| //===-------- InlineSpiller.cpp - Insert spills and restores inline -------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // The inline spiller modifies the machine function directly instead of |
| // inserting spills and restores in VirtRegMap. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "regalloc" |
| #include "Spiller.h" |
| #include "LiveRangeEdit.h" |
| #include "VirtRegMap.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h" |
| #include "llvm/CodeGen/LiveStackAnalysis.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| using namespace llvm; |
| |
| static cl::opt<bool> |
| VerifySpills("verify-spills", cl::desc("Verify after each spill/split")); |
| |
| namespace { |
| class InlineSpiller : public Spiller { |
| MachineFunctionPass &pass_; |
| MachineFunction &mf_; |
| LiveIntervals &lis_; |
| LiveStacks &lss_; |
| AliasAnalysis *aa_; |
| VirtRegMap &vrm_; |
| MachineFrameInfo &mfi_; |
| MachineRegisterInfo &mri_; |
| const TargetInstrInfo &tii_; |
| const TargetRegisterInfo &tri_; |
| const BitVector reserved_; |
| |
| // Variables that are valid during spill(), but used by multiple methods. |
| LiveRangeEdit *edit_; |
| const TargetRegisterClass *rc_; |
| int stackSlot_; |
| |
| // Values that failed to remat at some point. |
| SmallPtrSet<VNInfo*, 8> usedValues_; |
| |
| ~InlineSpiller() {} |
| |
| public: |
| InlineSpiller(MachineFunctionPass &pass, |
| MachineFunction &mf, |
| VirtRegMap &vrm) |
| : pass_(pass), |
| mf_(mf), |
| lis_(pass.getAnalysis<LiveIntervals>()), |
| lss_(pass.getAnalysis<LiveStacks>()), |
| aa_(&pass.getAnalysis<AliasAnalysis>()), |
| vrm_(vrm), |
| mfi_(*mf.getFrameInfo()), |
| mri_(mf.getRegInfo()), |
| tii_(*mf.getTarget().getInstrInfo()), |
| tri_(*mf.getTarget().getRegisterInfo()), |
| reserved_(tri_.getReservedRegs(mf_)) {} |
| |
| void spill(LiveInterval *li, |
| SmallVectorImpl<LiveInterval*> &newIntervals, |
| const SmallVectorImpl<LiveInterval*> &spillIs); |
| |
| void spill(LiveRangeEdit &); |
| |
| private: |
| bool reMaterializeFor(MachineBasicBlock::iterator MI); |
| void reMaterializeAll(); |
| |
| bool coalesceStackAccess(MachineInstr *MI); |
| bool foldMemoryOperand(MachineBasicBlock::iterator MI, |
| const SmallVectorImpl<unsigned> &Ops, |
| MachineInstr *LoadMI = 0); |
| void insertReload(LiveInterval &NewLI, MachineBasicBlock::iterator MI); |
| void insertSpill(LiveInterval &NewLI, MachineBasicBlock::iterator MI); |
| }; |
| } |
| |
| namespace llvm { |
| Spiller *createInlineSpiller(MachineFunctionPass &pass, |
| MachineFunction &mf, |
| VirtRegMap &vrm) { |
| if (VerifySpills) |
| mf.verify(&pass, "When creating inline spiller"); |
| return new InlineSpiller(pass, mf, vrm); |
| } |
| } |
| |
| /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading. |
| bool InlineSpiller::reMaterializeFor(MachineBasicBlock::iterator MI) { |
| SlotIndex UseIdx = lis_.getInstructionIndex(MI).getUseIndex(); |
| VNInfo *OrigVNI = edit_->getParent().getVNInfoAt(UseIdx); |
| |
| if (!OrigVNI) { |
| DEBUG(dbgs() << "\tadding <undef> flags: "); |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (MO.isReg() && MO.isUse() && MO.getReg() == edit_->getReg()) |
| MO.setIsUndef(); |
| } |
| DEBUG(dbgs() << UseIdx << '\t' << *MI); |
| return true; |
| } |
| |
| LiveRangeEdit::Remat RM(OrigVNI); |
| if (!edit_->canRematerializeAt(RM, UseIdx, false, lis_)) { |
| usedValues_.insert(OrigVNI); |
| DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << *MI); |
| return false; |
| } |
| |
| // If the instruction also writes edit_->getReg(), it had better not require |
| // the same register for uses and defs. |
| bool Reads, Writes; |
| SmallVector<unsigned, 8> Ops; |
| tie(Reads, Writes) = MI->readsWritesVirtualRegister(edit_->getReg(), &Ops); |
| if (Writes) { |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(Ops[i]); |
| if (MO.isUse() ? MI->isRegTiedToDefOperand(Ops[i]) : MO.getSubReg()) { |
| usedValues_.insert(OrigVNI); |
| DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << *MI); |
| return false; |
| } |
| } |
| } |
| |
| // Before rematerializing into a register for a single instruction, try to |
| // fold a load into the instruction. That avoids allocating a new register. |
| if (RM.OrigMI->getDesc().canFoldAsLoad() && |
| foldMemoryOperand(MI, Ops, RM.OrigMI)) { |
| edit_->markRematerialized(RM.ParentVNI); |
| return true; |
| } |
| |
| // Alocate a new register for the remat. |
| LiveInterval &NewLI = edit_->create(mri_, lis_, vrm_); |
| NewLI.markNotSpillable(); |
| |
| // Rematting for a copy: Set allocation hint to be the destination register. |
| if (MI->isCopy()) |
| mri_.setRegAllocationHint(NewLI.reg, 0, MI->getOperand(0).getReg()); |
| |
| // Finally we can rematerialize OrigMI before MI. |
| SlotIndex DefIdx = edit_->rematerializeAt(*MI->getParent(), MI, NewLI.reg, RM, |
| lis_, tii_, tri_); |
| DEBUG(dbgs() << "\tremat: " << DefIdx << '\t' |
| << *lis_.getInstructionFromIndex(DefIdx)); |
| |
| // Replace operands |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(Ops[i]); |
| if (MO.isReg() && MO.isUse() && MO.getReg() == edit_->getReg()) { |
| MO.setReg(NewLI.reg); |
| MO.setIsKill(); |
| } |
| } |
| DEBUG(dbgs() << "\t " << UseIdx << '\t' << *MI); |
| |
| VNInfo *DefVNI = NewLI.getNextValue(DefIdx, 0, lis_.getVNInfoAllocator()); |
| NewLI.addRange(LiveRange(DefIdx, UseIdx.getDefIndex(), DefVNI)); |
| DEBUG(dbgs() << "\tinterval: " << NewLI << '\n'); |
| return true; |
| } |
| |
| /// reMaterializeAll - Try to rematerialize as many uses as possible, |
| /// and trim the live ranges after. |
| void InlineSpiller::reMaterializeAll() { |
| // Do a quick scan of the interval values to find if any are remattable. |
| if (!edit_->anyRematerializable(lis_, tii_, aa_)) |
| return; |
| |
| usedValues_.clear(); |
| |
| // Try to remat before all uses of edit_->getReg(). |
| bool anyRemat = false; |
| for (MachineRegisterInfo::use_nodbg_iterator |
| RI = mri_.use_nodbg_begin(edit_->getReg()); |
| MachineInstr *MI = RI.skipInstruction();) |
| anyRemat |= reMaterializeFor(MI); |
| |
| if (!anyRemat) |
| return; |
| |
| // Remove any values that were completely rematted. |
| bool anyRemoved = false; |
| for (LiveInterval::vni_iterator I = edit_->getParent().vni_begin(), |
| E = edit_->getParent().vni_end(); I != E; ++I) { |
| VNInfo *VNI = *I; |
| if (VNI->hasPHIKill() || !edit_->didRematerialize(VNI) || |
| usedValues_.count(VNI)) |
| continue; |
| MachineInstr *DefMI = lis_.getInstructionFromIndex(VNI->def); |
| DEBUG(dbgs() << "\tremoving dead def: " << VNI->def << '\t' << *DefMI); |
| lis_.RemoveMachineInstrFromMaps(DefMI); |
| vrm_.RemoveMachineInstrFromMaps(DefMI); |
| DefMI->eraseFromParent(); |
| VNI->def = SlotIndex(); |
| anyRemoved = true; |
| } |
| |
| if (!anyRemoved) |
| return; |
| |
| // Removing values may cause debug uses where parent is not live. |
| for (MachineRegisterInfo::use_iterator RI = mri_.use_begin(edit_->getReg()); |
| MachineInstr *MI = RI.skipInstruction();) { |
| if (!MI->isDebugValue()) |
| continue; |
| // Try to preserve the debug value if parent is live immediately after it. |
| MachineBasicBlock::iterator NextMI = MI; |
| ++NextMI; |
| if (NextMI != MI->getParent()->end() && !lis_.isNotInMIMap(NextMI)) { |
| SlotIndex Idx = lis_.getInstructionIndex(NextMI); |
| VNInfo *VNI = edit_->getParent().getVNInfoAt(Idx); |
| if (VNI && (VNI->hasPHIKill() || usedValues_.count(VNI))) |
| continue; |
| } |
| DEBUG(dbgs() << "Removing debug info due to remat:" << "\t" << *MI); |
| MI->eraseFromParent(); |
| } |
| } |
| |
| /// If MI is a load or store of stackSlot_, it can be removed. |
| bool InlineSpiller::coalesceStackAccess(MachineInstr *MI) { |
| int FI = 0; |
| unsigned reg; |
| if (!(reg = tii_.isLoadFromStackSlot(MI, FI)) && |
| !(reg = tii_.isStoreToStackSlot(MI, FI))) |
| return false; |
| |
| // We have a stack access. Is it the right register and slot? |
| if (reg != edit_->getReg() || FI != stackSlot_) |
| return false; |
| |
| DEBUG(dbgs() << "Coalescing stack access: " << *MI); |
| lis_.RemoveMachineInstrFromMaps(MI); |
| MI->eraseFromParent(); |
| return true; |
| } |
| |
| /// foldMemoryOperand - Try folding stack slot references in Ops into MI. |
| /// @param MI Instruction using or defining the current register. |
| /// @param Ops Operand indices from readsWritesVirtualRegister(). |
| /// @param LoadMI Load instruction to use instead of stack slot when non-null. |
| /// @return True on success, and MI will be erased. |
| bool InlineSpiller::foldMemoryOperand(MachineBasicBlock::iterator MI, |
| const SmallVectorImpl<unsigned> &Ops, |
| MachineInstr *LoadMI) { |
| // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied |
| // operands. |
| SmallVector<unsigned, 8> FoldOps; |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) { |
| unsigned Idx = Ops[i]; |
| MachineOperand &MO = MI->getOperand(Idx); |
| if (MO.isImplicit()) |
| continue; |
| // FIXME: Teach targets to deal with subregs. |
| if (MO.getSubReg()) |
| return false; |
| // We cannot fold a load instruction into a def. |
| if (LoadMI && MO.isDef()) |
| return false; |
| // Tied use operands should not be passed to foldMemoryOperand. |
| if (!MI->isRegTiedToDefOperand(Idx)) |
| FoldOps.push_back(Idx); |
| } |
| |
| MachineInstr *FoldMI = |
| LoadMI ? tii_.foldMemoryOperand(MI, FoldOps, LoadMI) |
| : tii_.foldMemoryOperand(MI, FoldOps, stackSlot_); |
| if (!FoldMI) |
| return false; |
| lis_.ReplaceMachineInstrInMaps(MI, FoldMI); |
| if (!LoadMI) |
| vrm_.addSpillSlotUse(stackSlot_, FoldMI); |
| MI->eraseFromParent(); |
| DEBUG(dbgs() << "\tfolded: " << *FoldMI); |
| return true; |
| } |
| |
| /// insertReload - Insert a reload of NewLI.reg before MI. |
| void InlineSpiller::insertReload(LiveInterval &NewLI, |
| MachineBasicBlock::iterator MI) { |
| MachineBasicBlock &MBB = *MI->getParent(); |
| SlotIndex Idx = lis_.getInstructionIndex(MI).getDefIndex(); |
| tii_.loadRegFromStackSlot(MBB, MI, NewLI.reg, stackSlot_, rc_, &tri_); |
| --MI; // Point to load instruction. |
| SlotIndex LoadIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex(); |
| vrm_.addSpillSlotUse(stackSlot_, MI); |
| DEBUG(dbgs() << "\treload: " << LoadIdx << '\t' << *MI); |
| VNInfo *LoadVNI = NewLI.getNextValue(LoadIdx, 0, |
| lis_.getVNInfoAllocator()); |
| NewLI.addRange(LiveRange(LoadIdx, Idx, LoadVNI)); |
| } |
| |
| /// insertSpill - Insert a spill of NewLI.reg after MI. |
| void InlineSpiller::insertSpill(LiveInterval &NewLI, |
| MachineBasicBlock::iterator MI) { |
| MachineBasicBlock &MBB = *MI->getParent(); |
| |
| // Get the defined value. It could be an early clobber so keep the def index. |
| SlotIndex Idx = lis_.getInstructionIndex(MI).getDefIndex(); |
| VNInfo *VNI = edit_->getParent().getVNInfoAt(Idx); |
| assert(VNI && VNI->def.getDefIndex() == Idx && "Inconsistent VNInfo"); |
| Idx = VNI->def; |
| |
| tii_.storeRegToStackSlot(MBB, ++MI, NewLI.reg, true, stackSlot_, rc_, &tri_); |
| --MI; // Point to store instruction. |
| SlotIndex StoreIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex(); |
| vrm_.addSpillSlotUse(stackSlot_, MI); |
| DEBUG(dbgs() << "\tspilled: " << StoreIdx << '\t' << *MI); |
| VNInfo *StoreVNI = NewLI.getNextValue(Idx, 0, lis_.getVNInfoAllocator()); |
| NewLI.addRange(LiveRange(Idx, StoreIdx, StoreVNI)); |
| } |
| |
| void InlineSpiller::spill(LiveInterval *li, |
| SmallVectorImpl<LiveInterval*> &newIntervals, |
| const SmallVectorImpl<LiveInterval*> &spillIs) { |
| LiveRangeEdit edit(*li, newIntervals, spillIs); |
| spill(edit); |
| if (VerifySpills) |
| mf_.verify(&pass_, "After inline spill"); |
| } |
| |
| void InlineSpiller::spill(LiveRangeEdit &edit) { |
| edit_ = &edit; |
| assert(!TargetRegisterInfo::isStackSlot(edit.getReg()) |
| && "Trying to spill a stack slot."); |
| DEBUG(dbgs() << "Inline spilling " |
| << mri_.getRegClass(edit.getReg())->getName() |
| << ':' << edit.getParent() << "\nFrom original " |
| << PrintReg(vrm_.getOriginal(edit.getReg())) << '\n'); |
| assert(edit.getParent().isSpillable() && |
| "Attempting to spill already spilled value."); |
| |
| reMaterializeAll(); |
| |
| // Remat may handle everything. |
| if (edit_->getParent().empty()) |
| return; |
| |
| rc_ = mri_.getRegClass(edit.getReg()); |
| |
| // Share a stack slot among all descendants of Orig. |
| unsigned Orig = vrm_.getOriginal(edit.getReg()); |
| stackSlot_ = vrm_.getStackSlot(Orig); |
| if (stackSlot_ == VirtRegMap::NO_STACK_SLOT) |
| stackSlot_ = vrm_.assignVirt2StackSlot(Orig); |
| |
| if (Orig != edit.getReg()) |
| vrm_.assignVirt2StackSlot(edit.getReg(), stackSlot_); |
| |
| // Update LiveStacks now that we are committed to spilling. |
| LiveInterval &stacklvr = lss_.getOrCreateInterval(stackSlot_, rc_); |
| if (!stacklvr.hasAtLeastOneValue()) |
| stacklvr.getNextValue(SlotIndex(), 0, lss_.getVNInfoAllocator()); |
| stacklvr.MergeRangesInAsValue(edit_->getParent(), stacklvr.getValNumInfo(0)); |
| |
| // Iterate over instructions using register. |
| for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(edit.getReg()); |
| MachineInstr *MI = RI.skipInstruction();) { |
| |
| // Debug values are not allowed to affect codegen. |
| if (MI->isDebugValue()) { |
| // Modify DBG_VALUE now that the value is in a spill slot. |
| uint64_t Offset = MI->getOperand(1).getImm(); |
| const MDNode *MDPtr = MI->getOperand(2).getMetadata(); |
| DebugLoc DL = MI->getDebugLoc(); |
| if (MachineInstr *NewDV = tii_.emitFrameIndexDebugValue(mf_, stackSlot_, |
| Offset, MDPtr, DL)) { |
| DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << *MI); |
| MachineBasicBlock *MBB = MI->getParent(); |
| MBB->insert(MBB->erase(MI), NewDV); |
| } else { |
| DEBUG(dbgs() << "Removing debug info due to spill:" << "\t" << *MI); |
| MI->eraseFromParent(); |
| } |
| continue; |
| } |
| |
| // Stack slot accesses may coalesce away. |
| if (coalesceStackAccess(MI)) |
| continue; |
| |
| // Analyze instruction. |
| bool Reads, Writes; |
| SmallVector<unsigned, 8> Ops; |
| tie(Reads, Writes) = MI->readsWritesVirtualRegister(edit.getReg(), &Ops); |
| |
| // Attempt to fold memory ops. |
| if (foldMemoryOperand(MI, Ops)) |
| continue; |
| |
| // Allocate interval around instruction. |
| // FIXME: Infer regclass from instruction alone. |
| LiveInterval &NewLI = edit.create(mri_, lis_, vrm_); |
| NewLI.markNotSpillable(); |
| |
| if (Reads) |
| insertReload(NewLI, MI); |
| |
| // Rewrite instruction operands. |
| bool hasLiveDef = false; |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(Ops[i]); |
| MO.setReg(NewLI.reg); |
| if (MO.isUse()) { |
| if (!MI->isRegTiedToDefOperand(Ops[i])) |
| MO.setIsKill(); |
| } else { |
| if (!MO.isDead()) |
| hasLiveDef = true; |
| } |
| } |
| |
| // FIXME: Use a second vreg if instruction has no tied ops. |
| if (Writes && hasLiveDef) |
| insertSpill(NewLI, MI); |
| |
| DEBUG(dbgs() << "\tinterval: " << NewLI << '\n'); |
| } |
| } |