| TODO: |
| * gpr0 allocation |
| * implement do-loop -> bdnz transform |
| * implement powerpc-64 for darwin |
| * use stfiwx in float->int |
| * be able to combine sequences like the following into 2 instructions: |
| lis r2, ha16(l2__ZTV4Cell) |
| la r2, lo16(l2__ZTV4Cell)(r2) |
| addi r2, r2, 8 |
| |
| * Teach LLVM how to codegen this: |
| unsigned short foo(float a) { return a; } |
| as: |
| _foo: |
| fctiwz f0,f1 |
| stfd f0,-8(r1) |
| lhz r3,-2(r1) |
| blr |
| not: |
| _foo: |
| fctiwz f0, f1 |
| stfd f0, -8(r1) |
| lwz r2, -4(r1) |
| rlwinm r3, r2, 0, 16, 31 |
| blr |
| |
| |
| * Support 'update' load/store instructions. These are cracked on the G5, but |
| are still a codesize win. |
| |
| * Add a custom legalizer for the GlobalAddress node, to move the funky darwin |
| stub stuff from the instruction selector to the legalizer (exposing low-level |
| operations to the dag for optzn. For example, we want to codegen this: |
| |
| int A = 0; |
| void B() { A++; } |
| as: |
| lis r9,ha16(_A) |
| lwz r2,lo16(_A)(r9) |
| addi r2,r2,1 |
| stw r2,lo16(_A)(r9) |
| not: |
| lis r2, ha16(_A) |
| lwz r2, lo16(_A)(r2) |
| addi r2, r2, 1 |
| lis r3, ha16(_A) |
| stw r2, lo16(_A)(r3) |
| |
| * should hint to the branch select pass that it doesn't need to print the |
| second unconditional branch, so we don't end up with things like: |
| b .LBBl42__2E_expand_function_8_674 ; loopentry.24 |
| b .LBBl42__2E_expand_function_8_42 ; NewDefault |
| b .LBBl42__2E_expand_function_8_42 ; NewDefault |
| |
| ===-------------------------------------------------------------------------=== |
| |
| * Codegen this: |
| |
| void test2(int X) { |
| if (X == 0x12345678) bar(); |
| } |
| |
| as: |
| |
| xoris r0,r3,0x1234 |
| cmpwi cr0,r0,0x5678 |
| beq cr0,L6 |
| |
| not: |
| |
| lis r2, 4660 |
| ori r2, r2, 22136 |
| cmpw cr0, r3, r2 |
| bne .LBB_test2_2 |
| |
| ===-------------------------------------------------------------------------=== |
| |
| Lump the constant pool for each function into ONE pic object, and reference |
| pieces of it as offsets from the start. For functions like this (contrived |
| to have lots of constants obviously): |
| |
| double X(double Y) { return (Y*1.23 + 4.512)*2.34 + 14.38; } |
| |
| We generate: |
| |
| _X: |
| lis r2, ha16(.CPI_X_0) |
| lfd f0, lo16(.CPI_X_0)(r2) |
| lis r2, ha16(.CPI_X_1) |
| lfd f2, lo16(.CPI_X_1)(r2) |
| fmadd f0, f1, f0, f2 |
| lis r2, ha16(.CPI_X_2) |
| lfd f1, lo16(.CPI_X_2)(r2) |
| lis r2, ha16(.CPI_X_3) |
| lfd f2, lo16(.CPI_X_3)(r2) |
| fmadd f1, f0, f1, f2 |
| blr |
| |
| It would be better to materialize .CPI_X into a register, then use immediates |
| off of the register to avoid the lis's. This is even more important in PIC |
| mode. |
| |
| ===-------------------------------------------------------------------------=== |
| |
| Implement Newton-Rhapson method for improving estimate instructions to the |
| correct accuracy, and implementing divide as multiply by reciprocal when it has |
| more than one use. Itanium will want this too. |
| |
| ===-------------------------------------------------------------------------=== |
| |
| int foo(int a, int b) { return a == b ? 16 : 0; } |
| _foo: |
| cmpw cr7, r3, r4 |
| mfcr r2 |
| rlwinm r2, r2, 31, 31, 31 |
| slwi r3, r2, 4 |
| blr |
| |
| If we exposed the srl & mask ops after the MFCR that we are doing to select |
| the correct CR bit, then we could fold the slwi into the rlwinm before it. |