Tabs -> spaces, and remove trailing whitespace.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@82355 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Bitcode/Reader/BitcodeReader.cpp b/lib/Bitcode/Reader/BitcodeReader.cpp
index 70d2fc5..f3ab806 100644
--- a/lib/Bitcode/Reader/BitcodeReader.cpp
+++ b/lib/Bitcode/Reader/BitcodeReader.cpp
@@ -35,7 +35,7 @@
std::vector<PATypeHolder>().swap(TypeList);
ValueList.clear();
MDValueList.clear();
-
+
std::vector<AttrListPtr>().swap(MAttributes);
std::vector<BasicBlock*>().swap(FunctionBBs);
std::vector<Function*>().swap(FunctionsWithBodies);
@@ -53,7 +53,7 @@
StrTy &Result) {
if (Idx > Record.size())
return true;
-
+
for (unsigned i = Idx, e = Record.size(); i != e; ++i)
Result += (char)Record[i];
return false;
@@ -145,15 +145,15 @@
: ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
}
-
+
/// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
static inline bool classof(const ConstantPlaceHolder *) { return true; }
static bool classof(const Value *V) {
- return isa<ConstantExpr>(V) &&
+ return isa<ConstantExpr>(V) &&
cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
}
-
-
+
+
/// Provide fast operand accessors
//DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};
@@ -171,16 +171,16 @@
push_back(V);
return;
}
-
+
if (Idx >= size())
resize(Idx+1);
-
+
WeakVH &OldV = ValuePtrs[Idx];
if (OldV == 0) {
OldV = V;
return;
}
-
+
// Handle constants and non-constants (e.g. instrs) differently for
// efficiency.
if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
@@ -193,7 +193,7 @@
delete PrevVal;
}
}
-
+
Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
const Type *Ty) {
@@ -214,15 +214,15 @@
Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
if (Idx >= size())
resize(Idx + 1);
-
+
if (Value *V = ValuePtrs[Idx]) {
assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
return V;
}
-
+
// No type specified, must be invalid reference.
if (Ty == 0) return 0;
-
+
// Create and return a placeholder, which will later be RAUW'd.
Value *V = new Argument(Ty);
ValuePtrs[Idx] = V;
@@ -237,30 +237,30 @@
/// uses and rewrite all the place holders at once for any constant that uses
/// a placeholder.
void BitcodeReaderValueList::ResolveConstantForwardRefs() {
- // Sort the values by-pointer so that they are efficient to look up with a
+ // Sort the values by-pointer so that they are efficient to look up with a
// binary search.
std::sort(ResolveConstants.begin(), ResolveConstants.end());
-
+
SmallVector<Constant*, 64> NewOps;
-
+
while (!ResolveConstants.empty()) {
Value *RealVal = operator[](ResolveConstants.back().second);
Constant *Placeholder = ResolveConstants.back().first;
ResolveConstants.pop_back();
-
+
// Loop over all users of the placeholder, updating them to reference the
// new value. If they reference more than one placeholder, update them all
// at once.
while (!Placeholder->use_empty()) {
Value::use_iterator UI = Placeholder->use_begin();
-
+
// If the using object isn't uniqued, just update the operands. This
// handles instructions and initializers for global variables.
if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) {
UI.getUse().set(RealVal);
continue;
}
-
+
// Otherwise, we have a constant that uses the placeholder. Replace that
// constant with a new constant that has *all* placeholder uses updated.
Constant *UserC = cast<Constant>(*UI);
@@ -275,8 +275,8 @@
NewOp = RealVal;
} else {
// Otherwise, look up the placeholder in ResolveConstants.
- ResolveConstantsTy::iterator It =
- std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
+ ResolveConstantsTy::iterator It =
+ std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
std::pair<Constant*, unsigned>(cast<Constant>(*I),
0));
assert(It != ResolveConstants.end() && It->first == *I);
@@ -301,12 +301,12 @@
NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
NewOps.size());
}
-
+
UserC->replaceAllUsesWith(NewC);
UserC->destroyConstant();
NewOps.clear();
}
-
+
// Update all ValueHandles, they should be the only users at this point.
Placeholder->replaceAllUsesWith(RealVal);
delete Placeholder;
@@ -318,16 +318,16 @@
push_back(V);
return;
}
-
+
if (Idx >= size())
resize(Idx+1);
-
+
WeakVH &OldV = MDValuePtrs[Idx];
if (OldV == 0) {
OldV = V;
return;
}
-
+
// If there was a forward reference to this value, replace it.
Value *PrevVal = OldV;
OldV->replaceAllUsesWith(V);
@@ -340,12 +340,12 @@
Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
if (Idx >= size())
resize(Idx + 1);
-
+
if (Value *V = MDValuePtrs[Idx]) {
assert(V->getType() == Type::getMetadataTy(Context) && "Type mismatch in value table!");
return V;
}
-
+
// Create and return a placeholder, which will later be RAUW'd.
Value *V = new Argument(Type::getMetadataTy(Context));
MDValuePtrs[Idx] = V;
@@ -357,7 +357,7 @@
if (ID < TypeList.size())
return TypeList[ID].get();
if (!isTypeTable) return 0;
-
+
// The type table allows forward references. Push as many Opaque types as
// needed to get up to ID.
while (TypeList.size() <= ID)
@@ -372,14 +372,14 @@
bool BitcodeReader::ParseAttributeBlock() {
if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
return Error("Malformed block record");
-
+
if (!MAttributes.empty())
return Error("Multiple PARAMATTR blocks found!");
-
+
SmallVector<uint64_t, 64> Record;
-
+
SmallVector<AttributeWithIndex, 8> Attrs;
-
+
// Read all the records.
while (1) {
unsigned Code = Stream.ReadCode();
@@ -388,7 +388,7 @@
return Error("Error at end of PARAMATTR block");
return false;
}
-
+
if (Code == bitc::ENTER_SUBBLOCK) {
// No known subblocks, always skip them.
Stream.ReadSubBlockID();
@@ -396,12 +396,12 @@
return Error("Malformed block record");
continue;
}
-
+
if (Code == bitc::DEFINE_ABBREV) {
Stream.ReadAbbrevRecord();
continue;
}
-
+
// Read a record.
Record.clear();
switch (Stream.ReadRecord(Code, Record)) {
@@ -440,14 +440,14 @@
unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
Attribute::ReadOnly|Attribute::ReadNone);
-
+
if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
(RetAttribute & OldRetAttrs) != 0) {
if (FnAttribute == Attribute::None) { // add a slot so they get added.
Record.push_back(~0U);
Record.push_back(0);
}
-
+
FnAttribute |= RetAttribute & OldRetAttrs;
RetAttribute &= ~OldRetAttrs;
}
@@ -475,7 +475,7 @@
bool BitcodeReader::ParseTypeTable() {
if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
return Error("Malformed block record");
-
+
if (!TypeList.empty())
return Error("Multiple TYPE_BLOCKs found!");
@@ -492,7 +492,7 @@
return Error("Error at end of type table block");
return false;
}
-
+
if (Code == bitc::ENTER_SUBBLOCK) {
// No known subblocks, always skip them.
Stream.ReadSubBlockID();
@@ -500,12 +500,12 @@
return Error("Malformed block record");
continue;
}
-
+
if (Code == bitc::DEFINE_ABBREV) {
Stream.ReadAbbrevRecord();
continue;
}
-
+
// Read a record.
Record.clear();
const Type *ResultTy = 0;
@@ -550,10 +550,10 @@
case bitc::TYPE_CODE_INTEGER: // INTEGER: [width]
if (Record.size() < 1)
return Error("Invalid Integer type record");
-
+
ResultTy = IntegerType::get(Context, Record[0]);
break;
- case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
+ case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
// [pointee type, address space]
if (Record.size() < 1)
return Error("Invalid POINTER type record");
@@ -572,7 +572,7 @@
std::vector<const Type*> ArgTys;
for (unsigned i = 3, e = Record.size(); i != e; ++i)
ArgTys.push_back(getTypeByID(Record[i], true));
-
+
ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
Record[0]);
break;
@@ -597,7 +597,7 @@
ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
break;
}
-
+
if (NumRecords == TypeList.size()) {
// If this is a new type slot, just append it.
TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context));
@@ -612,14 +612,14 @@
// Resolve the opaque type to the real type now.
assert(NumRecords < TypeList.size() && "Typelist imbalance");
const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
-
+
// Don't directly push the new type on the Tab. Instead we want to replace
// the opaque type we previously inserted with the new concrete value. The
// refinement from the abstract (opaque) type to the new type causes all
// uses of the abstract type to use the concrete type (NewTy). This will
// also cause the opaque type to be deleted.
const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
-
+
// This should have replaced the old opaque type with the new type in the
// value table... or with a preexisting type that was already in the
// system. Let's just make sure it did.
@@ -633,9 +633,9 @@
bool BitcodeReader::ParseTypeSymbolTable() {
if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
return Error("Malformed block record");
-
+
SmallVector<uint64_t, 64> Record;
-
+
// Read all the records for this type table.
std::string TypeName;
while (1) {
@@ -645,7 +645,7 @@
return Error("Error at end of type symbol table block");
return false;
}
-
+
if (Code == bitc::ENTER_SUBBLOCK) {
// No known subblocks, always skip them.
Stream.ReadSubBlockID();
@@ -653,12 +653,12 @@
return Error("Malformed block record");
continue;
}
-
+
if (Code == bitc::DEFINE_ABBREV) {
Stream.ReadAbbrevRecord();
continue;
}
-
+
// Read a record.
Record.clear();
switch (Stream.ReadRecord(Code, Record)) {
@@ -683,7 +683,7 @@
return Error("Malformed block record");
SmallVector<uint64_t, 64> Record;
-
+
// Read all the records for this value table.
SmallString<128> ValueName;
while (1) {
@@ -692,7 +692,7 @@
if (Stream.ReadBlockEnd())
return Error("Error at end of value symbol table block");
return false;
- }
+ }
if (Code == bitc::ENTER_SUBBLOCK) {
// No known subblocks, always skip them.
Stream.ReadSubBlockID();
@@ -700,12 +700,12 @@
return Error("Malformed block record");
continue;
}
-
+
if (Code == bitc::DEFINE_ABBREV) {
Stream.ReadAbbrevRecord();
continue;
}
-
+
// Read a record.
Record.clear();
switch (Stream.ReadRecord(Code, Record)) {
@@ -718,7 +718,7 @@
if (ValueID >= ValueList.size())
return Error("Invalid Value ID in VST_ENTRY record");
Value *V = ValueList[ValueID];
-
+
V->setName(StringRef(ValueName.data(), ValueName.size()));
ValueName.clear();
break;
@@ -729,7 +729,7 @@
BasicBlock *BB = getBasicBlock(Record[0]);
if (BB == 0)
return Error("Invalid BB ID in VST_BBENTRY record");
-
+
BB->setName(StringRef(ValueName.data(), ValueName.size()));
ValueName.clear();
break;
@@ -743,9 +743,9 @@
if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
return Error("Malformed block record");
-
+
SmallVector<uint64_t, 64> Record;
-
+
// Read all the records.
while (1) {
unsigned Code = Stream.ReadCode();
@@ -754,7 +754,7 @@
return Error("Error at end of PARAMATTR block");
return false;
}
-
+
if (Code == bitc::ENTER_SUBBLOCK) {
// No known subblocks, always skip them.
Stream.ReadSubBlockID();
@@ -762,12 +762,12 @@
return Error("Malformed block record");
continue;
}
-
+
if (Code == bitc::DEFINE_ABBREV) {
Stream.ReadAbbrevRecord();
continue;
}
-
+
// Read a record.
Record.clear();
switch (Stream.ReadRecord(Code, Record)) {
@@ -795,7 +795,7 @@
if (MetadataBase *B = dyn_cast<MetadataBase>(MD))
Elts.push_back(B);
}
- Value *V = NamedMDNode::Create(Context, Name.str(), Elts.data(),
+ Value *V = NamedMDNode::Create(Context, Name.str(), Elts.data(),
Elts.size(), TheModule);
MDValueList.AssignValue(V, NextValueNo++);
break;
@@ -803,7 +803,7 @@
case bitc::METADATA_NODE: {
if (Record.empty() || Record.size() % 2 == 1)
return Error("Invalid METADATA_NODE record");
-
+
unsigned Size = Record.size();
SmallVector<Value*, 8> Elts;
for (unsigned i = 0; i != Size; i += 2) {
@@ -825,7 +825,7 @@
String.resize(MDStringLength);
for (unsigned i = 0; i != MDStringLength; ++i)
String[i] = Record[i];
- Value *V = MDString::get(Context,
+ Value *V = MDString::get(Context,
StringRef(String.data(), String.size()));
MDValueList.AssignValue(V, NextValueNo++);
break;
@@ -833,16 +833,16 @@
case bitc::METADATA_KIND: {
unsigned RecordLength = Record.size();
if (Record.empty() || RecordLength < 2)
- return Error("Invalid METADATA_KIND record");
+ return Error("Invalid METADATA_KIND record");
SmallString<8> Name;
Name.resize(RecordLength-1);
MDKindID Kind = Record[0];
for (unsigned i = 1; i != RecordLength; ++i)
- Name[i-1] = Record[i];
+ Name[i-1] = Record[i];
Metadata &TheMetadata = Context.getMetadata();
- assert(TheMetadata.MDHandlerNames.find(Name.str())
- == TheMetadata.MDHandlerNames.end() &&
- "Already registered MDKind!");
+ assert(TheMetadata.MDHandlerNames.find(Name.str())
+ == TheMetadata.MDHandlerNames.end() &&
+ "Already registered MDKind!");
TheMetadata.MDHandlerNames[Name.str()] = Kind;
break;
}
@@ -855,7 +855,7 @@
static uint64_t DecodeSignRotatedValue(uint64_t V) {
if ((V & 1) == 0)
return V >> 1;
- if (V != 1)
+ if (V != 1)
return -(V >> 1);
// There is no such thing as -0 with integers. "-0" really means MININT.
return 1ULL << 63;
@@ -866,7 +866,7 @@
bool BitcodeReader::ResolveGlobalAndAliasInits() {
std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
-
+
GlobalInitWorklist.swap(GlobalInits);
AliasInitWorklist.swap(AliasInits);
@@ -881,7 +881,7 @@
else
return Error("Global variable initializer is not a constant!");
}
- GlobalInitWorklist.pop_back();
+ GlobalInitWorklist.pop_back();
}
while (!AliasInitWorklist.empty()) {
@@ -894,7 +894,7 @@
else
return Error("Alias initializer is not a constant!");
}
- AliasInitWorklist.pop_back();
+ AliasInitWorklist.pop_back();
}
return false;
}
@@ -904,7 +904,7 @@
return Error("Malformed block record");
SmallVector<uint64_t, 64> Record;
-
+
// Read all the records for this value table.
const Type *CurTy = Type::getInt32Ty(Context);
unsigned NextCstNo = ValueList.size();
@@ -912,7 +912,7 @@
unsigned Code = Stream.ReadCode();
if (Code == bitc::END_BLOCK)
break;
-
+
if (Code == bitc::ENTER_SUBBLOCK) {
// No known subblocks, always skip them.
Stream.ReadSubBlockID();
@@ -920,12 +920,12 @@
return Error("Malformed block record");
continue;
}
-
+
if (Code == bitc::DEFINE_ABBREV) {
Stream.ReadAbbrevRecord();
continue;
}
-
+
// Read a record.
Record.clear();
Value *V = 0;
@@ -953,13 +953,13 @@
case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
if (!isa<IntegerType>(CurTy) || Record.empty())
return Error("Invalid WIDE_INTEGER record");
-
+
unsigned NumWords = Record.size();
SmallVector<uint64_t, 8> Words;
Words.resize(NumWords);
for (unsigned i = 0; i != NumWords; ++i)
Words[i] = DecodeSignRotatedValue(Record[i]);
- V = ConstantInt::get(Context,
+ V = ConstantInt::get(Context,
APInt(cast<IntegerType>(CurTy)->getBitWidth(),
NumWords, &Words[0]));
break;
@@ -985,14 +985,14 @@
V = UndefValue::get(CurTy);
break;
}
-
+
case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
if (Record.empty())
return Error("Invalid CST_AGGREGATE record");
-
+
unsigned Size = Record.size();
std::vector<Constant*> Elts;
-
+
if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
for (unsigned i = 0; i != Size; ++i)
Elts.push_back(ValueList.getConstantFwdRef(Record[i],
@@ -1019,7 +1019,7 @@
const ArrayType *ATy = cast<ArrayType>(CurTy);
const Type *EltTy = ATy->getElementType();
-
+
unsigned Size = Record.size();
std::vector<Constant*> Elts;
for (unsigned i = 0; i != Size; ++i)
@@ -1030,10 +1030,10 @@
case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
if (Record.empty())
return Error("Invalid CST_AGGREGATE record");
-
+
const ArrayType *ATy = cast<ArrayType>(CurTy);
const Type *EltTy = ATy->getElementType();
-
+
unsigned Size = Record.size();
std::vector<Constant*> Elts;
for (unsigned i = 0; i != Size; ++i)
@@ -1067,7 +1067,7 @@
V = ConstantExpr::get(Opc, LHS, RHS, Flags);
}
break;
- }
+ }
case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval]
if (Record.size() < 3) return Error("Invalid CE_CAST record");
int Opc = GetDecodedCastOpcode(Record[0]);
@@ -1080,7 +1080,7 @@
V = ConstantExpr::getCast(Opc, Op, CurTy);
}
break;
- }
+ }
case bitc::CST_CODE_CE_INBOUNDS_GEP:
case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands]
if (Record.size() & 1) return Error("Invalid CE_GEP record");
@@ -1107,7 +1107,7 @@
break;
case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
- const VectorType *OpTy =
+ const VectorType *OpTy =
dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
@@ -1132,7 +1132,7 @@
return Error("Invalid CE_SHUFFLEVEC record");
Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
- const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
+ const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
OpTy->getNumElements());
Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
@@ -1145,7 +1145,7 @@
return Error("Invalid CE_SHUFVEC_EX record");
Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
- const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
+ const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
RTy->getNumElements());
Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
@@ -1174,7 +1174,7 @@
unsigned ConstStrSize = Record[2+AsmStrSize];
if (3+AsmStrSize+ConstStrSize > Record.size())
return Error("Invalid INLINEASM record");
-
+
for (unsigned i = 0; i != AsmStrSize; ++i)
AsmStr += (char)Record[2+i];
for (unsigned i = 0; i != ConstStrSize; ++i)
@@ -1185,17 +1185,17 @@
break;
}
}
-
+
ValueList.AssignValue(V, NextCstNo);
++NextCstNo;
}
-
+
if (NextCstNo != ValueList.size())
return Error("Invalid constant reference!");
-
+
if (Stream.ReadBlockEnd())
return Error("Error at end of constants block");
-
+
// Once all the constants have been read, go through and resolve forward
// references.
ValueList.ResolveConstantForwardRefs();
@@ -1209,18 +1209,18 @@
// Get the function we are talking about.
if (FunctionsWithBodies.empty())
return Error("Insufficient function protos");
-
+
Function *Fn = FunctionsWithBodies.back();
FunctionsWithBodies.pop_back();
-
+
// Save the current stream state.
uint64_t CurBit = Stream.GetCurrentBitNo();
DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage());
-
+
// Set the functions linkage to GhostLinkage so we know it is lazily
// deserialized.
Fn->setLinkage(GlobalValue::GhostLinkage);
-
+
// Skip over the function block for now.
if (Stream.SkipBlock())
return Error("Malformed block record");
@@ -1231,13 +1231,13 @@
// Reject multiple MODULE_BLOCK's in a single bitstream.
if (TheModule)
return Error("Multiple MODULE_BLOCKs in same stream");
-
+
if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
return Error("Malformed block record");
// Otherwise, create the module.
TheModule = new Module(ModuleID, Context);
-
+
SmallVector<uint64_t, 64> Record;
std::vector<std::string> SectionTable;
std::vector<std::string> GCTable;
@@ -1271,7 +1271,7 @@
std::vector<Function*>().swap(FunctionsWithBodies);
return false;
}
-
+
if (Code == bitc::ENTER_SUBBLOCK) {
switch (Stream.ReadSubBlockID()) {
default: // Skip unknown content.
@@ -1313,19 +1313,19 @@
std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
HasReversedFunctionsWithBodies = true;
}
-
+
if (RememberAndSkipFunctionBody())
return true;
break;
}
continue;
}
-
+
if (Code == bitc::DEFINE_ABBREV) {
Stream.ReadAbbrevRecord();
continue;
}
-
+
// Read a record.
switch (Stream.ReadRecord(Code, Record)) {
default: break; // Default behavior, ignore unknown content.
@@ -1388,7 +1388,7 @@
return Error("Global not a pointer type!");
unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
Ty = cast<PointerType>(Ty)->getElementType();
-
+
bool isConstant = Record[1];
GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
unsigned Alignment = (1 << Record[4]) >> 1;
@@ -1406,16 +1406,16 @@
isThreadLocal = Record[7];
GlobalVariable *NewGV =
- new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
+ new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
isThreadLocal, AddressSpace);
NewGV->setAlignment(Alignment);
if (!Section.empty())
NewGV->setSection(Section);
NewGV->setVisibility(Visibility);
NewGV->setThreadLocal(isThreadLocal);
-
+
ValueList.push_back(NewGV);
-
+
// Remember which value to use for the global initializer.
if (unsigned InitID = Record[2])
GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
@@ -1441,7 +1441,7 @@
bool isProto = Record[2];
Func->setLinkage(GetDecodedLinkage(Record[3]));
Func->setAttributes(getAttributes(Record[4]));
-
+
Func->setAlignment((1 << Record[5]) >> 1);
if (Record[6]) {
if (Record[6]-1 >= SectionTable.size())
@@ -1455,7 +1455,7 @@
Func->setGC(GCTable[Record[8]-1].c_str());
}
ValueList.push_back(Func);
-
+
// If this is a function with a body, remember the prototype we are
// creating now, so that we can match up the body with them later.
if (!isProto)
@@ -1470,7 +1470,7 @@
const Type *Ty = getTypeByID(Record[0]);
if (!isa<PointerType>(Ty))
return Error("Function not a pointer type!");
-
+
GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
"", 0, TheModule);
// Old bitcode files didn't have visibility field.
@@ -1490,28 +1490,28 @@
}
Record.clear();
}
-
+
return Error("Premature end of bitstream");
}
bool BitcodeReader::ParseBitcode() {
TheModule = 0;
-
+
if (Buffer->getBufferSize() & 3)
return Error("Bitcode stream should be a multiple of 4 bytes in length");
-
+
unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
-
+
// If we have a wrapper header, parse it and ignore the non-bc file contents.
// The magic number is 0x0B17C0DE stored in little endian.
if (isBitcodeWrapper(BufPtr, BufEnd))
if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
return Error("Invalid bitcode wrapper header");
-
+
StreamFile.init(BufPtr, BufEnd);
Stream.init(StreamFile);
-
+
// Sniff for the signature.
if (Stream.Read(8) != 'B' ||
Stream.Read(8) != 'C' ||
@@ -1520,17 +1520,17 @@
Stream.Read(4) != 0xE ||
Stream.Read(4) != 0xD)
return Error("Invalid bitcode signature");
-
+
// We expect a number of well-defined blocks, though we don't necessarily
// need to understand them all.
while (!Stream.AtEndOfStream()) {
unsigned Code = Stream.ReadCode();
-
+
if (Code != bitc::ENTER_SUBBLOCK)
return Error("Invalid record at top-level");
-
+
unsigned BlockID = Stream.ReadSubBlockID();
-
+
// We only know the MODULE subblock ID.
switch (BlockID) {
case bitc::BLOCKINFO_BLOCK_ID:
@@ -1547,7 +1547,7 @@
break;
}
}
-
+
return false;
}
@@ -1555,14 +1555,14 @@
bool BitcodeReader::ParseMetadataAttachment() {
if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
return Error("Malformed block record");
-
+
Metadata &TheMetadata = Context.getMetadata();
SmallVector<uint64_t, 64> Record;
while(1) {
unsigned Code = Stream.ReadCode();
if (Code == bitc::END_BLOCK) {
if (Stream.ReadBlockEnd())
- return Error("Error at end of PARAMATTR block");
+ return Error("Error at end of PARAMATTR block");
break;
}
if (Code == bitc::DEFINE_ABBREV) {
@@ -1577,12 +1577,12 @@
case bitc::METADATA_ATTACHMENT: {
unsigned RecordLength = Record.size();
if (Record.empty() || (RecordLength - 1) % 2 == 1)
- return Error ("Invalid METADATA_ATTACHMENT reader!");
+ return Error ("Invalid METADATA_ATTACHMENT reader!");
Instruction *Inst = InstructionList[Record[0]];
for (unsigned i = 1; i != RecordLength; i = i+2) {
- MDKindID Kind = Record[i];
- Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
- TheMetadata.setMD(Kind, cast<MDNode>(Node), Inst);
+ MDKindID Kind = Record[i];
+ Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
+ TheMetadata.setMD(Kind, cast<MDNode>(Node), Inst);
}
break;
}
@@ -1595,13 +1595,13 @@
bool BitcodeReader::ParseFunctionBody(Function *F) {
if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
return Error("Malformed block record");
-
+
unsigned ModuleValueListSize = ValueList.size();
-
+
// Add all the function arguments to the value table.
for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
ValueList.push_back(I);
-
+
unsigned NextValueNo = ValueList.size();
BasicBlock *CurBB = 0;
unsigned CurBBNo = 0;
@@ -1615,7 +1615,7 @@
return Error("Error at end of function block");
break;
}
-
+
if (Code == bitc::ENTER_SUBBLOCK) {
switch (Stream.ReadSubBlockID()) {
default: // Skip unknown content.
@@ -1630,17 +1630,17 @@
if (ParseValueSymbolTable()) return true;
break;
case bitc::METADATA_ATTACHMENT_ID:
- if (ParseMetadataAttachment()) return true;
- break;
+ if (ParseMetadataAttachment()) return true;
+ break;
}
continue;
}
-
+
if (Code == bitc::DEFINE_ABBREV) {
Stream.ReadAbbrevRecord();
continue;
}
-
+
// Read a record.
Record.clear();
Instruction *I = 0;
@@ -1657,7 +1657,7 @@
FunctionBBs[i] = BasicBlock::Create(Context, "", F);
CurBB = FunctionBBs[0];
continue;
-
+
case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode]
unsigned OpNum = 0;
Value *LHS, *RHS;
@@ -1665,7 +1665,7 @@
getValue(Record, OpNum, LHS->getType(), RHS) ||
OpNum+1 > Record.size())
return Error("Invalid BINOP record");
-
+
int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
if (Opc == -1) return Error("Invalid BINOP record");
I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
@@ -1691,7 +1691,7 @@
if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
OpNum+2 != Record.size())
return Error("Invalid CAST record");
-
+
const Type *ResTy = getTypeByID(Record[OpNum]);
int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
if (Opc == -1 || ResTy == 0)
@@ -1721,7 +1721,7 @@
cast<GetElementPtrInst>(I)->setIsInBounds(true);
break;
}
-
+
case bitc::FUNC_CODE_INST_EXTRACTVAL: {
// EXTRACTVAL: [opty, opval, n x indices]
unsigned OpNum = 0;
@@ -1743,7 +1743,7 @@
InstructionList.push_back(I);
break;
}
-
+
case bitc::FUNC_CODE_INST_INSERTVAL: {
// INSERTVAL: [opty, opval, opty, opval, n x indices]
unsigned OpNum = 0;
@@ -1768,7 +1768,7 @@
InstructionList.push_back(I);
break;
}
-
+
case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
// obsolete form of select
// handles select i1 ... in old bitcode
@@ -1778,12 +1778,12 @@
getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
return Error("Invalid SELECT record");
-
+
I = SelectInst::Create(Cond, TrueVal, FalseVal);
InstructionList.push_back(I);
break;
}
-
+
case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
// new form of select
// handles select i1 or select [N x i1]
@@ -1798,19 +1798,19 @@
if (const VectorType* vector_type =
dyn_cast<const VectorType>(Cond->getType())) {
// expect <n x i1>
- if (vector_type->getElementType() != Type::getInt1Ty(Context))
+ if (vector_type->getElementType() != Type::getInt1Ty(Context))
return Error("Invalid SELECT condition type");
} else {
// expect i1
- if (Cond->getType() != Type::getInt1Ty(Context))
+ if (Cond->getType() != Type::getInt1Ty(Context))
return Error("Invalid SELECT condition type");
- }
-
+ }
+
I = SelectInst::Create(Cond, TrueVal, FalseVal);
InstructionList.push_back(I);
break;
}
-
+
case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
unsigned OpNum = 0;
Value *Vec, *Idx;
@@ -1821,12 +1821,12 @@
InstructionList.push_back(I);
break;
}
-
+
case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
unsigned OpNum = 0;
Value *Vec, *Elt, *Idx;
if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
- getValue(Record, OpNum,
+ getValue(Record, OpNum,
cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
return Error("Invalid INSERTELT record");
@@ -1834,7 +1834,7 @@
InstructionList.push_back(I);
break;
}
-
+
case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
unsigned OpNum = 0;
Value *Vec1, *Vec2, *Mask;
@@ -1862,7 +1862,7 @@
getValue(Record, OpNum, LHS->getType(), RHS) ||
OpNum+1 != Record.size())
return Error("Invalid CMP record");
-
+
if (LHS->getType()->isFPOrFPVector())
I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
else
@@ -1882,13 +1882,13 @@
InstructionList.push_back(I);
break;
}
-
+
case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
{
unsigned Size = Record.size();
if (Size == 0) {
I = ReturnInst::Create(Context);
- InstructionList.push_back(I);
+ InstructionList.push_back(I);
break;
}
@@ -1908,18 +1908,18 @@
Value *RV = UndefValue::get(ReturnType);
for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
- InstructionList.push_back(I);
+ InstructionList.push_back(I);
CurBB->getInstList().push_back(I);
ValueList.AssignValue(I, NextValueNo++);
RV = I;
}
I = ReturnInst::Create(Context, RV);
- InstructionList.push_back(I);
+ InstructionList.push_back(I);
break;
}
I = ReturnInst::Create(Context, Vs[0]);
- InstructionList.push_back(I);
+ InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
@@ -1931,7 +1931,7 @@
if (Record.size() == 1) {
I = BranchInst::Create(TrueDest);
- InstructionList.push_back(I);
+ InstructionList.push_back(I);
}
else {
BasicBlock *FalseDest = getBasicBlock(Record[1]);
@@ -1939,7 +1939,7 @@
if (FalseDest == 0 || Cond == 0)
return Error("Invalid BR record");
I = BranchInst::Create(TrueDest, FalseDest, Cond);
- InstructionList.push_back(I);
+ InstructionList.push_back(I);
}
break;
}
@@ -1955,7 +1955,7 @@
SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
InstructionList.push_back(SI);
for (unsigned i = 0, e = NumCases; i != e; ++i) {
- ConstantInt *CaseVal =
+ ConstantInt *CaseVal =
dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
if (CaseVal == 0 || DestBB == 0) {
@@ -1967,7 +1967,7 @@
I = SI;
break;
}
-
+
case bitc::FUNC_CODE_INST_INVOKE: {
// INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
if (Record.size() < 4) return Error("Invalid INVOKE record");
@@ -1975,12 +1975,12 @@
unsigned CCInfo = Record[1];
BasicBlock *NormalBB = getBasicBlock(Record[2]);
BasicBlock *UnwindBB = getBasicBlock(Record[3]);
-
+
unsigned OpNum = 4;
Value *Callee;
if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
return Error("Invalid INVOKE record");
-
+
const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
const FunctionType *FTy = !CalleeTy ? 0 :
dyn_cast<FunctionType>(CalleeTy->getElementType());
@@ -1989,13 +1989,13 @@
if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
Record.size() < OpNum+FTy->getNumParams())
return Error("Invalid INVOKE record");
-
+
SmallVector<Value*, 16> Ops;
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
if (Ops.back() == 0) return Error("Invalid INVOKE record");
}
-
+
if (!FTy->isVarArg()) {
if (Record.size() != OpNum)
return Error("Invalid INVOKE record");
@@ -2008,7 +2008,7 @@
Ops.push_back(Op);
}
}
-
+
I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
Ops.begin(), Ops.end());
InstructionList.push_back(I);
@@ -2030,11 +2030,11 @@
return Error("Invalid PHI record");
const Type *Ty = getTypeByID(Record[0]);
if (!Ty) return Error("Invalid PHI record");
-
+
PHINode *PN = PHINode::Create(Ty);
InstructionList.push_back(PN);
PN->reserveOperandSpace((Record.size()-1)/2);
-
+
for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
Value *V = getFnValueByID(Record[1+i], Ty);
BasicBlock *BB = getBasicBlock(Record[2+i]);
@@ -2044,7 +2044,7 @@
I = PN;
break;
}
-
+
case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
if (Record.size() < 3)
return Error("Invalid MALLOC record");
@@ -2085,7 +2085,7 @@
if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
OpNum+2 != Record.size())
return Error("Invalid LOAD record");
-
+
I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
InstructionList.push_back(I);
break;
@@ -2094,11 +2094,11 @@
unsigned OpNum = 0;
Value *Val, *Ptr;
if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
- getValue(Record, OpNum,
+ getValue(Record, OpNum,
cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
OpNum+2 != Record.size())
return Error("Invalid STORE record");
-
+
I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
InstructionList.push_back(I);
break;
@@ -2108,11 +2108,11 @@
unsigned OpNum = 0;
Value *Val, *Ptr;
if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
- getValue(Record, OpNum,
+ getValue(Record, OpNum,
PointerType::getUnqual(Val->getType()), Ptr)||
OpNum+2 != Record.size())
return Error("Invalid STORE record");
-
+
I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
InstructionList.push_back(I);
break;
@@ -2121,21 +2121,21 @@
// CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
if (Record.size() < 3)
return Error("Invalid CALL record");
-
+
AttrListPtr PAL = getAttributes(Record[0]);
unsigned CCInfo = Record[1];
-
+
unsigned OpNum = 2;
Value *Callee;
if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
return Error("Invalid CALL record");
-
+
const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
const FunctionType *FTy = 0;
if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
return Error("Invalid CALL record");
-
+
SmallVector<Value*, 16> Args;
// Read the fixed params.
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
@@ -2145,7 +2145,7 @@
Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
if (Args.back() == 0) return Error("Invalid CALL record");
}
-
+
// Read type/value pairs for varargs params.
if (!FTy->isVarArg()) {
if (OpNum != Record.size())
@@ -2158,7 +2158,7 @@
Args.push_back(Op);
}
}
-
+
I = CallInst::Create(Callee, Args.begin(), Args.end());
InstructionList.push_back(I);
cast<CallInst>(I)->setCallingConv(
@@ -2188,18 +2188,18 @@
return Error("Invalid instruction with no BB");
}
CurBB->getInstList().push_back(I);
-
+
// If this was a terminator instruction, move to the next block.
if (isa<TerminatorInst>(I)) {
++CurBBNo;
CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
}
-
+
// Non-void values get registered in the value table for future use.
if (I && I->getType() != Type::getVoidTy(Context))
ValueList.AssignValue(I, NextValueNo++);
}
-
+
// Check the function list for unresolved values.
if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
if (A->getParent() == 0) {
@@ -2213,11 +2213,11 @@
return Error("Never resolved value found in function!");
}
}
-
+
// Trim the value list down to the size it was before we parsed this function.
ValueList.shrinkTo(ModuleValueListSize);
std::vector<BasicBlock*>().swap(FunctionBBs);
-
+
return false;
}
@@ -2229,16 +2229,16 @@
bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) {
// If it already is material, ignore the request.
if (!F->hasNotBeenReadFromBitcode()) return false;
-
- DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII =
+
+ DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII =
DeferredFunctionInfo.find(F);
assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
-
+
// Move the bit stream to the saved position of the deferred function body and
// restore the real linkage type for the function.
Stream.JumpToBit(DFII->second.first);
F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second);
-
+
if (ParseFunctionBody(F)) {
if (ErrInfo) *ErrInfo = ErrorString;
return true;
@@ -2255,7 +2255,7 @@
}
}
}
-
+
return false;
}
@@ -2263,9 +2263,9 @@
// If this function isn't materialized, or if it is a proto, this is a noop.
if (F->hasNotBeenReadFromBitcode() || F->isDeclaration())
return;
-
+
assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
-
+
// Just forget the function body, we can remat it later.
F->deleteBody();
F->setLinkage(GlobalValue::GhostLinkage);
@@ -2281,9 +2281,9 @@
materializeFunction(F, ErrInfo))
return 0;
- // Upgrade any intrinsic calls that slipped through (should not happen!) and
- // delete the old functions to clean up. We can't do this unless the entire
- // module is materialized because there could always be another function body
+ // Upgrade any intrinsic calls that slipped through (should not happen!) and
+ // delete the old functions to clean up. We can't do this unless the entire
+ // module is materialized because there could always be another function body
// with calls to the old function.
for (std::vector<std::pair<Function*, Function*> >::iterator I =
UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
@@ -2332,7 +2332,7 @@
if (R->ParseBitcode()) {
if (ErrMsg)
*ErrMsg = R->getErrorString();
-
+
// Don't let the BitcodeReader dtor delete 'Buffer'.
R->releaseMemoryBuffer();
delete R;
@@ -2343,25 +2343,25 @@
/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
/// If an error occurs, return null and fill in *ErrMsg if non-null.
-Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
+Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
std::string *ErrMsg){
BitcodeReader *R;
- R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, Context,
+ R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, Context,
ErrMsg));
if (!R) return 0;
-
+
// Read in the entire module.
Module *M = R->materializeModule(ErrMsg);
// Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
// there was an error.
R->releaseMemoryBuffer();
-
+
// If there was no error, tell ModuleProvider not to delete it when its dtor
// is run.
if (M)
M = R->releaseModule(ErrMsg);
-
+
delete R;
return M;
}
diff --git a/lib/Bitcode/Writer/BitcodeWriter.cpp b/lib/Bitcode/Writer/BitcodeWriter.cpp
index 3d89f3d..3511dbc 100644
--- a/lib/Bitcode/Writer/BitcodeWriter.cpp
+++ b/lib/Bitcode/Writer/BitcodeWriter.cpp
@@ -34,19 +34,19 @@
/// be kept in sync with the reader, but need to be consistent within this file.
enum {
CurVersion = 0,
-
+
// VALUE_SYMTAB_BLOCK abbrev id's.
VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
VST_ENTRY_7_ABBREV,
VST_ENTRY_6_ABBREV,
VST_BBENTRY_6_ABBREV,
-
+
// CONSTANTS_BLOCK abbrev id's.
CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
CONSTANTS_INTEGER_ABBREV,
CONSTANTS_CE_CAST_Abbrev,
CONSTANTS_NULL_Abbrev,
-
+
// FUNCTION_BLOCK abbrev id's.
FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
FUNCTION_INST_BINOP_ABBREV,
@@ -102,24 +102,24 @@
-static void WriteStringRecord(unsigned Code, const std::string &Str,
+static void WriteStringRecord(unsigned Code, const std::string &Str,
unsigned AbbrevToUse, BitstreamWriter &Stream) {
SmallVector<unsigned, 64> Vals;
-
+
// Code: [strchar x N]
for (unsigned i = 0, e = Str.size(); i != e; ++i)
Vals.push_back(Str[i]);
-
+
// Emit the finished record.
Stream.EmitRecord(Code, Vals, AbbrevToUse);
}
// Emit information about parameter attributes.
-static void WriteAttributeTable(const ValueEnumerator &VE,
+static void WriteAttributeTable(const ValueEnumerator &VE,
BitstreamWriter &Stream) {
const std::vector<AttrListPtr> &Attrs = VE.getAttributes();
if (Attrs.empty()) return;
-
+
Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
SmallVector<uint64_t, 64> Record;
@@ -140,21 +140,21 @@
Record.push_back(FauxAttr);
}
-
+
Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
Record.clear();
}
-
+
Stream.ExitBlock();
}
/// WriteTypeTable - Write out the type table for a module.
static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
const ValueEnumerator::TypeList &TypeList = VE.getTypes();
-
+
Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
SmallVector<uint64_t, 64> TypeVals;
-
+
// Abbrev for TYPE_CODE_POINTER.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
@@ -162,7 +162,7 @@
Log2_32_Ceil(VE.getTypes().size()+1)));
Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
-
+
// Abbrev for TYPE_CODE_FUNCTION.
Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
@@ -172,7 +172,7 @@
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
Log2_32_Ceil(VE.getTypes().size()+1)));
unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
-
+
// Abbrev for TYPE_CODE_STRUCT.
Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
@@ -181,7 +181,7 @@
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
Log2_32_Ceil(VE.getTypes().size()+1)));
unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
-
+
// Abbrev for TYPE_CODE_ARRAY.
Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
@@ -189,18 +189,18 @@
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
Log2_32_Ceil(VE.getTypes().size()+1)));
unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
-
+
// Emit an entry count so the reader can reserve space.
TypeVals.push_back(TypeList.size());
Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
TypeVals.clear();
-
+
// Loop over all of the types, emitting each in turn.
for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
const Type *T = TypeList[i].first;
int AbbrevToUse = 0;
unsigned Code = 0;
-
+
switch (T->getTypeID()) {
default: llvm_unreachable("Unknown type!");
case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
@@ -274,7 +274,7 @@
Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
TypeVals.clear();
}
-
+
Stream.ExitBlock();
}
@@ -337,7 +337,7 @@
GV != E; ++GV) {
MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
-
+
if (!GV->hasSection()) continue;
// Give section names unique ID's.
unsigned &Entry = SectionMap[GV->getSection()];
@@ -367,10 +367,10 @@
}
}
}
-
+
// Emit abbrev for globals, now that we know # sections and max alignment.
unsigned SimpleGVarAbbrev = 0;
- if (!M->global_empty()) {
+ if (!M->global_empty()) {
// Add an abbrev for common globals with no visibility or thread localness.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
@@ -394,14 +394,14 @@
// Don't bother emitting vis + thread local.
SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
}
-
+
// Emit the global variable information.
SmallVector<unsigned, 64> Vals;
for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
GV != E; ++GV) {
unsigned AbbrevToUse = 0;
- // GLOBALVAR: [type, isconst, initid,
+ // GLOBALVAR: [type, isconst, initid,
// linkage, alignment, section, visibility, threadlocal]
Vals.push_back(VE.getTypeID(GV->getType()));
Vals.push_back(GV->isConstant());
@@ -410,14 +410,14 @@
Vals.push_back(getEncodedLinkage(GV));
Vals.push_back(Log2_32(GV->getAlignment())+1);
Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
- if (GV->isThreadLocal() ||
+ if (GV->isThreadLocal() ||
GV->getVisibility() != GlobalValue::DefaultVisibility) {
Vals.push_back(getEncodedVisibility(GV));
Vals.push_back(GV->isThreadLocal());
} else {
AbbrevToUse = SimpleGVarAbbrev;
}
-
+
Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
Vals.clear();
}
@@ -435,13 +435,13 @@
Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
Vals.push_back(getEncodedVisibility(F));
Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
-
+
unsigned AbbrevToUse = 0;
Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
Vals.clear();
}
-
-
+
+
// Emit the alias information.
for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
AI != E; ++AI) {
@@ -496,7 +496,7 @@
unsigned MDSAbbrev = 0;
SmallVector<uint64_t, 64> Record;
for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
-
+
if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
if (!StartedMetadataBlock) {
Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
@@ -506,7 +506,7 @@
} else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
if (!StartedMetadataBlock) {
Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
-
+
// Abbrev for METADATA_STRING.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
@@ -515,12 +515,12 @@
MDSAbbrev = Stream.EmitAbbrev(Abbv);
StartedMetadataBlock = true;
}
-
+
// Code: [strchar x N]
const char *StrBegin = MDS->begin();
for (unsigned i = 0, e = MDS->length(); i != e; ++i)
Record.push_back(StrBegin[i]);
-
+
// Emit the finished record.
Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
Record.clear();
@@ -540,26 +540,26 @@
// Write named metadata elements.
for (unsigned i = 0, e = NMD->getNumElements(); i != e; ++i) {
- if (NMD->getElement(i))
+ if (NMD->getElement(i))
Record.push_back(VE.getValueID(NMD->getElement(i)));
- else
+ else
Record.push_back(0);
}
Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
Record.clear();
}
}
-
+
if (StartedMetadataBlock)
Stream.ExitBlock();
}
static void WriteMetadataAttachment(const Function &F,
- const ValueEnumerator &VE,
- BitstreamWriter &Stream) {
+ const ValueEnumerator &VE,
+ BitstreamWriter &Stream) {
bool StartedMetadataBlock = false;
SmallVector<uint64_t, 64> Record;
-
+
// Write metadata attachments
// METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
Metadata &TheMetadata = F.getContext().getMetadata();
@@ -570,41 +570,41 @@
if (!P) continue;
bool RecordedInstruction = false;
for (Metadata::MDMapTy::const_iterator PI = P->begin(), PE = P->end();
- PI != PE; ++PI) {
- if (MDNode *ND = dyn_cast_or_null<MDNode>(PI->second)) {
- if (RecordedInstruction == false) {
- Record.push_back(VE.getInstructionID(I));
- RecordedInstruction = true;
- }
- Record.push_back(PI->first);
- Record.push_back(VE.getValueID(ND));
- }
+ PI != PE; ++PI) {
+ if (MDNode *ND = dyn_cast_or_null<MDNode>(PI->second)) {
+ if (RecordedInstruction == false) {
+ Record.push_back(VE.getInstructionID(I));
+ RecordedInstruction = true;
+ }
+ Record.push_back(PI->first);
+ Record.push_back(VE.getValueID(ND));
+ }
}
if (!StartedMetadataBlock) {
- Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
- StartedMetadataBlock = true;
+ Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
+ StartedMetadataBlock = true;
}
Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
Record.clear();
}
- if (StartedMetadataBlock)
+ if (StartedMetadataBlock)
Stream.ExitBlock();
}
static void WriteModuleMetadataStore(const Module *M,
- const ValueEnumerator &VE,
- BitstreamWriter &Stream) {
-
+ const ValueEnumerator &VE,
+ BitstreamWriter &Stream) {
+
bool StartedMetadataBlock = false;
SmallVector<uint64_t, 64> Record;
-
+
// Write metadata kinds
// METADATA_KIND - [n x [id, name]]
Metadata &TheMetadata = M->getContext().getMetadata();
const StringMap<unsigned> *Kinds = TheMetadata.getHandlerNames();
- for (StringMap<unsigned>::const_iterator
- I = Kinds->begin(), E = Kinds->end(); I != E; ++I) {
+ for (StringMap<unsigned>::const_iterator
+ I = Kinds->begin(), E = Kinds->end(); I != E; ++I) {
Record.push_back(I->second);
StringRef KName = I->first();
for (unsigned i = 0, e = KName.size(); i != e; ++i)
@@ -617,7 +617,7 @@
Record.clear();
}
- if (StartedMetadataBlock)
+ if (StartedMetadataBlock)
Stream.ExitBlock();
}
@@ -625,7 +625,7 @@
const ValueEnumerator &VE,
BitstreamWriter &Stream, bool isGlobal) {
if (FirstVal == LastVal) return;
-
+
Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
unsigned AggregateAbbrev = 0;
@@ -659,8 +659,8 @@
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
CString6Abbrev = Stream.EmitAbbrev(Abbv);
- }
-
+ }
+
SmallVector<uint64_t, 64> Record;
const ValueEnumerator::ValueList &Vals = VE.getValues();
@@ -675,16 +675,16 @@
CONSTANTS_SETTYPE_ABBREV);
Record.clear();
}
-
+
if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
Record.push_back(unsigned(IA->hasSideEffects()));
-
+
// Add the asm string.
const std::string &AsmStr = IA->getAsmString();
Record.push_back(AsmStr.size());
for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
Record.push_back(AsmStr[i]);
-
+
// Add the constraint string.
const std::string &ConstraintStr = IA->getConstraintString();
Record.push_back(ConstraintStr.size());
@@ -711,11 +711,11 @@
Code = bitc::CST_CODE_INTEGER;
AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
} else { // Wide integers, > 64 bits in size.
- // We have an arbitrary precision integer value to write whose
- // bit width is > 64. However, in canonical unsigned integer
+ // We have an arbitrary precision integer value to write whose
+ // bit width is > 64. However, in canonical unsigned integer
// format it is likely that the high bits are going to be zero.
// So, we only write the number of active words.
- unsigned NWords = IV->getValue().getActiveWords();
+ unsigned NWords = IV->getValue().getActiveWords();
const uint64_t *RawWords = IV->getValue().getRawData();
for (unsigned i = 0; i != NWords; ++i) {
int64_t V = RawWords[i];
@@ -765,10 +765,10 @@
unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue();
Record.push_back(V);
isCStr7 &= (V & 128) == 0;
- if (isCStrChar6)
+ if (isCStrChar6)
isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
}
-
+
if (isCStrChar6)
AbbrevToUse = CString6Abbrev;
else if (isCStr7)
@@ -863,7 +863,7 @@
static void WriteModuleConstants(const ValueEnumerator &VE,
BitstreamWriter &Stream) {
const ValueEnumerator::ValueList &Vals = VE.getValues();
-
+
// Find the first constant to emit, which is the first non-globalvalue value.
// We know globalvalues have been emitted by WriteModuleInfo.
for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
@@ -883,7 +883,7 @@
/// instruction ID, then it is a forward reference, and it also includes the
/// type ID.
static bool PushValueAndType(const Value *V, unsigned InstID,
- SmallVector<unsigned, 64> &Vals,
+ SmallVector<unsigned, 64> &Vals,
ValueEnumerator &VE) {
unsigned ValID = VE.getValueID(V);
Vals.push_back(ValID);
@@ -981,7 +981,7 @@
Vals.push_back(cast<CmpInst>(I).getPredicate());
break;
- case Instruction::Ret:
+ case Instruction::Ret:
{
Code = bitc::FUNC_CODE_INST_RET;
unsigned NumOperands = I.getNumOperands();
@@ -1019,13 +1019,13 @@
const PointerType *PTy = cast<PointerType>(Callee->getType());
const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
Code = bitc::FUNC_CODE_INST_INVOKE;
-
+
Vals.push_back(VE.getAttributeID(II->getAttributes()));
Vals.push_back(II->getCallingConv());
Vals.push_back(VE.getValueID(II->getNormalDest()));
Vals.push_back(VE.getValueID(II->getUnwindDest()));
PushValueAndType(Callee, InstID, Vals, VE);
-
+
// Emit value #'s for the fixed parameters.
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param.
@@ -1045,38 +1045,38 @@
Code = bitc::FUNC_CODE_INST_UNREACHABLE;
AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
break;
-
+
case Instruction::PHI:
Code = bitc::FUNC_CODE_INST_PHI;
Vals.push_back(VE.getTypeID(I.getType()));
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
Vals.push_back(VE.getValueID(I.getOperand(i)));
break;
-
+
case Instruction::Malloc:
Code = bitc::FUNC_CODE_INST_MALLOC;
Vals.push_back(VE.getTypeID(I.getType()));
Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1);
break;
-
+
case Instruction::Free:
Code = bitc::FUNC_CODE_INST_FREE;
PushValueAndType(I.getOperand(0), InstID, Vals, VE);
break;
-
+
case Instruction::Alloca:
Code = bitc::FUNC_CODE_INST_ALLOCA;
Vals.push_back(VE.getTypeID(I.getType()));
Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
break;
-
+
case Instruction::Load:
Code = bitc::FUNC_CODE_INST_LOAD;
if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr
AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
-
+
Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
Vals.push_back(cast<LoadInst>(I).isVolatile());
break;
@@ -1092,16 +1092,16 @@
const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
Code = bitc::FUNC_CODE_INST_CALL;
-
+
const CallInst *CI = cast<CallInst>(&I);
Vals.push_back(VE.getAttributeID(CI->getAttributes()));
Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall()));
PushValueAndType(CI->getOperand(0), InstID, Vals, VE); // Callee
-
+
// Emit value #'s for the fixed parameters.
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param.
-
+
// Emit type/value pairs for varargs params.
if (FTy->isVarArg()) {
unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
@@ -1118,7 +1118,7 @@
Vals.push_back(VE.getTypeID(I.getType())); // restype.
break;
}
-
+
Stream.EmitRecord(Code, Vals, AbbrevToUse);
Vals.clear();
}
@@ -1133,27 +1133,27 @@
// FIXME: Set up the abbrev, we know how many values there are!
// FIXME: We know if the type names can use 7-bit ascii.
SmallVector<unsigned, 64> NameVals;
-
+
for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
SI != SE; ++SI) {
-
+
const ValueName &Name = *SI;
-
+
// Figure out the encoding to use for the name.
bool is7Bit = true;
bool isChar6 = true;
for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
C != E; ++C) {
- if (isChar6)
+ if (isChar6)
isChar6 = BitCodeAbbrevOp::isChar6(*C);
if ((unsigned char)*C & 128) {
is7Bit = false;
break; // don't bother scanning the rest.
}
}
-
+
unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
-
+
// VST_ENTRY: [valueid, namechar x N]
// VST_BBENTRY: [bbid, namechar x N]
unsigned Code;
@@ -1168,12 +1168,12 @@
else if (is7Bit)
AbbrevToUse = VST_ENTRY_7_ABBREV;
}
-
+
NameVals.push_back(VE.getValueID(SI->getValue()));
for (const char *P = Name.getKeyData(),
*E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
NameVals.push_back((unsigned char)*P);
-
+
// Emit the finished record.
Stream.EmitRecord(Code, NameVals, AbbrevToUse);
NameVals.clear();
@@ -1182,27 +1182,27 @@
}
/// WriteFunction - Emit a function body to the module stream.
-static void WriteFunction(const Function &F, ValueEnumerator &VE,
+static void WriteFunction(const Function &F, ValueEnumerator &VE,
BitstreamWriter &Stream) {
Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
VE.incorporateFunction(F);
SmallVector<unsigned, 64> Vals;
-
+
// Emit the number of basic blocks, so the reader can create them ahead of
// time.
Vals.push_back(VE.getBasicBlocks().size());
Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
Vals.clear();
-
+
// If there are function-local constants, emit them now.
unsigned CstStart, CstEnd;
VE.getFunctionConstantRange(CstStart, CstEnd);
WriteConstants(CstStart, CstEnd, VE, Stream, false);
-
- // Keep a running idea of what the instruction ID is.
+
+ // Keep a running idea of what the instruction ID is.
unsigned InstID = CstEnd;
-
+
// Finally, emit all the instructions, in order.
for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
@@ -1211,7 +1211,7 @@
if (I->getType() != Type::getVoidTy(F.getContext()))
++InstID;
}
-
+
// Emit names for all the instructions etc.
WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
@@ -1225,9 +1225,9 @@
const ValueEnumerator &VE,
BitstreamWriter &Stream) {
if (TST.empty()) return;
-
+
Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
-
+
// 7-bit fixed width VST_CODE_ENTRY strings.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
@@ -1236,14 +1236,14 @@
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
-
+
SmallVector<unsigned, 64> NameVals;
-
- for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
+
+ for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
TI != TE; ++TI) {
// TST_ENTRY: [typeid, namechar x N]
NameVals.push_back(VE.getTypeID(TI->second));
-
+
const std::string &Str = TI->first;
bool is7Bit = true;
for (unsigned i = 0, e = Str.size(); i != e; ++i) {
@@ -1251,12 +1251,12 @@
if (Str[i] & 128)
is7Bit = false;
}
-
+
// Emit the finished record.
Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
NameVals.clear();
}
-
+
Stream.ExitBlock();
}
@@ -1266,18 +1266,18 @@
// instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other
// blocks can defined their abbrevs inline.
Stream.EnterBlockInfoBlock(2);
-
+
{ // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
- if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
+ if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
Abbv) != VST_ENTRY_8_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
-
+
{ // 7-bit fixed width VST_ENTRY strings.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
@@ -1308,9 +1308,9 @@
Abbv) != VST_BBENTRY_6_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
-
-
-
+
+
+
{ // SETTYPE abbrev for CONSTANTS_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
@@ -1320,7 +1320,7 @@
Abbv) != CONSTANTS_SETTYPE_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
-
+
{ // INTEGER abbrev for CONSTANTS_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
@@ -1329,7 +1329,7 @@
Abbv) != CONSTANTS_INTEGER_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
-
+
{ // CE_CAST abbrev for CONSTANTS_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
@@ -1349,9 +1349,9 @@
Abbv) != CONSTANTS_NULL_Abbrev)
llvm_unreachable("Unexpected abbrev ordering!");
}
-
+
// FIXME: This should only use space for first class types!
-
+
{ // INST_LOAD abbrev for FUNCTION_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
@@ -1394,7 +1394,7 @@
Abbv) != FUNCTION_INST_CAST_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
-
+
{ // INST_RET abbrev for FUNCTION_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
@@ -1417,7 +1417,7 @@
Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
llvm_unreachable("Unexpected abbrev ordering!");
}
-
+
Stream.ExitBlock();
}
@@ -1425,26 +1425,26 @@
/// WriteModule - Emit the specified module to the bitstream.
static void WriteModule(const Module *M, BitstreamWriter &Stream) {
Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
-
+
// Emit the version number if it is non-zero.
if (CurVersion) {
SmallVector<unsigned, 1> Vals;
Vals.push_back(CurVersion);
Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
}
-
+
// Analyze the module, enumerating globals, functions, etc.
ValueEnumerator VE(M);
// Emit blockinfo, which defines the standard abbreviations etc.
WriteBlockInfo(VE, Stream);
-
+
// Emit information about parameter attributes.
WriteAttributeTable(VE, Stream);
-
+
// Emit information describing all of the types in the module.
WriteTypeTable(VE, Stream);
-
+
// Emit top-level description of module, including target triple, inline asm,
// descriptors for global variables, and function prototype info.
WriteModuleInfo(M, VE, Stream);
@@ -1462,13 +1462,13 @@
// Emit metadata.
WriteModuleMetadataStore(M, VE, Stream);
-
+
// Emit the type symbol table information.
WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
-
+
// Emit names for globals/functions etc.
WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
-
+
Stream.ExitBlock();
}
@@ -1476,7 +1476,7 @@
/// header and trailer to make it compatible with the system archiver. To do
/// this we emit the following header, and then emit a trailer that pads the
/// file out to be a multiple of 16 bytes.
-///
+///
/// struct bc_header {
/// uint32_t Magic; // 0x0B17C0DE
/// uint32_t Version; // Version, currently always 0.
@@ -1493,7 +1493,7 @@
static void EmitDarwinBCHeader(BitstreamWriter &Stream,
const std::string &TT) {
unsigned CPUType = ~0U;
-
+
// Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*. The CPUType is a
// magic number from /usr/include/mach/machine.h. It is ok to reproduce the
// specific constants here because they are implicitly part of the Darwin ABI.
@@ -1502,7 +1502,7 @@
DARWIN_CPU_TYPE_X86 = 7,
DARWIN_CPU_TYPE_POWERPC = 18
};
-
+
if (TT.find("x86_64-") == 0)
CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' &&
@@ -1512,10 +1512,10 @@
CPUType = DARWIN_CPU_TYPE_POWERPC;
else if (TT.find("powerpc64-") == 0)
CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
-
+
// Traditional Bitcode starts after header.
unsigned BCOffset = DarwinBCHeaderSize;
-
+
Stream.Emit(0x0B17C0DE, 32);
Stream.Emit(0 , 32); // Version.
Stream.Emit(BCOffset , 32);
@@ -1528,7 +1528,7 @@
static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) {
// Update the size field in the header.
Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize);
-
+
// If the file is not a multiple of 16 bytes, insert dummy padding.
while (BufferSize & 15) {
Stream.Emit(0, 8);
@@ -1542,18 +1542,18 @@
void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
std::vector<unsigned char> Buffer;
BitstreamWriter Stream(Buffer);
-
+
Buffer.reserve(256*1024);
WriteBitcodeToStream( M, Stream );
-
+
// If writing to stdout, set binary mode.
if (&llvm::outs() == &Out)
sys::Program::ChangeStdoutToBinary();
// Write the generated bitstream to "Out".
Out.write((char*)&Buffer.front(), Buffer.size());
-
+
// Make sure it hits disk now.
Out.flush();
}
@@ -1565,7 +1565,7 @@
bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos;
if (isDarwin)
EmitDarwinBCHeader(Stream, M->getTargetTriple());
-
+
// Emit the file header.
Stream.Emit((unsigned)'B', 8);
Stream.Emit((unsigned)'C', 8);
diff --git a/lib/Bitcode/Writer/ValueEnumerator.cpp b/lib/Bitcode/Writer/ValueEnumerator.cpp
index f4682a2..97219af 100644
--- a/lib/Bitcode/Writer/ValueEnumerator.cpp
+++ b/lib/Bitcode/Writer/ValueEnumerator.cpp
@@ -57,10 +57,10 @@
for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
I != E; ++I)
EnumerateValue(I);
-
+
// Remember what is the cutoff between globalvalue's and other constants.
unsigned FirstConstant = Values.size();
-
+
// Enumerate the global variable initializers.
for (Module::const_global_iterator I = M->global_begin(),
E = M->global_end(); I != E; ++I)
@@ -71,25 +71,25 @@
for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
I != E; ++I)
EnumerateValue(I->getAliasee());
-
+
// Enumerate types used by the type symbol table.
EnumerateTypeSymbolTable(M->getTypeSymbolTable());
// Insert constants that are named at module level into the slot pool so that
// the module symbol table can refer to them...
EnumerateValueSymbolTable(M->getValueSymbolTable());
-
+
// Enumerate types used by function bodies and argument lists.
for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
-
+
for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
I != E; ++I)
EnumerateType(I->getType());
- Metadata &TheMetadata = F->getContext().getMetadata();
+ Metadata &TheMetadata = F->getContext().getMetadata();
for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){
- for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
+ for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
OI != E; ++OI)
EnumerateOperandType(*OI);
EnumerateType(I->getType());
@@ -98,23 +98,23 @@
else if (const InvokeInst *II = dyn_cast<InvokeInst>(I))
EnumerateAttributes(II->getAttributes());
- // Enumerate metadata attached with this instruction.
- const Metadata::MDMapTy *MDs = TheMetadata.getMDs(I);
- if (MDs)
- for (Metadata::MDMapTy::const_iterator MI = MDs->begin(),
- ME = MDs->end(); MI != ME; ++MI)
- if (MDNode *MDN = dyn_cast_or_null<MDNode>(MI->second))
- EnumerateMetadata(MDN);
+ // Enumerate metadata attached with this instruction.
+ const Metadata::MDMapTy *MDs = TheMetadata.getMDs(I);
+ if (MDs)
+ for (Metadata::MDMapTy::const_iterator MI = MDs->begin(),
+ ME = MDs->end(); MI != ME; ++MI)
+ if (MDNode *MDN = dyn_cast_or_null<MDNode>(MI->second))
+ EnumerateMetadata(MDN);
}
}
-
+
// Optimize constant ordering.
OptimizeConstants(FirstConstant, Values.size());
-
+
// Sort the type table by frequency so that most commonly used types are early
// in the table (have low bit-width).
std::stable_sort(Types.begin(), Types.end(), CompareByFrequency);
-
+
// Partition the Type ID's so that the single-value types occur before the
// aggregate types. This allows the aggregate types to be dropped from the
// type table after parsing the global variable initializers.
@@ -129,7 +129,7 @@
InstructionMapType::const_iterator I = InstructionMap.find(Inst);
assert (I != InstructionMap.end() && "Instruction is not mapped!");
return I->second;
-}
+}
void ValueEnumerator::setInstructionID(const Instruction *I) {
InstructionMap[I] = InstructionCount++;
@@ -141,12 +141,12 @@
assert(I != MDValueMap.end() && "Value not in slotcalculator!");
return I->second-1;
}
-
+
ValueMapType::const_iterator I = ValueMap.find(V);
assert(I != ValueMap.end() && "Value not in slotcalculator!");
return I->second-1;
}
-
+
// Optimize constant ordering.
namespace {
struct CstSortPredicate {
@@ -156,7 +156,7 @@
const std::pair<const Value*, unsigned> &RHS) {
// Sort by plane.
if (LHS.first->getType() != RHS.first->getType())
- return VE.getTypeID(LHS.first->getType()) <
+ return VE.getTypeID(LHS.first->getType()) <
VE.getTypeID(RHS.first->getType());
// Then by frequency.
return LHS.second > RHS.second;
@@ -167,15 +167,15 @@
/// OptimizeConstants - Reorder constant pool for denser encoding.
void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
-
+
CstSortPredicate P(*this);
std::stable_sort(Values.begin()+CstStart, Values.begin()+CstEnd, P);
-
+
// Ensure that integer constants are at the start of the constant pool. This
// is important so that GEP structure indices come before gep constant exprs.
std::partition(Values.begin()+CstStart, Values.begin()+CstEnd,
isIntegerValue);
-
+
// Rebuild the modified portion of ValueMap.
for (; CstStart != CstEnd; ++CstStart)
ValueMap[Values[CstStart].first] = CstStart+1;
@@ -185,7 +185,7 @@
/// EnumerateTypeSymbolTable - Insert all of the types in the specified symbol
/// table.
void ValueEnumerator::EnumerateTypeSymbolTable(const TypeSymbolTable &TST) {
- for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
+ for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
TI != TE; ++TI)
EnumerateType(TI->second);
}
@@ -193,7 +193,7 @@
/// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
/// table into the values table.
void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
- for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
+ for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
VI != VE; ++VI)
EnumerateValue(VI->getValue());
}
@@ -254,7 +254,7 @@
// Enumerate the type of this value.
EnumerateType(V->getType());
-
+
if (const Constant *C = dyn_cast<Constant>(V)) {
if (isa<GlobalValue>(C)) {
// Initializers for globals are handled explicitly elsewhere.
@@ -266,7 +266,7 @@
// If a constant has operands, enumerate them. This makes sure that if a
// constant has uses (for example an array of const ints), that they are
// inserted also.
-
+
// We prefer to enumerate them with values before we enumerate the user
// itself. This makes it more likely that we can avoid forward references
// in the reader. We know that there can be no cycles in the constants
@@ -274,7 +274,7 @@
for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
I != E; ++I)
EnumerateValue(*I);
-
+
// Finally, add the value. Doing this could make the ValueID reference be
// dangling, don't reuse it.
Values.push_back(std::make_pair(V, 1U));
@@ -291,17 +291,17 @@
void ValueEnumerator::EnumerateType(const Type *Ty) {
unsigned &TypeID = TypeMap[Ty];
-
+
if (TypeID) {
// If we've already seen this type, just increase its occurrence count.
Types[TypeID-1].second++;
return;
}
-
+
// First time we saw this type, add it.
Types.push_back(std::make_pair(Ty, 1U));
TypeID = Types.size();
-
+
// Enumerate subtypes.
for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
I != E; ++I)
@@ -347,18 +347,18 @@
void ValueEnumerator::incorporateFunction(const Function &F) {
NumModuleValues = Values.size();
-
+
// Adding function arguments to the value table.
for(Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
I != E; ++I)
EnumerateValue(I);
FirstFuncConstantID = Values.size();
-
+
// Add all function-level constants to the value table.
for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
- for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
+ for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
OI != E; ++OI) {
if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) ||
isa<InlineAsm>(*OI))
@@ -367,16 +367,16 @@
BasicBlocks.push_back(BB);
ValueMap[BB] = BasicBlocks.size();
}
-
+
// Optimize the constant layout.
OptimizeConstants(FirstFuncConstantID, Values.size());
-
+
// Add the function's parameter attributes so they are available for use in
// the function's instruction.
EnumerateAttributes(F.getAttributes());
FirstInstID = Values.size();
-
+
// Add all of the instructions.
for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
@@ -392,8 +392,7 @@
ValueMap.erase(Values[i].first);
for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
ValueMap.erase(BasicBlocks[i]);
-
+
Values.resize(NumModuleValues);
BasicBlocks.clear();
}
-