| //===- MachineSSAUpdater.cpp - Unstructured SSA Update Tool ---------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the MachineSSAUpdater class. It's based on SSAUpdater |
| // class in lib/Transforms/Utils. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/MachineSSAUpdater.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| using namespace llvm; |
| |
| typedef DenseMap<MachineBasicBlock*, unsigned> AvailableValsTy; |
| typedef std::vector<std::pair<MachineBasicBlock*, unsigned> > |
| IncomingPredInfoTy; |
| |
| static AvailableValsTy &getAvailableVals(void *AV) { |
| return *static_cast<AvailableValsTy*>(AV); |
| } |
| |
| static IncomingPredInfoTy &getIncomingPredInfo(void *IPI) { |
| return *static_cast<IncomingPredInfoTy*>(IPI); |
| } |
| |
| |
| MachineSSAUpdater::MachineSSAUpdater(MachineFunction &MF, |
| SmallVectorImpl<MachineInstr*> *NewPHI) |
| : AV(0), IPI(0), InsertedPHIs(NewPHI) { |
| TII = MF.getTarget().getInstrInfo(); |
| MRI = &MF.getRegInfo(); |
| } |
| |
| MachineSSAUpdater::~MachineSSAUpdater() { |
| delete &getAvailableVals(AV); |
| delete &getIncomingPredInfo(IPI); |
| } |
| |
| /// Initialize - Reset this object to get ready for a new set of SSA |
| /// updates. ProtoValue is the value used to name PHI nodes. |
| void MachineSSAUpdater::Initialize(unsigned V) { |
| if (AV == 0) |
| AV = new AvailableValsTy(); |
| else |
| getAvailableVals(AV).clear(); |
| |
| if (IPI == 0) |
| IPI = new IncomingPredInfoTy(); |
| else |
| getIncomingPredInfo(IPI).clear(); |
| |
| VR = V; |
| VRC = MRI->getRegClass(VR); |
| } |
| |
| /// HasValueForBlock - Return true if the MachineSSAUpdater already has a value for |
| /// the specified block. |
| bool MachineSSAUpdater::HasValueForBlock(MachineBasicBlock *BB) const { |
| return getAvailableVals(AV).count(BB); |
| } |
| |
| /// AddAvailableValue - Indicate that a rewritten value is available in the |
| /// specified block with the specified value. |
| void MachineSSAUpdater::AddAvailableValue(MachineBasicBlock *BB, unsigned V) { |
| getAvailableVals(AV)[BB] = V; |
| } |
| |
| /// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is |
| /// live at the end of the specified block. |
| unsigned MachineSSAUpdater::GetValueAtEndOfBlock(MachineBasicBlock *BB) { |
| return GetValueAtEndOfBlockInternal(BB); |
| } |
| |
| static |
| unsigned LookForIdenticalPHI(MachineBasicBlock *BB, |
| SmallVector<std::pair<MachineBasicBlock*, unsigned>, 8> &PredValues) { |
| if (BB->empty()) |
| return 0; |
| |
| MachineBasicBlock::iterator I = BB->front(); |
| if (!I->isPHI()) |
| return 0; |
| |
| AvailableValsTy AVals; |
| for (unsigned i = 0, e = PredValues.size(); i != e; ++i) |
| AVals[PredValues[i].first] = PredValues[i].second; |
| while (I != BB->end() && I->isPHI()) { |
| bool Same = true; |
| for (unsigned i = 1, e = I->getNumOperands(); i != e; i += 2) { |
| unsigned SrcReg = I->getOperand(i).getReg(); |
| MachineBasicBlock *SrcBB = I->getOperand(i+1).getMBB(); |
| if (AVals[SrcBB] != SrcReg) { |
| Same = false; |
| break; |
| } |
| } |
| if (Same) |
| return I->getOperand(0).getReg(); |
| ++I; |
| } |
| return 0; |
| } |
| |
| /// InsertNewDef - Insert an empty PHI or IMPLICIT_DEF instruction which define |
| /// a value of the given register class at the start of the specified basic |
| /// block. It returns the virtual register defined by the instruction. |
| static |
| MachineInstr *InsertNewDef(unsigned Opcode, |
| MachineBasicBlock *BB, MachineBasicBlock::iterator I, |
| const TargetRegisterClass *RC, |
| MachineRegisterInfo *MRI, const TargetInstrInfo *TII) { |
| unsigned NewVR = MRI->createVirtualRegister(RC); |
| return BuildMI(*BB, I, DebugLoc(), TII->get(Opcode), NewVR); |
| } |
| |
| /// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that |
| /// is live in the middle of the specified block. |
| /// |
| /// GetValueInMiddleOfBlock is the same as GetValueAtEndOfBlock except in one |
| /// important case: if there is a definition of the rewritten value after the |
| /// 'use' in BB. Consider code like this: |
| /// |
| /// X1 = ... |
| /// SomeBB: |
| /// use(X) |
| /// X2 = ... |
| /// br Cond, SomeBB, OutBB |
| /// |
| /// In this case, there are two values (X1 and X2) added to the AvailableVals |
| /// set by the client of the rewriter, and those values are both live out of |
| /// their respective blocks. However, the use of X happens in the *middle* of |
| /// a block. Because of this, we need to insert a new PHI node in SomeBB to |
| /// merge the appropriate values, and this value isn't live out of the block. |
| /// |
| unsigned MachineSSAUpdater::GetValueInMiddleOfBlock(MachineBasicBlock *BB) { |
| // If there is no definition of the renamed variable in this block, just use |
| // GetValueAtEndOfBlock to do our work. |
| if (!getAvailableVals(AV).count(BB)) |
| return GetValueAtEndOfBlockInternal(BB); |
| |
| // If there are no predecessors, just return undef. |
| if (BB->pred_empty()) { |
| // Insert an implicit_def to represent an undef value. |
| MachineInstr *NewDef = InsertNewDef(TargetOpcode::IMPLICIT_DEF, |
| BB, BB->getFirstTerminator(), |
| VRC, MRI, TII); |
| return NewDef->getOperand(0).getReg(); |
| } |
| |
| // Otherwise, we have the hard case. Get the live-in values for each |
| // predecessor. |
| SmallVector<std::pair<MachineBasicBlock*, unsigned>, 8> PredValues; |
| unsigned SingularValue = 0; |
| |
| bool isFirstPred = true; |
| for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(), |
| E = BB->pred_end(); PI != E; ++PI) { |
| MachineBasicBlock *PredBB = *PI; |
| unsigned PredVal = GetValueAtEndOfBlockInternal(PredBB); |
| PredValues.push_back(std::make_pair(PredBB, PredVal)); |
| |
| // Compute SingularValue. |
| if (isFirstPred) { |
| SingularValue = PredVal; |
| isFirstPred = false; |
| } else if (PredVal != SingularValue) |
| SingularValue = 0; |
| } |
| |
| // Otherwise, if all the merged values are the same, just use it. |
| if (SingularValue != 0) |
| return SingularValue; |
| |
| // If an identical PHI is already in BB, just reuse it. |
| unsigned DupPHI = LookForIdenticalPHI(BB, PredValues); |
| if (DupPHI) |
| return DupPHI; |
| |
| // Otherwise, we do need a PHI: insert one now. |
| MachineBasicBlock::iterator Loc = BB->empty() ? BB->end() : BB->front(); |
| MachineInstr *InsertedPHI = InsertNewDef(TargetOpcode::PHI, BB, |
| Loc, VRC, MRI, TII); |
| |
| // Fill in all the predecessors of the PHI. |
| MachineInstrBuilder MIB(InsertedPHI); |
| for (unsigned i = 0, e = PredValues.size(); i != e; ++i) |
| MIB.addReg(PredValues[i].second).addMBB(PredValues[i].first); |
| |
| // See if the PHI node can be merged to a single value. This can happen in |
| // loop cases when we get a PHI of itself and one other value. |
| if (unsigned ConstVal = InsertedPHI->isConstantValuePHI()) { |
| InsertedPHI->eraseFromParent(); |
| return ConstVal; |
| } |
| |
| // If the client wants to know about all new instructions, tell it. |
| if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI); |
| |
| DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n"); |
| return InsertedPHI->getOperand(0).getReg(); |
| } |
| |
| static |
| MachineBasicBlock *findCorrespondingPred(const MachineInstr *MI, |
| MachineOperand *U) { |
| for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) { |
| if (&MI->getOperand(i) == U) |
| return MI->getOperand(i+1).getMBB(); |
| } |
| |
| llvm_unreachable("MachineOperand::getParent() failure?"); |
| return 0; |
| } |
| |
| /// RewriteUse - Rewrite a use of the symbolic value. This handles PHI nodes, |
| /// which use their value in the corresponding predecessor. |
| void MachineSSAUpdater::RewriteUse(MachineOperand &U) { |
| MachineInstr *UseMI = U.getParent(); |
| unsigned NewVR = 0; |
| if (UseMI->isPHI()) { |
| MachineBasicBlock *SourceBB = findCorrespondingPred(UseMI, &U); |
| NewVR = GetValueAtEndOfBlockInternal(SourceBB); |
| } else { |
| NewVR = GetValueInMiddleOfBlock(UseMI->getParent()); |
| } |
| |
| U.setReg(NewVR); |
| } |
| |
| void MachineSSAUpdater::ReplaceRegWith(unsigned OldReg, unsigned NewReg) { |
| MRI->replaceRegWith(OldReg, NewReg); |
| |
| AvailableValsTy &AvailableVals = getAvailableVals(AV); |
| for (DenseMap<MachineBasicBlock*, unsigned>::iterator |
| I = AvailableVals.begin(), E = AvailableVals.end(); I != E; ++I) |
| if (I->second == OldReg) |
| I->second = NewReg; |
| } |
| |
| /// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry |
| /// for the specified BB and if so, return it. If not, construct SSA form by |
| /// walking predecessors inserting PHI nodes as needed until we get to a block |
| /// where the value is available. |
| /// |
| unsigned MachineSSAUpdater::GetValueAtEndOfBlockInternal(MachineBasicBlock *BB){ |
| AvailableValsTy &AvailableVals = getAvailableVals(AV); |
| |
| // Query AvailableVals by doing an insertion of null. |
| std::pair<AvailableValsTy::iterator, bool> InsertRes = |
| AvailableVals.insert(std::make_pair(BB, 0)); |
| |
| // Handle the case when the insertion fails because we have already seen BB. |
| if (!InsertRes.second) { |
| // If the insertion failed, there are two cases. The first case is that the |
| // value is already available for the specified block. If we get this, just |
| // return the value. |
| if (InsertRes.first->second != 0) |
| return InsertRes.first->second; |
| |
| // Otherwise, if the value we find is null, then this is the value is not |
| // known but it is being computed elsewhere in our recursion. This means |
| // that we have a cycle. Handle this by inserting a PHI node and returning |
| // it. When we get back to the first instance of the recursion we will fill |
| // in the PHI node. |
| MachineBasicBlock::iterator Loc = BB->empty() ? BB->end() : BB->front(); |
| MachineInstr *NewPHI = InsertNewDef(TargetOpcode::PHI, BB, Loc, |
| VRC, MRI,TII); |
| unsigned NewVR = NewPHI->getOperand(0).getReg(); |
| InsertRes.first->second = NewVR; |
| return NewVR; |
| } |
| |
| // If there are no predecessors, then we must have found an unreachable block |
| // just return 'undef'. Since there are no predecessors, InsertRes must not |
| // be invalidated. |
| if (BB->pred_empty()) { |
| // Insert an implicit_def to represent an undef value. |
| MachineInstr *NewDef = InsertNewDef(TargetOpcode::IMPLICIT_DEF, |
| BB, BB->getFirstTerminator(), |
| VRC, MRI, TII); |
| return InsertRes.first->second = NewDef->getOperand(0).getReg(); |
| } |
| |
| // Okay, the value isn't in the map and we just inserted a null in the entry |
| // to indicate that we're processing the block. Since we have no idea what |
| // value is in this block, we have to recurse through our predecessors. |
| // |
| // While we're walking our predecessors, we keep track of them in a vector, |
| // then insert a PHI node in the end if we actually need one. We could use a |
| // smallvector here, but that would take a lot of stack space for every level |
| // of the recursion, just use IncomingPredInfo as an explicit stack. |
| IncomingPredInfoTy &IncomingPredInfo = getIncomingPredInfo(IPI); |
| unsigned FirstPredInfoEntry = IncomingPredInfo.size(); |
| |
| // As we're walking the predecessors, keep track of whether they are all |
| // producing the same value. If so, this value will capture it, if not, it |
| // will get reset to null. We distinguish the no-predecessor case explicitly |
| // below. |
| unsigned SingularValue = 0; |
| bool isFirstPred = true; |
| for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(), |
| E = BB->pred_end(); PI != E; ++PI) { |
| MachineBasicBlock *PredBB = *PI; |
| unsigned PredVal = GetValueAtEndOfBlockInternal(PredBB); |
| IncomingPredInfo.push_back(std::make_pair(PredBB, PredVal)); |
| |
| // Compute SingularValue. |
| if (isFirstPred) { |
| SingularValue = PredVal; |
| isFirstPred = false; |
| } else if (PredVal != SingularValue) |
| SingularValue = 0; |
| } |
| |
| /// Look up BB's entry in AvailableVals. 'InsertRes' may be invalidated. If |
| /// this block is involved in a loop, a no-entry PHI node will have been |
| /// inserted as InsertedVal. Otherwise, we'll still have the null we inserted |
| /// above. |
| unsigned &InsertedVal = AvailableVals[BB]; |
| |
| // If all the predecessor values are the same then we don't need to insert a |
| // PHI. This is the simple and common case. |
| if (SingularValue) { |
| // If a PHI node got inserted, replace it with the singlar value and delete |
| // it. |
| if (InsertedVal) { |
| MachineInstr *OldVal = MRI->getVRegDef(InsertedVal); |
| // Be careful about dead loops. These RAUW's also update InsertedVal. |
| assert(InsertedVal != SingularValue && "Dead loop?"); |
| ReplaceRegWith(InsertedVal, SingularValue); |
| OldVal->eraseFromParent(); |
| } |
| |
| InsertedVal = SingularValue; |
| |
| // Drop the entries we added in IncomingPredInfo to restore the stack. |
| IncomingPredInfo.erase(IncomingPredInfo.begin()+FirstPredInfoEntry, |
| IncomingPredInfo.end()); |
| return InsertedVal; |
| } |
| |
| |
| // Otherwise, we do need a PHI: insert one now if we don't already have one. |
| MachineInstr *InsertedPHI; |
| if (InsertedVal == 0) { |
| MachineBasicBlock::iterator Loc = BB->empty() ? BB->end() : BB->front(); |
| InsertedPHI = InsertNewDef(TargetOpcode::PHI, BB, Loc, |
| VRC, MRI, TII); |
| InsertedVal = InsertedPHI->getOperand(0).getReg(); |
| } else { |
| InsertedPHI = MRI->getVRegDef(InsertedVal); |
| } |
| |
| // Fill in all the predecessors of the PHI. |
| MachineInstrBuilder MIB(InsertedPHI); |
| for (IncomingPredInfoTy::iterator I = |
| IncomingPredInfo.begin()+FirstPredInfoEntry, |
| E = IncomingPredInfo.end(); I != E; ++I) |
| MIB.addReg(I->second).addMBB(I->first); |
| |
| // Drop the entries we added in IncomingPredInfo to restore the stack. |
| IncomingPredInfo.erase(IncomingPredInfo.begin()+FirstPredInfoEntry, |
| IncomingPredInfo.end()); |
| |
| // See if the PHI node can be merged to a single value. This can happen in |
| // loop cases when we get a PHI of itself and one other value. |
| if (unsigned ConstVal = InsertedPHI->isConstantValuePHI()) { |
| MRI->replaceRegWith(InsertedVal, ConstVal); |
| InsertedPHI->eraseFromParent(); |
| InsertedVal = ConstVal; |
| } else { |
| DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n"); |
| |
| // If the client wants to know about all new instructions, tell it. |
| if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI); |
| } |
| |
| return InsertedVal; |
| } |