints are met. |
| float RAGreedy::calcSplitConstraints(const SmallVectorImpl<IndexPair> &Intf) { |
| // Reset interference dependent info. |
| SplitConstraints.resize(SA->LiveBlocks.size()); |
| float StaticCost = 0; |
| for (unsigned i = 0, e = SA->LiveBlocks.size(); i != e; ++i) { |
| SplitAnalysis::BlockInfo &BI = SA->LiveBlocks[i]; |
| SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; |
| IndexPair IP = Intf[i]; |
| |
| BC.Number = BI.MBB->getNumber(); |
| BC.Entry = (BI.Uses && BI.LiveIn) ? |
| SpillPlacement::PrefReg : SpillPlacement::DontCare; |
| BC.Exit = (BI.Uses && BI.LiveOut) ? |
| SpillPlacement::PrefReg : SpillPlacement::DontCare; |
| |
| // Number of spill code instructions to insert. |
| unsigned Ins = 0; |
| |
| // Interference for the live-in value. |
| if (IP.first.isValid()) { |
| if (IP.first <= BI.Start) |
| BC.Entry = SpillPlacement::MustSpill, Ins += BI.Uses; |
| else if (!BI.Uses) |
| BC.Entry = SpillPlacement::PrefSpill; |
| else if (IP.first < BI.FirstUse) |
| BC.Entry = SpillPlacement::PrefSpill, ++Ins; |
| else if (IP.first < (BI.LiveThrough ? BI.LastUse : BI.Kill)) |
| ++Ins; |
| } |
| |
| // Interference for the live-out value. |
| if (IP.second.isValid()) { |
| if (IP.second >= BI.LastSplitPoint) |
| BC.Exit = SpillPlacement::MustSpill, Ins += BI.Uses; |
| else if (!BI.Uses) |
| BC.Exit = SpillPlacement::PrefSpill; |
| else if (IP.second > BI.LastUse) |
| BC.Exit = SpillPlacement::PrefSpill, ++Ins; |
| else if (IP.second > (BI.LiveThrough ? BI.FirstUse : BI.Def)) |
| ++Ins; |
| } |
| |
| // Accumulate the total frequency of inserted spill code. |
| if (Ins) |
| StaticCost += Ins * SpillPlacer->getBlockFrequency(BC.Number); |
| } |
| return StaticCost; |
| } |
| |
| |
| /// calcGlobalSplitCost - Return the global split cost of following the split |
| /// pattern in LiveBundles. This cost should be added to the local cost of the |
| /// interference pattern in SplitConstraints. |
| /// |
| float RAGreedy::calcGlobalSplitCost(const BitVector &LiveBundles) { |
| float GlobalCost = 0; |
| for (unsigned i = 0, e = SA->LiveBlocks.size(); i != e; ++i) { |
| SplitAnalysis::BlockInfo &BI = SA->LiveBlocks[i]; |
| SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; |
| bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, 0)]; |
| bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)]; |
| unsigned Ins = 0; |
| |
| if (!BI.Uses) |
| Ins += RegIn != RegOut; |
| else { |
| if (BI.LiveIn) |
| Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); |
| if (BI.LiveOut) |
| Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); |
| } |
| if (Ins) |
| GlobalCost += Ins * SpillPlacer->getBlockFrequency(BC.Number); |
| } |
| return GlobalCost; |
| } |
| |
| /// splitAroundRegion - Split VirtReg around the region determined by |
| /// LiveBundles. Make an effort to avoid interference from PhysReg. |
| /// |
| /// The 'register' interval is going to contain as many uses as possible while |
| /// avoiding interference. The 'stack' interval is the complement constructed by |
| /// SplitEditor. It will contain the rest. |
| /// |
| void RAGreedy::splitAroundRegion(LiveInterval &VirtReg, unsigned PhysReg, |
| const BitVector &LiveBundles, |
| SmallVectorImpl<LiveInterval*> &NewVRegs) { |
| DEBUG({ |
| dbgs() << "Splitting around region for " << PrintReg(PhysReg, TRI) |
| << " with bundles"; |
| for (int i = LiveBundles.find_first(); i>=0; i = LiveBundles.find_next(i)) |
| dbgs() << " EB#" << i; |
| dbgs() << ".\n"; |
| }); |
| |
| // First compute interference ranges in the live blocks. |
| SmallVector<IndexPair, 8> InterferenceRanges; |
| mapGlobalInterference(PhysReg, InterferenceRanges); |
| |
| LiveRangeEdit LREdit(VirtReg, NewVRegs, this); |
| SE->reset(LREdit); |
| |
| // Create the main cross-block interval. |
| SE->openIntv(); |
| |
| // First add all defs that are live out of a block. |
| for (unsigned i = 0, e = SA->LiveBlocks.size(); i != e; ++i) { |
| SplitAnalysis::BlockInfo &BI = SA->LiveBlocks[i]; |
| bool RegIn = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 0)]; |
| bool RegOut = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 1)]; |
| |
| // Should the register be live out? |
| if (!BI.LiveOut || !RegOut) |
| continue; |
| |
| IndexPair &IP = InterferenceRanges[i]; |
| DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " -> EB#" |
| << Bundles->getBundle(BI.MBB->getNumber(), 1) |
| << " intf [" << IP.first << ';' << IP.second << ')'); |
| |
| // The interference interval should either be invalid or overlap MBB. |
| assert((!IP.first.isValid() || IP.first < BI.Stop) && "Bad interference"); |
| assert((!IP.second.isValid() || IP.second > BI.Start) |
| && "Bad interference"); |
| |
| // Check interference leaving the block. |
| if (!IP.second.isValid()) { |
| // Block is interference-free. |
| DEBUG(dbgs() << ", no interference"); |
| if (!BI.Uses) { |
| assert(BI.LiveThrough && "No uses, but not live through block?"); |
| // Block is live-through without interference. |
| DEBUG(dbgs() << ", no uses" |
| << (RegIn ? ", live-through.\n" : ", stack in.\n")); |
| if (!RegIn) |
| SE->enterIntvAtEnd(*BI.MBB); |
| continue; |
| } |
| if (!BI.LiveThrough) { |
| DEBUG(dbgs() << ", not live-through.\n"); |
| SE->useIntv(SE->enterIntvBefore(BI.Def), BI.Stop); |
| continue; |
| } |
| if (!RegIn) { |
| // Block is live-through, but entry bundle is on the stack. |
| // Reload just before the first use. |
| DEBUG(dbgs() << ", not live-in, enter before first use.\n"); |
| SE->useIntv(SE->enterIntvBefore(BI.FirstUse), BI.Stop); |
| continue; |
| } |
| DEBUG(dbgs() << ", live-through.\n"); |
| continue; |
| } |
| |
| // Block has interference. |
| DEBUG(dbgs() << ", interference to " << IP.second); |
| |
| if (!BI.LiveThrough && IP.second <= BI.Def) { |
| // The interference doesn't reach the outgoing segment. |
| DEBUG(dbgs() << " doesn't affect def from " << BI.Def << '\n'); |
| SE->useIntv(BI.Def, BI.Stop); |
| continue; |
| } |
| |
| |
| if (!BI.Uses) { |
| // No uses in block, avoid interference by reloading as late as possible. |
| DEBUG(dbgs() << ", no uses.\n"); |
| SlotIndex SegStart = SE->enterIntvAtEnd(*BI.MBB); |
| assert(SegStart >= IP.second && "Couldn't avoid interference"); |
| continue; |
| } |
| |
| if (IP.second.getBoundaryIndex() < BI.LastUse) { |
| // There are interference-free uses at the end of the block. |
| // Find the first use that can get the live-out register. |
| SmallVectorImpl<SlotIndex>::const_iterator UI = |
| std::lower_bound(SA->UseSlots.begin(), SA->UseSlots.end(), |
| IP.second.getBoundaryIndex()); |
| assert(UI != SA->UseSlots.end() && "Couldn't find last use"); |
| SlotIndex Use = *UI; |
| assert(Use <= BI.LastUse && "Couldn't find last use"); |
| // Only attempt a split befroe the last split point. |
| if (Use.getBaseIndex() <= BI.LastSplitPoint) { |
| DEBUG(dbgs() << ", free use at " << Use << ".\n"); |
| SlotIndex SegStart = SE->enterIntvBefore(Use); |
| assert(SegStart >= IP.second && "Couldn't avoid interference"); |
| assert(SegStart < BI.LastSplitPoint && "Impossible split point"); |
| SE->useIntv(SegStart, BI.Stop); |
| continue; |
| } |
| } |
| |
| // Interference is after the last use. |
| DEBUG(dbgs() << " after last use.\n"); |
| SlotIndex SegStart = SE->enterIntvAtEnd(*BI.MBB); |
| assert(SegStart >= IP.second && "Couldn't avoid interference"); |
| } |
| |
| // Now all defs leading to live bundles are handled, do everything else. |
| for (unsigned i = 0, e = SA->LiveBlocks.size(); i != e; ++i) { |
| SplitAnalysis::BlockInfo &BI = SA->LiveBlocks[i]; |
| bool RegIn = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 0)]; |
| bool RegOut = LiveBundles[Bundles->getBundle(BI.MBB->getNumber(), 1)]; |
| |
| // Is the register live-in? |
| if (!BI.LiveIn || !RegIn) |
| continue; |
| |
| // We have an incoming register. Check for interference. |
| IndexPair &IP = InterferenceRanges[i]; |
| |
| DEBUG(dbgs() << "EB#" << Bundles->getBundle(BI.MBB->getNumber(), 0) |
| << " -> BB#" << BI.MBB->getNumber()); |
| |
| // Check interference entering the block. |
| if (!IP.first.isValid()) { |
| // Block is interference-free. |
| DEBUG(dbgs() << ", no interference"); |
| if (!BI.Uses) { |
| assert(BI.LiveThrough && "No uses, but not live through block?"); |
| // Block is live-through without interference. |
| if (RegOut) { |
| DEBUG(dbgs() << ", no uses, live-through.\n"); |
| SE->useIntv(BI.Start, BI.Stop); |
| } else { |
| DEBUG(dbgs() << ", no uses, stack-out.\n"); |
| SE->leaveIntvAtTop(*BI.MBB); |
| } |
| continue; |
| } |
| if (!BI.LiveThrough) { |
| DEBUG(dbgs() << ", killed in block.\n"); |
| SE->useIntv(BI.Start, SE->leaveIntvAfter(BI.Kill)); |
| continue; |
| } |
| if (!RegOut) { |
| // Block is live-through, but exit bundle is on the stack. |
| // Spill immediately after the last use. |
| if (BI.LastUse < BI.LastSplitPoint) { |
| DEBUG(dbgs() << ", uses, stack-out.\n"); |
| SE->useIntv(BI.Start, SE->leaveIntvAfter(BI.LastUse)); |
| continue; |
| } |
| // The last use is after the last split point, it is probably an |
| // indirect jump. |
| DEBUG(dbgs() << ", uses at " << BI.LastUse << " after split point " |
| << BI.LastSplitPoint << ", stack-out.\n"); |
| SlotIndex SegEnd = SE->leaveIntvBefore(BI.LastSplitPoint); |
| SE->useIntv(BI.Start, SegEnd); |
| // Run a double interval from the split to the last use. |
| // This makes it possible to spill the complement without affecting the |
| // indirect branch. |
| SE->overlapIntv(SegEnd, BI.LastUse); |
| continue; |
| } |
| // Register is live-through. |
| DEBUG(dbgs() << ", uses, live-through.\n"); |
| SE->useIntv(BI.Start, BI.Stop); |
| continue; |
| } |
| |
| // Block has interference. |
| DEBUG(dbgs() << ", interference from " << IP.first); |
| |
| if (!BI.LiveThrough && IP.first >= BI.Kill) { |
| // The interference doesn't reach the outgoing segment. |
| DEBUG(dbgs() << " doesn't affect kill at " << BI.Kill << '\n'); |
| SE->useIntv(BI.Start, BI.Kill); |
| continue; |
| } |
| |
| if (!BI.Uses) { |
| // No uses in block, avoid interference by spilling as soon as possible. |
| DEBUG(dbgs() << ", no uses.\n"); |
| SlotIndex SegEnd = SE->leaveIntvAtTop(*BI.MBB); |
| assert(SegEnd <= IP.first && "Couldn't avoid interference"); |
| continue; |
| } |
| if (IP.first.getBaseIndex() > BI.FirstUse) { |
| // There are interference-free uses at the beginning of the block. |
| // Find the last use that can get the register. |
| SmallVectorImpl<SlotIndex>::const_iterator UI = |
| std::lower_bound(SA->UseSlots.begin(), SA->UseSlots.end(), |
| IP.first.getBaseIndex()); |
| assert(UI != SA->UseSlots.begin() && "Couldn't find first use"); |
| SlotIndex Use = (--UI)->getBoundaryIndex(); |
| DEBUG(dbgs() << ", free use at " << *UI << ".\n"); |
| SlotIndex SegEnd = SE->leaveIntvAfter(Use); |
| assert(SegEnd <= IP.first && "Couldn't avoid interference"); |
| SE->useIntv(BI.Start, SegEnd); |
| continue; |
| } |
| |
| // Interference is before the first use. |
| DEBUG(dbgs() << " before first use.\n"); |
| SlotIndex SegEnd = SE->leaveIntvAtTop(*BI.MBB); |
| assert(SegEnd <= IP.first && "Couldn't avoid interference"); |
| } |
| |
| SE->closeIntv(); |
| |
| // FIXME: Should we be more aggressive about splitting the stack region into |
| // per-block segments? The current approach allows the stack region to |
| // separate into connected components. Some components may be allocatable. |
| SE->finish(); |
| ++NumGlobalSplits; |
| |
| if (VerifyEnabled) { |
| MF->verify(this, "After splitting live range around region"); |
| |
| #ifndef NDEBUG |
| // Make sure that at least one of the new intervals can allocate to PhysReg. |
| // That was the whole point of splitting the live range. |
| bool found = false; |
| for (LiveRangeEdit::iterator I = LREdit.begin(), E = LREdit.end(); I != E; |
| ++I) |
| if (!checkUncachedInterference(**I, PhysReg)) { |
| found = true; |
| break; |
| } |
| assert(found && "No allocatable intervals after pointless splitting"); |
| #endif |
| } |
| } |
| |
| unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order, |
| SmallVectorImpl<LiveInterval*> &NewVRegs) { |
| BitVector LiveBundles, BestBundles; |
| float BestCost = 0; |
| unsigned BestReg = 0; |
| |
| Order.rewind(); |
| for (unsigned Cand = 0; unsigned PhysReg = Order.next(); ++Cand) { |
| if (GlobalCand.size() <= Cand) |
| GlobalCand.resize(Cand+1); |
| GlobalCand[Cand].PhysReg = PhysReg; |
| |
| mapGlobalInterference(PhysReg, GlobalCand[Cand].Interference); |
| float Cost = calcSplitConstraints(GlobalCand[Cand].Interference); |
| DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = " << Cost); |
| if (BestReg && Cost >= BestCost) { |
| DEBUG(dbgs() << " higher.\n"); |
| continue; |
| } |
| |
| SpillPlacer->placeSpills(SplitConstraints, LiveBundles); |
| // No live bundles, defer to splitSingleBlocks(). |
| if (!LiveBundles.any()) { |
| DEBUG(dbgs() << " no bundles.\n"); |
| continue; |
| } |
| |
| Cost += calcGlobalSplitCost(LiveBundles); |
| DEBUG({ |
| dbgs() << ", total = " << Cost << " with bundles"; |
| for (int i = LiveBundles.find_first(); i>=0; i = LiveBundles.find_next(i)) |
| dbgs() << " EB#" << i; |
| dbgs() << ".\n"; |
| }); |
| if (!BestReg || Cost < BestCost) { |
| BestReg = PhysReg; |
| BestCost = 0.98f * Cost; // Prevent rounding effects. |
| BestBundles.swap(LiveBundles); |
| } |
| } |
| |
| if (!BestReg) |
| return 0; |
| |
| splitAroundRegion(VirtReg, BestReg, BestBundles, NewVRegs); |
| setStage(NewVRegs.begin(), NewVRegs.end(), RS_Region); |
| return 0; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Local Splitting |
| //===----------------------------------------------------------------------===// |
| |
| |
| /// calcGapWeights - Compute the maximum spill weight that needs to be evicted |
| /// in order to use PhysReg between two entries in SA->UseSlots. |
| /// |
| /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1]. |
| /// |
| void RAGreedy::calcGapWeights(unsigned PhysReg, |
| SmallVectorImpl<float> &GapWeight) { |
| assert(SA->LiveBlocks.size() == 1 && "Not a local interval"); |
| const SplitAnalysis::BlockInfo &BI = SA->LiveBlocks.front(); |
| const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots; |
| const unsigned NumGaps = Uses.size()-1; |
| |
| // Start and end points for the interference check. |
| SlotIndex StartIdx = BI.LiveIn ? BI.FirstUse.getBaseIndex() : BI.FirstUse; |
| SlotIndex StopIdx = BI.LiveOut ? BI.LastUse.getBoundaryIndex() : BI.LastUse; |
| |
| GapWeight.assign(NumGaps, 0.0f); |
| |
| // Add interference from each overlapping register. |
| for (const unsigned *AI = TRI->getOverlaps(PhysReg); *AI; ++AI) { |
| if (!query(const_cast<LiveInterval&>(SA->getParent()), *AI) |
| .checkInterference()) |
| continue; |
| |
| // We know that VirtReg is a continuous interval from FirstUse to LastUse, |
| // so we don't need InterferenceQuery. |
| // |
| // Interference that overlaps an instruction is counted in both gaps |
| // surrounding the instruction. The exception is interference before |
| // StartIdx and after StopIdx. |
| // |
| LiveIntervalUnion::SegmentIter IntI = PhysReg2LiveUnion[*AI].find(StartIdx); |
| for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { |
| // Skip the gaps before IntI. |
| while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) |
| if (++Gap == NumGaps) |
| break; |
| if (Gap == NumGaps) |
| break; |
| |
| // Update the gaps covered by IntI. |
| const float weight = IntI.value()->weight; |
| for (; Gap != NumGaps; ++Gap) { |
| GapWeight[Gap] = std::max(GapWeight[Gap], weight); |
| if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) |
| break; |
| } |
| if (Gap == NumGaps) |
| break; |
| } |
| } |
| } |
| |
| /// getPrevMappedIndex - Return the slot index of the last non-copy instruction |
| /// before MI that has a slot index. If MI is the first mapped instruction in |
| /// its block, return the block start index instead. |
| /// |
| SlotIndex RAGreedy::getPrevMappedIndex(const MachineInstr *MI) { |
| assert(MI && "Missing MachineInstr"); |
| const MachineBasicBlock *MBB = MI->getParent(); |
| MachineBasicBlock::const_iterator B = MBB->begin(), I = MI; |
| while (I != B) |
| if (!(--I)->isDebugValue() && !I->isCopy()) |
| return Indexes->getInstructionIndex(I); |
| return Indexes->getMBBStartIdx(MBB); |
| } |
| |
| /// calcPrevSlots - Fill in the PrevSlot array with the index of the previous |
| /// real non-copy instruction for each instruction in SA->UseSlots. |
| /// |
| void RAGreedy::calcPrevSlots() { |
| const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots; |
| PrevSlot.clear(); |
| PrevSlot.reserve(Uses.size()); |
| for (unsigned i = 0, e = Uses.size(); i != e; ++i) { |
| const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i]); |
| PrevSlot.push_back(getPrevMappedIndex(MI).getDefIndex()); |
| } |
| } |
| |
| /// nextSplitPoint - Find the next index into SA->UseSlots > i such that it may |
| /// be beneficial to split before UseSlots[i]. |
| /// |
| /// 0 is always a valid split point |
| unsigned RAGreedy::nextSplitPoint(unsigned i) { |
| const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots; |
| const unsigned Size = Uses.size(); |
| assert(i != Size && "No split points after the end"); |
| // Allow split before i when Uses[i] is not adjacent to the previous use. |
| while (++i != Size && PrevSlot[i].getBaseIndex() <= Uses[i-1].getBaseIndex()) |
| ; |
| return i; |
| } |
| |
| /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only |
| /// basic block. |
| /// |
| unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, |
| SmallVectorImpl<LiveInterval*> &NewVRegs) { |
| assert(SA->LiveBlocks.size() == 1 && "Not a local interval"); |
| const SplitAnalysis::BlockInfo &BI = SA->LiveBlocks.front(); |
| |
| // Note that it is possible to have an interval that is live-in or live-out |
| // while only covering a single block - A phi-def can use undef values from |
| // predecessors, and the block could be a single-block loop. |
| // We don't bother doing anything clever about such a case, we simply assume |
| // that the interval is continuous from FirstUse to LastUse. We should make |
| // sure that we don't do anything illegal to such an interval, though. |
| |
| const SmallVectorImpl<SlotIndex> &Uses = SA->UseSlots; |
| if (Uses.size() <= 2) |
| return 0; |
| const unsigned NumGaps = Uses.size()-1; |
| |
| DEBUG({ |
| dbgs() << "tryLocalSplit: "; |
| for (unsigned i = 0, e = Uses.size(); i != e; ++i) |
| dbgs() << ' ' << SA->UseSlots[i]; |
| dbgs() << '\n'; |
| }); |
| |
| // For every use, find the previous mapped non-copy instruction. |
| // We use this to detect valid split points, and to estimate new interval |
| // sizes. |
| calcPrevSlots(); |
| |
| unsigned BestBefore = NumGaps; |
| unsigned BestAfter = 0; |
| float BestDiff = 0; |
| |
| const float blockFreq = SpillPlacer->getBlockFrequency(BI.MBB->getNumber()); |
| SmallVector<float, 8> GapWeight; |
| |
| Order.rewind(); |
| while (unsigned PhysReg = Order.next()) { |
| // Keep track of the largest spill weight that would need to be evicted in |
| // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1]. |
| calcGapWeights(PhysReg, GapWeight); |
| |
| // Try to find the best sequence of gaps to close. |
| // The new spill weight must be larger than any gap interference. |
| |
| // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. |
| unsigned SplitBefore = 0, SplitAfter = nextSplitPoint(1) - 1; |
| |
| // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). |
| // It is the spill weight that needs to be evicted. |
| float MaxGap = GapWeight[0]; |
| for (unsigned i = 1; i != SplitAfter; ++i) |
| MaxGap = std::max(MaxGap, GapWeight[i]); |
| |
| for (;;) { |
| // Live before/after split? |
| const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; |
| const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; |
| |
| DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' ' |
| << Uses[SplitBefore] << '-' << Uses[SplitAfter] |
| << " i=" << MaxGap); |
| |
| // Stop before the interval gets so big we wouldn't be making progress. |
| if (!LiveBefore && !LiveAfter) { |
| DEBUG(dbgs() << " all\n"); |
| break; |
| } |
| // Should the interval be extended or shrunk? |
| bool Shrink = true; |
| if (MaxGap < HUGE_VALF) { |
| // Estimate the new spill weight. |
| // |
| // Each instruction reads and writes the register, except the first |
| // instr doesn't read when !FirstLive, and the last instr doesn't write |
| // when !LastLive. |
| // |
| // We will be inserting copies before and after, so the total number of |
| // reads and writes is 2 * EstUses. |
| // |
| const unsigned EstUses = 2*(SplitAfter - SplitBefore) + |
| 2*(LiveBefore + LiveAfter); |
| |
| // Try to guess the size of the new interval. This should be trivial, |
| // but the slot index of an inserted copy can be a lot smaller than the |
| // instruction it is inserted before if there are many dead indexes |
| // between them. |
| // |
| // We measure the distance from the instruction before SplitBefore to |
| // get a conservative estimate. |
| // |
| // The final distance can still be different if inserting copies |
| // triggers a slot index renumbering. |
| // |
| const float EstWeight = normalizeSpillWeight(blockFreq * EstUses, |
| PrevSlot[SplitBefore].distance(Uses[SplitAfter])); |
| // Would this split be possible to allocate? |
| // Never allocate all gaps, we wouldn't be making progress. |
| float Diff = EstWeight - MaxGap; |
| DEBUG(dbgs() << " w=" << EstWeight << " d=" << Diff); |
| if (Diff > 0) { |
| Shrink = false; |
| if (Diff > BestDiff) { |
| DEBUG(dbgs() << " (best)"); |
| BestDiff = Diff; |
| BestBefore = SplitBefore; |
| BestAfter = SplitAfter; |
| } |
| } |
| } |
| |
| // Try to shrink. |
| if (Shrink) { |
| SplitBefore = nextSplitPoint(SplitBefore); |
| if (SplitBefore < SplitAfter) { |
| DEBUG(dbgs() << " shrink\n"); |
| // Recompute the max when necessary. |
| if (GapWeight[SplitBefore - 1] >= MaxGap) { |
| MaxGap = GapWeight[SplitBefore]; |
| for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i) |
| MaxGap = std::max(MaxGap, GapWeight[i]); |
| } |
| continue; |
| } |
| MaxGap = 0; |
| } |
| |
| // Try to extend the interval. |
| if (SplitAfter >= NumGaps) { |
| DEBUG(dbgs() << " end\n"); |
| break; |
| } |
| |
| DEBUG(dbgs() << " extend\n"); |
| for (unsigned e = nextSplitPoint(SplitAfter + 1) - 1; |
| SplitAfter != e; ++SplitAfter) |
| MaxGap = std::max(MaxGap, GapWeight[SplitAfter]); |
| continue; |
| } |
| } |
| |
| // Didn't find any candidates? |
| if (BestBefore == NumGaps) |
| return 0; |
| |
| DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] |
| << '-' << Uses[BestAfter] << ", " << BestDiff |
| << ", " << (BestAfter - BestBefore + 1) << " instrs\n"); |
| |
| LiveRangeEdit LREdit(VirtReg, NewVRegs, this); |
| SE->reset(LREdit); |
| |
| SE->openIntv(); |
| SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); |
| SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); |
| SE->useIntv(SegStart, SegStop); |
| SE->closeIntv(); |
| SE->finish(); |
| setStage(NewVRegs.begin(), NewVRegs.end(), RS_Local); |
| ++NumLocalSplits; |
| |
| return 0; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Live Range Splitting |
| //===----------------------------------------------------------------------===// |
| |
| /// trySplit - Try to split VirtReg or one of its interferences, making it |
| /// assignable. |
| /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. |
| unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order, |
| SmallVectorImpl<LiveInterval*>&NewVRegs) { |
| // Local intervals are handled separately. |
| if (LIS->intervalIsInOneMBB(VirtReg)) { |
| NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled); |
| SA->analyze(&VirtReg); |
| return tryLocalSplit(VirtReg, Order, NewVRegs); |
| } |
| |
| NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled); |
| |
| // Don't iterate global splitting. |
| // Move straight to spilling if this range was produced by a global split. |
| LiveRangeStage Stage = getStage(VirtReg); |
| if (Stage >= RS_Block) |
| return 0; |
| |
| SA->analyze(&VirtReg); |
| |
| // First try to split around a region spanning multiple blocks. |
| if (Stage < RS_Region) { |
| unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); |
| if (PhysReg || !NewVRegs.empty()) |
| return PhysReg; |
| } |
| |
| // Then isolate blocks with multiple uses. |
| if (Stage < RS_Block) { |
| SplitAnalysis::BlockPtrSet Blocks; |
| if (SA->getMultiUseBlocks(Blocks)) { |
| LiveRangeEdit LREdit(VirtReg, NewVRegs, this); |
| SE->reset(LREdit); |
| SE->splitSingleBlocks(Blocks); |
| setStage(NewVRegs.begin(), NewVRegs.end(), RS_Block); |
| if (VerifyEnabled) |
| MF->verify(this, "After splitting live range around basic blocks"); |
| } |
| } |
| |
| // Don't assign any physregs. |
| return 0; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Main Entry Point |
| //===----------------------------------------------------------------------===// |
| |
| unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg, |
| SmallVectorImpl<LiveInterval*> &NewVRegs) { |
| LiveRangeStage Stage = getStage(VirtReg); |
| if (Stage == RS_Original) |
| LRStage[VirtReg.reg] = RS_Second; |
| |
| // First try assigning a free register. |
| AllocationOrder Order(VirtReg.reg, *VRM, ReservedRegs); |
| while (unsigned PhysReg = Order.next()) { |
| if (!checkPhysRegInterference(VirtReg, PhysReg)) |
| return PhysReg; |
| } |
| |
| if (unsigned PhysReg = tryReassign(VirtReg, Order, NewVRegs)) |
| return PhysReg; |
| |
| if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs)) |
| return PhysReg; |
| |
| assert(NewVRegs.empty() && "Cannot append to existing NewVRegs"); |
| |
| // The first time we see a live range, don't try to split or spill. |
| // Wait until the second time, when all smaller ranges have been allocated. |
| // This gives a better picture of the interference to split around. |
| if (Stage == RS_Original) { |
| NewVRegs.push_back(&VirtReg); |
| return 0; |
| } |
| |
| assert(Stage < RS_Spill && "Cannot allocate after spilling"); |
| |
| // Try splitting VirtReg or interferences. |
| unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs); |
| if (PhysReg || !NewVRegs.empty()) |
| return PhysReg; |
| |
| // Finally spill VirtReg itself. |
| NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled); |
| LiveRangeEdit LRE(VirtReg, NewVRegs, this); |
| spiller().spill(LRE); |
| |
| // The live virtual register requesting allocation was spilled, so tell |
| // the caller not to allocate anything during this round. |
| return 0; |
| } |
| |
| bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { |
| DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" |
| << "********** Function: " |
| << ((Value*)mf.getFunction())->getName() << '\n'); |
| |
| MF = &mf; |
| if (VerifyEnabled) |
| MF->verify(this, "Before greedy register allocator"); |
| |
| RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>()); |
| Indexes = &getAnalysis<SlotIndexes>(); |
| DomTree = &getAnalysis<MachineDominatorTree>(); |
| ReservedRegs = TRI->getReservedRegs(*MF); |
| SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM)); |
| Loops = &getAnalysis<MachineLoopInfo>(); |
| LoopRanges = &getAnalysis<MachineLoopRanges>(); |
| Bundles = &getAnalysis<EdgeBundles>(); |
| SpillPlacer = &getAnalysis<SpillPlacement>(); |
| |
| SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); |
| SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree)); |
| LRStage.clear(); |
| LRStage.resize(MRI->getNumVirtRegs()); |
| |
| allocatePhysRegs(); |
| addMBBLiveIns(MF); |
| LIS->addKillFlags(); |
| |
| // Run rewriter |
| { |
| NamedRegionTimer T("Rewriter", TimerGroupName, TimePassesIsEnabled); |
| VRM->rewrite(Indexes); |
| } |
| |
| // The pass output is in VirtRegMap. Release all the transient data. |
| releaseMemory(); |
| |
| return true; |
| } |