ARM backend contribution from Apple.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@33353 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Target/ARM/ARMConstantIslandPass.cpp b/lib/Target/ARM/ARMConstantIslandPass.cpp
new file mode 100644
index 0000000..183bde8
--- /dev/null
+++ b/lib/Target/ARM/ARMConstantIslandPass.cpp
@@ -0,0 +1,490 @@
+//===-- ARMConstantIslandPass.cpp - ARM constant islands --------*- C++ -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by Chris Lattner and is distributed under the
+// University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains a pass that splits the constant pool up into 'islands'
+// which are scattered through-out the function.  This is required due to the
+// limited pc-relative displacements that ARM has.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "arm-cp-islands"
+#include "ARM.h"
+#include "ARMInstrInfo.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/Target/TargetAsmInfo.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/Statistic.h"
+#include <iostream>
+using namespace llvm;
+
+STATISTIC(NumSplit, "Number of uncond branches inserted");
+
+namespace {
+  /// ARMConstantIslands - Due to limited pc-relative displacements, ARM
+  /// requires constant pool entries to be scattered among the instructions
+  /// inside a function.  To do this, it completely ignores the normal LLVM
+  /// constant pool, instead, it places constants where-ever it feels like with
+  /// special instructions.
+  ///
+  /// The terminology used in this pass includes:
+  ///   Islands - Clumps of constants placed in the function.
+  ///   Water   - Potential places where an island could be formed.
+  ///   CPE     - A constant pool entry that has been placed somewhere, which
+  ///             tracks a list of users.
+  class VISIBILITY_HIDDEN ARMConstantIslands : public MachineFunctionPass {
+    /// NextUID - Assign unique ID's to CPE's.
+    unsigned NextUID;
+    
+    /// BBSizes - The size of each MachineBasicBlock in bytes of code, indexed
+    /// by MBB Number.
+    std::vector<unsigned> BBSizes;
+    
+    /// WaterList - A sorted list of basic blocks where islands could be placed
+    /// (i.e. blocks that don't fall through to the following block, due
+    /// to a return, unreachable, or unconditional branch).
+    std::vector<MachineBasicBlock*> WaterList;
+    
+    /// CPUser - One user of a constant pool, keeping the machine instruction
+    /// pointer, the constant pool being referenced, and the max displacement
+    /// allowed from the instruction to the CP.
+    struct CPUser {
+      MachineInstr *MI;
+      MachineInstr *CPEMI;
+      unsigned MaxDisp;
+      CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp)
+        : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp) {}
+    };
+    
+    /// CPUsers - Keep track of all of the machine instructions that use various
+    /// constant pools and their max displacement.
+    std::vector<CPUser> CPUsers;
+    
+    const TargetInstrInfo *TII;
+    const TargetAsmInfo   *TAI;
+  public:
+    virtual bool runOnMachineFunction(MachineFunction &Fn);
+
+    virtual const char *getPassName() const {
+      return "ARM constant island placement pass";
+    }
+    
+  private:
+    void DoInitialPlacement(MachineFunction &Fn,
+                            std::vector<MachineInstr*> &CPEMIs);
+    void InitialFunctionScan(MachineFunction &Fn,
+                             const std::vector<MachineInstr*> &CPEMIs);
+    void SplitBlockBeforeInstr(MachineInstr *MI);
+    bool HandleConstantPoolUser(MachineFunction &Fn, CPUser &U);
+    void UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB);
+
+    unsigned GetInstSize(MachineInstr *MI) const;
+    unsigned GetOffsetOf(MachineInstr *MI) const;
+  };
+}
+
+/// createARMLoadStoreOptimizationPass - returns an instance of the load / store
+/// optimization pass.
+FunctionPass *llvm::createARMConstantIslandPass() {
+  return new ARMConstantIslands();
+}
+
+bool ARMConstantIslands::runOnMachineFunction(MachineFunction &Fn) {
+  // If there are no constants, there is nothing to do.
+  MachineConstantPool &MCP = *Fn.getConstantPool();
+  if (MCP.isEmpty()) return false;
+  
+  TII = Fn.getTarget().getInstrInfo();
+  TAI = Fn.getTarget().getTargetAsmInfo();
+  
+  // Renumber all of the machine basic blocks in the function, guaranteeing that
+  // the numbers agree with the position of the block in the function.
+  Fn.RenumberBlocks();
+
+  // Perform the initial placement of the constant pool entries.  To start with,
+  // we put them all at the end of the function.
+  std::vector<MachineInstr*> CPEMIs;
+  DoInitialPlacement(Fn, CPEMIs);
+  
+  /// The next UID to take is the first unused one.
+  NextUID = CPEMIs.size();
+  
+  // Do the initial scan of the function, building up information about the
+  // sizes of each block, the location of all the water, and finding all of the
+  // constant pool users.
+  InitialFunctionScan(Fn, CPEMIs);
+  CPEMIs.clear();
+  
+  // Iteratively place constant pool entries until there is no change.
+  bool MadeChange;
+  do {
+    MadeChange = false;
+    for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
+      MadeChange |= HandleConstantPoolUser(Fn, CPUsers[i]);
+  } while (MadeChange);
+  
+  BBSizes.clear();
+  WaterList.clear();
+  CPUsers.clear();
+    
+  return true;
+}
+
+/// DoInitialPlacement - Perform the initial placement of the constant pool
+/// entries.  To start with, we put them all at the end of the function.
+void ARMConstantIslands::DoInitialPlacement(MachineFunction &Fn,
+                                            std::vector<MachineInstr*> &CPEMIs){
+  // Create the basic block to hold the CPE's.
+  MachineBasicBlock *BB = new MachineBasicBlock();
+  Fn.getBasicBlockList().push_back(BB);
+  
+  // Add all of the constants from the constant pool to the end block, use an
+  // identity mapping of CPI's to CPE's.
+  const std::vector<MachineConstantPoolEntry> &CPs =
+    Fn.getConstantPool()->getConstants();
+  
+  const TargetData &TD = *Fn.getTarget().getTargetData();
+  for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
+    unsigned Size = TD.getTypeSize(CPs[i].getType());
+    // Verify that all constant pool entries are a multiple of 4 bytes.  If not,
+    // we would have to pad them out or something so that instructions stay
+    // aligned.
+    assert((Size & 3) == 0 && "CP Entry not multiple of 4 bytes!");
+    MachineInstr *CPEMI =
+      BuildMI(BB, TII->get(ARM::CONSTPOOL_ENTRY))
+                           .addImm(i).addConstantPoolIndex(i).addImm(Size);
+    CPEMIs.push_back(CPEMI);
+    DEBUG(std::cerr << "Moved CPI#" << i << " to end of function as #"
+                    << i << "\n");
+  }
+}
+
+/// BBHasFallthrough - Return true of the specified basic block can fallthrough
+/// into the block immediately after it.
+static bool BBHasFallthrough(MachineBasicBlock *MBB) {
+  // Get the next machine basic block in the function.
+  MachineFunction::iterator MBBI = MBB;
+  if (next(MBBI) == MBB->getParent()->end())  // Can't fall off end of function.
+    return false;
+  
+  MachineBasicBlock *NextBB = next(MBBI);
+  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
+       E = MBB->succ_end(); I != E; ++I)
+    if (*I == NextBB)
+      return true;
+  
+  return false;
+}
+
+/// InitialFunctionScan - Do the initial scan of the function, building up
+/// information about the sizes of each block, the location of all the water,
+/// and finding all of the constant pool users.
+void ARMConstantIslands::InitialFunctionScan(MachineFunction &Fn,
+                                     const std::vector<MachineInstr*> &CPEMIs) {
+  for (MachineFunction::iterator MBBI = Fn.begin(), E = Fn.end();
+       MBBI != E; ++MBBI) {
+    MachineBasicBlock &MBB = *MBBI;
+    
+    // If this block doesn't fall through into the next MBB, then this is
+    // 'water' that a constant pool island could be placed.
+    if (!BBHasFallthrough(&MBB))
+      WaterList.push_back(&MBB);
+    
+    unsigned MBBSize = 0;
+    for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
+         I != E; ++I) {
+      // Add instruction size to MBBSize.
+      MBBSize += GetInstSize(I);
+
+      // Scan the instructions for constant pool operands.
+      for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
+        if (I->getOperand(op).isConstantPoolIndex()) {
+          // We found one.  The addressing mode tells us the max displacement
+          // from the PC that this instruction permits.
+          unsigned MaxOffs = 0;
+          
+          // Basic size info comes from the TSFlags field.
+          unsigned TSFlags = I->getInstrDescriptor()->TSFlags;
+          switch (TSFlags & ARMII::AddrModeMask) {
+          default: 
+            // Constant pool entries can reach anything.
+            if (I->getOpcode() == ARM::CONSTPOOL_ENTRY)
+              continue;
+            assert(0 && "Unknown addressing mode for CP reference!");
+          case ARMII::AddrMode1: // AM1: 8 bits << 2
+            MaxOffs = 1 << (8+2);   // Taking the address of a CP entry.
+            break;
+          case ARMII::AddrMode2:
+            MaxOffs = 1 << 12;   // +-offset_12
+            break;
+          case ARMII::AddrMode3:
+            MaxOffs = 1 << 8;   // +-offset_8
+            break;
+            // addrmode4 has no immediate offset.
+          case ARMII::AddrMode5:
+            MaxOffs = 1 << (8+2);   // +-(offset_8*4)
+            break;
+          case ARMII::AddrModeT1:
+            MaxOffs = 1 << 5;
+            break;
+          case ARMII::AddrModeT2:
+            MaxOffs = 1 << (5+1);
+            break;
+          case ARMII::AddrModeT4:
+            MaxOffs = 1 << (5+2);
+            break;
+          }
+          
+          // Remember that this is a user of a CP entry.
+          MachineInstr *CPEMI =CPEMIs[I->getOperand(op).getConstantPoolIndex()];
+          CPUsers.push_back(CPUser(I, CPEMI, MaxOffs));
+          
+          // Instructions can only use one CP entry, don't bother scanning the
+          // rest of the operands.
+          break;
+        }
+    }
+    BBSizes.push_back(MBBSize);
+  }
+}
+
+/// FIXME: Works around a gcc miscompilation with -fstrict-aliasing
+static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
+                                unsigned JTI) DISABLE_INLINE;
+static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
+                                unsigned JTI) {
+  return JT[JTI].MBBs.size();
+}
+
+/// GetInstSize - Return the size of the specified MachineInstr.
+///
+unsigned ARMConstantIslands::GetInstSize(MachineInstr *MI) const {
+  // Basic size info comes from the TSFlags field.
+  unsigned TSFlags = MI->getInstrDescriptor()->TSFlags;
+  
+  switch ((TSFlags & ARMII::SizeMask) >> ARMII::SizeShift) {
+  default:
+    // If this machine instr is an inline asm, measure it.
+    if (MI->getOpcode() == ARM::INLINEASM)
+      return TAI->getInlineAsmLength(MI->getOperand(0).getSymbolName());
+    assert(0 && "Unknown or unset size field for instr!");
+    break;
+  case ARMII::Size8Bytes: return 8;          // Arm instruction x 2.
+  case ARMII::Size4Bytes: return 4;          // Arm instruction.
+  case ARMII::Size2Bytes: return 2;          // Thumb instruction.
+  case ARMII::SizeSpecial: {
+    switch (MI->getOpcode()) {
+    case ARM::CONSTPOOL_ENTRY:
+      // If this machine instr is a constant pool entry, its size is recorded as
+      // operand #2.
+      return MI->getOperand(2).getImm();
+    case ARM::BR_JTr:
+    case ARM::BR_JTm:
+    case ARM::BR_JTadd: {
+      // These are jumptable branches, i.e. a branch followed by an inlined
+      // jumptable. The size is 4 + 4 * number of entries.
+      unsigned JTI = MI->getOperand(MI->getNumOperands()-2).getJumpTableIndex();
+      const MachineFunction *MF = MI->getParent()->getParent();
+      MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
+      const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
+      assert(JTI < JT.size());
+      return getNumJTEntries(JT, JTI) * 4 + 4;
+    }
+    default:
+      // Otherwise, pseudo-instruction sizes are zero.
+      return 0;
+    }
+  }
+  }
+}
+
+/// GetOffsetOf - Return the current offset of the specified machine instruction
+/// from the start of the function.  This offset changes as stuff is moved
+/// around inside the function.
+unsigned ARMConstantIslands::GetOffsetOf(MachineInstr *MI) const {
+  MachineBasicBlock *MBB = MI->getParent();
+  
+  // The offset is composed of two things: the sum of the sizes of all MBB's
+  // before this instruction's block, and the offset from the start of the block
+  // it is in.
+  unsigned Offset = 0;
+  
+  // Sum block sizes before MBB.
+  for (unsigned BB = 0, e = MBB->getNumber(); BB != e; ++BB)
+    Offset += BBSizes[BB];
+
+  // Sum instructions before MI in MBB.
+  for (MachineBasicBlock::iterator I = MBB->begin(); ; ++I) {
+    assert(I != MBB->end() && "Didn't find MI in its own basic block?");
+    if (&*I == MI) return Offset;
+    Offset += GetInstSize(I);
+  }
+}
+
+/// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
+/// ID.
+static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
+                              const MachineBasicBlock *RHS) {
+  return LHS->getNumber() < RHS->getNumber();
+}
+
+/// UpdateForInsertedWaterBlock - When a block is newly inserted into the
+/// machine function, it upsets all of the block numbers.  Renumber the blocks
+/// and update the arrays that parallel this numbering.
+void ARMConstantIslands::UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB) {
+  // Renumber the MBB's to keep them consequtive.
+  NewBB->getParent()->RenumberBlocks(NewBB);
+  
+  // Insert a size into BBSizes to align it properly with the (newly
+  // renumbered) block numbers.
+  BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0);
+  
+  // Next, update WaterList.  Specifically, we need to add NewMBB as having 
+  // available water after it.
+  std::vector<MachineBasicBlock*>::iterator IP =
+    std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
+                     CompareMBBNumbers);
+  WaterList.insert(IP, NewBB);
+}
+
+
+/// Split the basic block containing MI into two blocks, which are joined by
+/// an unconditional branch.  Update datastructures and renumber blocks to
+/// account for this change.
+void ARMConstantIslands::SplitBlockBeforeInstr(MachineInstr *MI) {
+  MachineBasicBlock *OrigBB = MI->getParent();
+
+  // Create a new MBB for the code after the OrigBB.
+  MachineBasicBlock *NewBB = new MachineBasicBlock(OrigBB->getBasicBlock());
+  MachineFunction::iterator MBBI = OrigBB; ++MBBI;
+  OrigBB->getParent()->getBasicBlockList().insert(MBBI, NewBB);
+  
+  // Splice the instructions starting with MI over to NewBB.
+  NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
+  
+  // Add an unconditional branch from OrigBB to NewBB.
+  BuildMI(OrigBB, TII->get(ARM::B)).addMBB(NewBB);
+  NumSplit++;
+  
+  // Update the CFG.  All succs of OrigBB are now succs of NewBB.
+  while (!OrigBB->succ_empty()) {
+    MachineBasicBlock *Succ = *OrigBB->succ_begin();
+    OrigBB->removeSuccessor(Succ);
+    NewBB->addSuccessor(Succ);
+    
+    // This pass should be run after register allocation, so there should be no
+    // PHI nodes to update.
+    assert((Succ->empty() || Succ->begin()->getOpcode() != TargetInstrInfo::PHI)
+           && "PHI nodes should be eliminated by now!");
+  }
+  
+  // OrigBB branches to NewBB.
+  OrigBB->addSuccessor(NewBB);
+  
+  // Update internal data structures to account for the newly inserted MBB.
+  UpdateForInsertedWaterBlock(NewBB);
+  
+  // Figure out how large the first NewMBB is.
+  unsigned NewBBSize = 0;
+  for (MachineBasicBlock::iterator I = NewBB->begin(), E = NewBB->end();
+       I != E; ++I)
+    NewBBSize += GetInstSize(I);
+  
+  // Set the size of NewBB in BBSizes.
+  BBSizes[NewBB->getNumber()] = NewBBSize;
+  
+  // We removed instructions from UserMBB, subtract that off from its size.
+  // Add 4 to the block to count the unconditional branch we added to it.
+  BBSizes[OrigBB->getNumber()] -= NewBBSize-4;
+}
+
+/// HandleConstantPoolUser - Analyze the specified user, checking to see if it
+/// is out-of-range.  If so, pick it up the constant pool value and move it some
+/// place in-range.
+bool ARMConstantIslands::HandleConstantPoolUser(MachineFunction &Fn, CPUser &U){
+  MachineInstr *UserMI = U.MI;
+  MachineInstr *CPEMI  = U.CPEMI;
+
+  unsigned UserOffset = GetOffsetOf(UserMI);
+  unsigned CPEOffset  = GetOffsetOf(CPEMI);
+  
+  DEBUG(std::cerr << "User of CPE#" << CPEMI->getOperand(0).getImm()
+                  << " max delta=" << U.MaxDisp
+                  << " at offset " << int(UserOffset-CPEOffset) << "\t"
+                  << *UserMI);
+
+  // Check to see if the CPE is already in-range.
+  if (UserOffset < CPEOffset) {
+    // User before the CPE.
+    if (CPEOffset-UserOffset <= U.MaxDisp)
+      return false;
+  } else {
+    if (UserOffset-CPEOffset <= U.MaxDisp)
+      return false;
+  }
+  
+ 
+  // Solution guaranteed to work: split the user's MBB right before the user and
+  // insert a clone the CPE into the newly created water.
+  
+  // If the user isn't at the start of its MBB, or if there is a fall-through
+  // into the user's MBB, split the MBB before the User.
+  MachineBasicBlock *UserMBB = UserMI->getParent();
+  if (&UserMBB->front() != UserMI ||
+      UserMBB == &Fn.front() || // entry MBB of function.
+      BBHasFallthrough(prior(MachineFunction::iterator(UserMBB)))) {
+    // TODO: Search for the best place to split the code.  In practice, using
+    // loop nesting information to insert these guys outside of loops would be
+    // sufficient.    
+    SplitBlockBeforeInstr(UserMI);
+    
+    // UserMI's BB may have changed.
+    UserMBB = UserMI->getParent();
+  }
+  
+  // Okay, we know we can put an island before UserMBB now, do it!
+  MachineBasicBlock *NewIsland = new MachineBasicBlock();
+  Fn.getBasicBlockList().insert(UserMBB, NewIsland);
+
+  // Update internal data structures to account for the newly inserted MBB.
+  UpdateForInsertedWaterBlock(NewIsland);
+
+  // Now that we have an island to add the CPE to, clone the original CPE and
+  // add it to the island.
+  unsigned ID  = NextUID++;
+  unsigned CPI = CPEMI->getOperand(1).getConstantPoolIndex();
+  unsigned Size = CPEMI->getOperand(2).getImm();
+  
+  // Build a new CPE for this user.
+  U.CPEMI = BuildMI(NewIsland, TII->get(ARM::CONSTPOOL_ENTRY))
+                .addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
+  
+  // Increase the size of the island block to account for the new entry.
+  BBSizes[NewIsland->getNumber()] += Size;
+  
+  // Finally, change the CPI in the instruction operand to be ID.
+  for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
+    if (UserMI->getOperand(i).isConstantPoolIndex()) {
+      UserMI->getOperand(i).setConstantPoolIndex(ID);
+      break;
+    }
+      
+  DEBUG(std::cerr << "  Moved CPE to #" << ID << " CPI=" << CPI << "\t"
+                  << *UserMI);
+  
+      
+  return true;
+}
+