Do some code refactoring on Jim's scheduler in preparation of the new list
scheduler.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@25493 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/CodeGen/SelectionDAG/ScheduleDAG.cpp b/lib/CodeGen/SelectionDAG/ScheduleDAG.cpp
index 3ad59d7..9c1f1a8 100644
--- a/lib/CodeGen/SelectionDAG/ScheduleDAG.cpp
+++ b/lib/CodeGen/SelectionDAG/ScheduleDAG.cpp
@@ -1,4 +1,4 @@
-//===-- ScheduleDAG.cpp - Implement a trivial DAG scheduler ---------------===//
+//===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===//
 //
 //                     The LLVM Compiler Infrastructure
 //
@@ -16,1002 +16,21 @@
 #define DEBUG_TYPE "sched"
 #include "llvm/CodeGen/MachineConstantPool.h"
 #include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/SelectionDAGISel.h"
-#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/CodeGen/ScheduleDAG.h"
 #include "llvm/CodeGen/SSARegMap.h"
 #include "llvm/Target/TargetMachine.h"
 #include "llvm/Target/TargetInstrInfo.h"
 #include "llvm/Target/TargetInstrItineraries.h"
 #include "llvm/Target/TargetLowering.h"
-#include "llvm/Support/CommandLine.h"
 #include "llvm/Support/Debug.h"
 #include <iostream>
-#include <ios>
-#include <algorithm>
 using namespace llvm;
 
-namespace {
-  // Style of scheduling to use.
-  enum ScheduleChoices {
-    noScheduling,
-    simpleScheduling,
-    simpleNoItinScheduling
-  };
-} // namespace
-
-cl::opt<ScheduleChoices> ScheduleStyle("sched",
-  cl::desc("Choose scheduling style"),
-  cl::init(noScheduling),
-  cl::values(
-    clEnumValN(noScheduling, "none",
-              "Trivial emission with no analysis"),
-    clEnumValN(simpleScheduling, "simple",
-              "Minimize critical path and maximize processor utilization"),
-    clEnumValN(simpleNoItinScheduling, "simple-noitin",
-              "Same as simple except using generic latency"),
-   clEnumValEnd));
-
-
-#ifndef NDEBUG
-static cl::opt<bool>
-ViewDAGs("view-sched-dags", cl::Hidden,
-         cl::desc("Pop up a window to show sched dags as they are processed"));
-#else
-static const bool ViewDAGs = 0;
-#endif
-
-namespace {
-//===----------------------------------------------------------------------===//
-///
-/// BitsIterator - Provides iteration through individual bits in a bit vector.
-///
-template<class T>
-class BitsIterator {
-private:
-  T Bits;                               // Bits left to iterate through
-
-public:
-  /// Ctor.
-  BitsIterator(T Initial) : Bits(Initial) {}
-  
-  /// Next - Returns the next bit set or zero if exhausted.
-  inline T Next() {
-    // Get the rightmost bit set
-    T Result = Bits & -Bits;
-    // Remove from rest
-    Bits &= ~Result;
-    // Return single bit or zero
-    return Result;
-  }
-};
-  
-//===----------------------------------------------------------------------===//
-
-
-//===----------------------------------------------------------------------===//
-///
-/// ResourceTally - Manages the use of resources over time intervals.  Each
-/// item (slot) in the tally vector represents the resources used at a given
-/// moment.  A bit set to 1 indicates that a resource is in use, otherwise
-/// available.  An assumption is made that the tally is large enough to schedule 
-/// all current instructions (asserts otherwise.)
-///
-template<class T>
-class ResourceTally {
-private:
-  std::vector<T> Tally;                 // Resources used per slot
-  typedef typename std::vector<T>::iterator Iter;
-                                        // Tally iterator 
-  
-  /// SlotsAvailable - Returns true if all units are available.
-	///
-  bool SlotsAvailable(Iter Begin, unsigned N, unsigned ResourceSet,
-                                              unsigned &Resource) {
-    assert(N && "Must check availability with N != 0");
-    // Determine end of interval
-    Iter End = Begin + N;
-    assert(End <= Tally.end() && "Tally is not large enough for schedule");
-    
-    // Iterate thru each resource
-    BitsIterator<T> Resources(ResourceSet & ~*Begin);
-    while (unsigned Res = Resources.Next()) {
-      // Check if resource is available for next N slots
-      Iter Interval = End;
-      do {
-        Interval--;
-        if (*Interval & Res) break;
-      } while (Interval != Begin);
-      
-      // If available for N
-      if (Interval == Begin) {
-        // Success
-        Resource = Res;
-        return true;
-      }
-    }
-    
-    // No luck
-    Resource = 0;
-    return false;
-  }
-	
-	/// RetrySlot - Finds a good candidate slot to retry search.
-  Iter RetrySlot(Iter Begin, unsigned N, unsigned ResourceSet) {
-    assert(N && "Must check availability with N != 0");
-    // Determine end of interval
-    Iter End = Begin + N;
-    assert(End <= Tally.end() && "Tally is not large enough for schedule");
-		
-		while (Begin != End--) {
-			// Clear units in use
-			ResourceSet &= ~*End;
-			// If no units left then we should go no further 
-			if (!ResourceSet) return End + 1;
-		}
-		// Made it all the way through
-		return Begin;
-	}
-  
-  /// FindAndReserveStages - Return true if the stages can be completed. If
-  /// so mark as busy.
-  bool FindAndReserveStages(Iter Begin,
-                            InstrStage *Stage, InstrStage *StageEnd) {
-    // If at last stage then we're done
-    if (Stage == StageEnd) return true;
-    // Get number of cycles for current stage
-    unsigned N = Stage->Cycles;
-    // Check to see if N slots are available, if not fail
-    unsigned Resource;
-    if (!SlotsAvailable(Begin, N, Stage->Units, Resource)) return false;
-    // Check to see if remaining stages are available, if not fail
-    if (!FindAndReserveStages(Begin + N, Stage + 1, StageEnd)) return false;
-    // Reserve resource
-    Reserve(Begin, N, Resource);
-    // Success
-    return true;
-  }
-
-  /// Reserve - Mark busy (set) the specified N slots.
-  void Reserve(Iter Begin, unsigned N, unsigned Resource) {
-    // Determine end of interval
-    Iter End = Begin + N;
-    assert(End <= Tally.end() && "Tally is not large enough for schedule");
- 
-    // Set resource bit in each slot
-    for (; Begin < End; Begin++)
-      *Begin |= Resource;
-  }
-
-  /// FindSlots - Starting from Begin, locate consecutive slots where all stages
-  /// can be completed.  Returns the address of first slot.
-  Iter FindSlots(Iter Begin, InstrStage *StageBegin, InstrStage *StageEnd) {
-    // Track position      
-    Iter Cursor = Begin;
-    
-    // Try all possible slots forward
-    while (true) {
-      // Try at cursor, if successful return position.
-      if (FindAndReserveStages(Cursor, StageBegin, StageEnd)) return Cursor;
-      // Locate a better position
-			Cursor = RetrySlot(Cursor + 1, StageBegin->Cycles, StageBegin->Units);
-    }
-  }
-  
-public:
-  /// Initialize - Resize and zero the tally to the specified number of time
-  /// slots.
-  inline void Initialize(unsigned N) {
-    Tally.assign(N, 0);   // Initialize tally to all zeros.
-  }
-
-  // FindAndReserve - Locate an ideal slot for the specified stages and mark
-  // as busy.
-  unsigned FindAndReserve(unsigned Slot, InstrStage *StageBegin,
-                                         InstrStage *StageEnd) {
-		// Where to begin 
-		Iter Begin = Tally.begin() + Slot;
-		// Find a free slot
-		Iter Where = FindSlots(Begin, StageBegin, StageEnd);
-		// Distance is slot number
-		unsigned Final = Where - Tally.begin();
-    return Final;
-  }
-
-};
-//===----------------------------------------------------------------------===//
-
-// Forward
-class NodeInfo;
-typedef NodeInfo *NodeInfoPtr;
-typedef std::vector<NodeInfoPtr>           NIVector;
-typedef std::vector<NodeInfoPtr>::iterator NIIterator;
-
-//===----------------------------------------------------------------------===//
-///
-/// Node group -  This struct is used to manage flagged node groups.
-///
-class NodeGroup {
-private:
-  NIVector      Members;                // Group member nodes
-  NodeInfo      *Dominator;             // Node with highest latency
-  unsigned      Latency;                // Total latency of the group
-  int           Pending;                // Number of visits pending before
-                                        //    adding to order  
-
-public:
-  // Ctor.
-  NodeGroup() : Dominator(NULL), Pending(0) {}
-  
-  // Accessors
-  inline void setDominator(NodeInfo *D) { Dominator = D; }
-  inline NodeInfo *getDominator() { return Dominator; }
-  inline void setLatency(unsigned L) { Latency = L; }
-  inline unsigned getLatency() { return Latency; }
-  inline int getPending() const { return Pending; }
-  inline void setPending(int P)  { Pending = P; }
-  inline int addPending(int I)  { return Pending += I; }
-  
-  // Pass thru
-  inline bool group_empty() { return Members.empty(); }
-  inline NIIterator group_begin() { return Members.begin(); }
-  inline NIIterator group_end() { return Members.end(); }
-  inline void group_push_back(const NodeInfoPtr &NI) { Members.push_back(NI); }
-  inline NIIterator group_insert(NIIterator Pos, const NodeInfoPtr &NI) {
-    return Members.insert(Pos, NI);
-  }
-  inline void group_insert(NIIterator Pos, NIIterator First, NIIterator Last) {
-    Members.insert(Pos, First, Last);
-  }
-
-  static void Add(NodeInfo *D, NodeInfo *U);
-  static unsigned CountInternalUses(NodeInfo *D, NodeInfo *U);
-};
-//===----------------------------------------------------------------------===//
-
-
-//===----------------------------------------------------------------------===//
-///
-/// NodeInfo - This struct tracks information used to schedule the a node.
-///
-class NodeInfo {
-private:
-  int           Pending;                // Number of visits pending before
-                                        //    adding to order
-public:
-  SDNode        *Node;                  // DAG node
-  InstrStage    *StageBegin;            // First stage in itinerary
-  InstrStage    *StageEnd;              // Last+1 stage in itinerary
-  unsigned      Latency;                // Total cycles to complete instruction
-  bool          IsCall : 1;             // Is function call
-  bool          IsLoad : 1;             // Is memory load
-  bool          IsStore : 1;            // Is memory store
-  unsigned      Slot;                   // Node's time slot
-  NodeGroup     *Group;                 // Grouping information
-  unsigned      VRBase;                 // Virtual register base
-#ifndef NDEBUG
-  unsigned      Preorder;               // Index before scheduling
-#endif
-
-  // Ctor.
-  NodeInfo(SDNode *N = NULL)
-  : Pending(0)
-  , Node(N)
-  , StageBegin(NULL)
-  , StageEnd(NULL)
-  , Latency(0)
-  , IsCall(false)
-  , Slot(0)
-  , Group(NULL)
-  , VRBase(0)
-#ifndef NDEBUG
-  , Preorder(0)
-#endif
-  {}
-  
-  // Accessors
-  inline bool isInGroup() const {
-    assert(!Group || !Group->group_empty() && "Group with no members");
-    return Group != NULL;
-  }
-  inline bool isGroupDominator() const {
-     return isInGroup() && Group->getDominator() == this;
-  }
-  inline int getPending() const {
-    return Group ? Group->getPending() : Pending;
-  }
-  inline void setPending(int P) {
-    if (Group) Group->setPending(P);
-    else       Pending = P;
-  }
-  inline int addPending(int I) {
-    if (Group) return Group->addPending(I);
-    else       return Pending += I;
-  }
-};
-//===----------------------------------------------------------------------===//
-
-
-//===----------------------------------------------------------------------===//
-///
-/// NodeGroupIterator - Iterates over all the nodes indicated by the node info.
-/// If the node is in a group then iterate over the members of the group,
-/// otherwise just the node info.
-///
-class NodeGroupIterator {
-private:
-  NodeInfo   *NI;                       // Node info
-  NIIterator NGI;                       // Node group iterator
-  NIIterator NGE;                       // Node group iterator end
-  
-public:
-  // Ctor.
-  NodeGroupIterator(NodeInfo *N) : NI(N) {
-    // If the node is in a group then set up the group iterator.  Otherwise
-    // the group iterators will trip first time out.
-    if (N->isInGroup()) {
-      // get Group
-      NodeGroup *Group = NI->Group;
-      NGI = Group->group_begin();
-      NGE = Group->group_end();
-      // Prevent this node from being used (will be in members list
-      NI = NULL;
-    }
-  }
-  
-  /// next - Return the next node info, otherwise NULL.
-  ///
-  NodeInfo *next() {
-    // If members list
-    if (NGI != NGE) return *NGI++;
-    // Use node as the result (may be NULL)
-    NodeInfo *Result = NI;
-    // Only use once
-    NI = NULL;
-    // Return node or NULL
-    return Result;
-  }
-};
-//===----------------------------------------------------------------------===//
-
-
-//===----------------------------------------------------------------------===//
-///
-/// NodeGroupOpIterator - Iterates over all the operands of a node.  If the node
-/// is a member of a group, this iterates over all the operands of all the
-/// members of the group.
-///
-class NodeGroupOpIterator {
-private:
-  NodeInfo            *NI;              // Node containing operands
-  NodeGroupIterator   GI;               // Node group iterator
-  SDNode::op_iterator OI;               // Operand iterator
-  SDNode::op_iterator OE;               // Operand iterator end
-  
-  /// CheckNode - Test if node has more operands.  If not get the next node
-  /// skipping over nodes that have no operands.
-  void CheckNode() {
-    // Only if operands are exhausted first
-    while (OI == OE) {
-      // Get next node info
-      NodeInfo *NI = GI.next();
-      // Exit if nodes are exhausted
-      if (!NI) return;
-      // Get node itself
-      SDNode *Node = NI->Node;
-      // Set up the operand iterators
-      OI = Node->op_begin();
-      OE = Node->op_end();
-    }
-  }
-  
-public:
-  // Ctor.
-  NodeGroupOpIterator(NodeInfo *N)
-    : NI(N), GI(N), OI(SDNode::op_iterator()), OE(SDNode::op_iterator()) {}
-  
-  /// isEnd - Returns true when not more operands are available.
-  ///
-  inline bool isEnd() { CheckNode(); return OI == OE; }
-  
-  /// next - Returns the next available operand.
-  ///
-  inline SDOperand next() {
-    assert(OI != OE && "Not checking for end of NodeGroupOpIterator correctly");
-    return *OI++;
-  }
-};
-//===----------------------------------------------------------------------===//
-
-
-//===----------------------------------------------------------------------===//
-///
-/// SimpleSched - Simple two pass scheduler.
-///
-class SimpleSched {
-private:
-  MachineBasicBlock *BB;                // Current basic block
-  SelectionDAG &DAG;                    // DAG of the current basic block
-  const TargetMachine &TM;              // Target processor
-  const TargetInstrInfo &TII;           // Target instruction information
-  const MRegisterInfo &MRI;             // Target processor register information
-  SSARegMap *RegMap;                    // Virtual/real register map
-  MachineConstantPool *ConstPool;       // Target constant pool
-  unsigned NodeCount;                   // Number of nodes in DAG
-  bool HasGroups;                       // True if there are any groups
-  NodeInfo *Info;                       // Info for nodes being scheduled
-  std::map<SDNode *, NodeInfo *> Map;   // Map nodes to info
-  NIVector Ordering;                    // Emit ordering of nodes
-  ResourceTally<unsigned> Tally;        // Resource usage tally
-  unsigned NSlots;                      // Total latency
-  static const unsigned NotFound = ~0U; // Search marker
-  
-public:
-
-  // Ctor.
-  SimpleSched(SelectionDAG &D, MachineBasicBlock *bb)
-    : BB(bb), DAG(D), TM(D.getTarget()), TII(*TM.getInstrInfo()),
-      MRI(*TM.getRegisterInfo()), RegMap(BB->getParent()->getSSARegMap()),
-      ConstPool(BB->getParent()->getConstantPool()),
-      NodeCount(0), HasGroups(false), Info(NULL), Map(), Tally(), NSlots(0) {
-    assert(&TII && "Target doesn't provide instr info?");
-    assert(&MRI && "Target doesn't provide register info?");
-  }
-  
-  // Run - perform scheduling.
-  MachineBasicBlock *Run() {
-    Schedule();
-    return BB;
-  }
-  
-private:
-  /// getNI - Returns the node info for the specified node.
-  ///
-  inline NodeInfo *getNI(SDNode *Node) { return Map[Node]; }
-  
-  /// getVR - Returns the virtual register number of the node.
-  ///
-  inline unsigned getVR(SDOperand Op) {
-    NodeInfo *NI = getNI(Op.Val);
-    assert(NI->VRBase != 0 && "Node emitted out of order - late");
-    return NI->VRBase + Op.ResNo;
-  }
-
-  static bool isFlagDefiner(SDNode *A);
-  static bool isFlagUser(SDNode *A);
-  static bool isDefiner(NodeInfo *A, NodeInfo *B);
-  static bool isPassiveNode(SDNode *Node);
-  void IncludeNode(NodeInfo *NI);
-  void VisitAll();
-  void Schedule();
-  void IdentifyGroups();
-  void GatherSchedulingInfo();
-  void FakeGroupDominators(); 
-  void PrepareNodeInfo();
-  bool isStrongDependency(NodeInfo *A, NodeInfo *B);
-  bool isWeakDependency(NodeInfo *A, NodeInfo *B);
-  void ScheduleBackward();
-  void ScheduleForward();
-  void EmitAll();
-  void EmitNode(NodeInfo *NI);
-  static unsigned CountResults(SDNode *Node);
-  static unsigned CountOperands(SDNode *Node);
-  unsigned CreateVirtualRegisters(MachineInstr *MI,
-                                  unsigned NumResults,
-                                  const TargetInstrDescriptor &II);
-
-  void printChanges(unsigned Index);
-  void printSI(std::ostream &O, NodeInfo *NI) const;
-  void print(std::ostream &O) const;
-  inline void dump(const char *tag) const { std::cerr << tag; dump(); }
-  void dump() const;
-};
-
-
-//===----------------------------------------------------------------------===//
-/// Special case itineraries.
-///
-enum {
-  CallLatency = 40,          // To push calls back in time
-
-  RSInteger   = 0xC0000000,  // Two integer units
-  RSFloat     = 0x30000000,  // Two float units
-  RSLoadStore = 0x0C000000,  // Two load store units
-  RSBranch    = 0x02000000   // One branch unit
-};
-static InstrStage CallStage  = { CallLatency, RSBranch };
-static InstrStage LoadStage  = { 5, RSLoadStore };
-static InstrStage StoreStage = { 2, RSLoadStore };
-static InstrStage IntStage   = { 2, RSInteger };
-static InstrStage FloatStage = { 3, RSFloat };
-//===----------------------------------------------------------------------===//
-
-
-//===----------------------------------------------------------------------===//
-
-} // namespace
-
-//===----------------------------------------------------------------------===//
-
-
-//===----------------------------------------------------------------------===//
-/// Add - Adds a definer and user pair to a node group.
-///
-void NodeGroup::Add(NodeInfo *D, NodeInfo *U) {
-  // Get current groups
-  NodeGroup *DGroup = D->Group;
-  NodeGroup *UGroup = U->Group;
-  // If both are members of groups
-  if (DGroup && UGroup) {
-    // There may have been another edge connecting 
-    if (DGroup == UGroup) return;
-    // Add the pending users count
-    DGroup->addPending(UGroup->getPending());
-    // For each member of the users group
-    NodeGroupIterator UNGI(U);
-    while (NodeInfo *UNI = UNGI.next() ) {
-      // Change the group
-      UNI->Group = DGroup;
-      // For each member of the definers group
-      NodeGroupIterator DNGI(D);
-      while (NodeInfo *DNI = DNGI.next() ) {
-        // Remove internal edges
-        DGroup->addPending(-CountInternalUses(DNI, UNI));
-      }
-    }
-    // Merge the two lists
-    DGroup->group_insert(DGroup->group_end(),
-                         UGroup->group_begin(), UGroup->group_end());
-  } else if (DGroup) {
-    // Make user member of definers group
-    U->Group = DGroup;
-    // Add users uses to definers group pending
-    DGroup->addPending(U->Node->use_size());
-    // For each member of the definers group
-    NodeGroupIterator DNGI(D);
-    while (NodeInfo *DNI = DNGI.next() ) {
-      // Remove internal edges
-      DGroup->addPending(-CountInternalUses(DNI, U));
-    }
-    DGroup->group_push_back(U);
-  } else if (UGroup) {
-    // Make definer member of users group
-    D->Group = UGroup;
-    // Add definers uses to users group pending
-    UGroup->addPending(D->Node->use_size());
-    // For each member of the users group
-    NodeGroupIterator UNGI(U);
-    while (NodeInfo *UNI = UNGI.next() ) {
-      // Remove internal edges
-      UGroup->addPending(-CountInternalUses(D, UNI));
-    }
-    UGroup->group_insert(UGroup->group_begin(), D);
-  } else {
-    D->Group = U->Group = DGroup = new NodeGroup();
-    DGroup->addPending(D->Node->use_size() + U->Node->use_size() -
-                       CountInternalUses(D, U));
-    DGroup->group_push_back(D);
-    DGroup->group_push_back(U);
-  }
-}
-
-/// CountInternalUses - Returns the number of edges between the two nodes.
-///
-unsigned NodeGroup::CountInternalUses(NodeInfo *D, NodeInfo *U) {
-  unsigned N = 0;
-  for (unsigned M = U->Node->getNumOperands(); 0 < M--;) {
-    SDOperand Op = U->Node->getOperand(M);
-    if (Op.Val == D->Node) N++;
-  }
-
-  return N;
-}
-//===----------------------------------------------------------------------===//
-
-
-//===----------------------------------------------------------------------===//
-/// isFlagDefiner - Returns true if the node defines a flag result.
-bool SimpleSched::isFlagDefiner(SDNode *A) {
-  unsigned N = A->getNumValues();
-  return N && A->getValueType(N - 1) == MVT::Flag;
-}
-
-/// isFlagUser - Returns true if the node uses a flag result.
-///
-bool SimpleSched::isFlagUser(SDNode *A) {
-  unsigned N = A->getNumOperands();
-  return N && A->getOperand(N - 1).getValueType() == MVT::Flag;
-}
-
-/// isDefiner - Return true if node A is a definer for B.
-///
-bool SimpleSched::isDefiner(NodeInfo *A, NodeInfo *B) {
-  // While there are A nodes
-  NodeGroupIterator NII(A);
-  while (NodeInfo *NI = NII.next()) {
-    // Extract node
-    SDNode *Node = NI->Node;
-    // While there operands in nodes of B
-    NodeGroupOpIterator NGOI(B);
-    while (!NGOI.isEnd()) {
-      SDOperand Op = NGOI.next();
-      // If node from A defines a node in B
-      if (Node == Op.Val) return true;
-    }
-  }
-  return false;
-}
-
-/// isPassiveNode - Return true if the node is a non-scheduled leaf.
-///
-bool SimpleSched::isPassiveNode(SDNode *Node) {
-  if (isa<ConstantSDNode>(Node))       return true;
-  if (isa<RegisterSDNode>(Node))       return true;
-  if (isa<GlobalAddressSDNode>(Node))  return true;
-  if (isa<BasicBlockSDNode>(Node))     return true;
-  if (isa<FrameIndexSDNode>(Node))     return true;
-  if (isa<ConstantPoolSDNode>(Node))   return true;
-  if (isa<ExternalSymbolSDNode>(Node)) return true;
-  return false;
-}
-
-/// IncludeNode - Add node to NodeInfo vector.
-///
-void SimpleSched::IncludeNode(NodeInfo *NI) {
-  // Get node
-  SDNode *Node = NI->Node;
-  // Ignore entry node
-  if (Node->getOpcode() == ISD::EntryToken) return;
-  // Check current count for node
-  int Count = NI->getPending();
-  // If the node is already in list
-  if (Count < 0) return;
-  // Decrement count to indicate a visit
-  Count--;
-  // If count has gone to zero then add node to list
-  if (!Count) {
-    // Add node
-    if (NI->isInGroup()) {
-      Ordering.push_back(NI->Group->getDominator());
-    } else {
-      Ordering.push_back(NI);
-    }
-    // indicate node has been added
-    Count--;
-  }
-  // Mark as visited with new count 
-  NI->setPending(Count);
-}
-
-/// VisitAll - Visit each node breadth-wise to produce an initial ordering.
-/// Note that the ordering in the Nodes vector is reversed.
-void SimpleSched::VisitAll() {
-  // Add first element to list
-  NodeInfo *NI = getNI(DAG.getRoot().Val);
-  if (NI->isInGroup()) {
-    Ordering.push_back(NI->Group->getDominator());
-  } else {
-    Ordering.push_back(NI);
-  }
-
-  // Iterate through all nodes that have been added
-  for (unsigned i = 0; i < Ordering.size(); i++) { // note: size() varies
-    // Visit all operands
-    NodeGroupOpIterator NGI(Ordering[i]);
-    while (!NGI.isEnd()) {
-      // Get next operand
-      SDOperand Op = NGI.next();
-      // Get node
-      SDNode *Node = Op.Val;
-      // Ignore passive nodes
-      if (isPassiveNode(Node)) continue;
-      // Check out node
-      IncludeNode(getNI(Node));
-    }
-  }
-
-  // Add entry node last (IncludeNode filters entry nodes)
-  if (DAG.getEntryNode().Val != DAG.getRoot().Val)
-    Ordering.push_back(getNI(DAG.getEntryNode().Val));
-    
-  // Reverse the order
-  std::reverse(Ordering.begin(), Ordering.end());
-}
-
-/// IdentifyGroups - Put flagged nodes into groups.
-///
-void SimpleSched::IdentifyGroups() {
-  for (unsigned i = 0, N = NodeCount; i < N; i++) {
-    NodeInfo* NI = &Info[i];
-    SDNode *Node = NI->Node;
-
-    // For each operand (in reverse to only look at flags)
-    for (unsigned N = Node->getNumOperands(); 0 < N--;) {
-      // Get operand
-      SDOperand Op = Node->getOperand(N);
-      // No more flags to walk
-      if (Op.getValueType() != MVT::Flag) break;
-      // Add to node group
-      NodeGroup::Add(getNI(Op.Val), NI);
-      // Let evryone else know
-      HasGroups = true;
-    }
-  }
-}
-
-/// GatherSchedulingInfo - Get latency and resource information about each node.
-///
-void SimpleSched::GatherSchedulingInfo() {
-  // Get instruction itineraries for the target
-  const InstrItineraryData InstrItins = TM.getInstrItineraryData();
-  
-  // For each node
-  for (unsigned i = 0, N = NodeCount; i < N; i++) {
-    // Get node info
-    NodeInfo* NI = &Info[i];
-    SDNode *Node = NI->Node;
-    
-    // If there are itineraries and it is a machine instruction
-    if (InstrItins.isEmpty() || ScheduleStyle == simpleNoItinScheduling) {
-      // If machine opcode
-      if (Node->isTargetOpcode()) {
-        // Get return type to guess which processing unit 
-        MVT::ValueType VT = Node->getValueType(0);
-        // Get machine opcode
-        MachineOpCode TOpc = Node->getTargetOpcode();
-        NI->IsCall = TII.isCall(TOpc);
-        NI->IsLoad = TII.isLoad(TOpc);
-        NI->IsStore = TII.isStore(TOpc);
-
-        if (TII.isLoad(TOpc))              NI->StageBegin = &LoadStage;
-        else if (TII.isStore(TOpc))        NI->StageBegin = &StoreStage;
-        else if (MVT::isInteger(VT))       NI->StageBegin = &IntStage;
-        else if (MVT::isFloatingPoint(VT)) NI->StageBegin = &FloatStage;
-        if (NI->StageBegin) NI->StageEnd = NI->StageBegin + 1;
-      }
-    } else if (Node->isTargetOpcode()) {
-      // get machine opcode
-      MachineOpCode TOpc = Node->getTargetOpcode();
-      // Check to see if it is a call
-      NI->IsCall = TII.isCall(TOpc);
-      // Get itinerary stages for instruction
-      unsigned II = TII.getSchedClass(TOpc);
-      NI->StageBegin = InstrItins.begin(II);
-      NI->StageEnd = InstrItins.end(II);
-    }
-    
-    // One slot for the instruction itself
-    NI->Latency = 1;
-    
-    // Add long latency for a call to push it back in time
-    if (NI->IsCall) NI->Latency += CallLatency;
-    
-    // Sum up all the latencies
-    for (InstrStage *Stage = NI->StageBegin, *E = NI->StageEnd;
-        Stage != E; Stage++) {
-      NI->Latency += Stage->Cycles;
-    }
-    
-    // Sum up all the latencies for max tally size
-    NSlots += NI->Latency;
-  }
-  
-  // Unify metrics if in a group
-  if (HasGroups) {
-    for (unsigned i = 0, N = NodeCount; i < N; i++) {
-      NodeInfo* NI = &Info[i];
-      
-      if (NI->isInGroup()) {
-        NodeGroup *Group = NI->Group;
-        
-        if (!Group->getDominator()) {
-          NIIterator NGI = Group->group_begin(), NGE = Group->group_end();
-          NodeInfo *Dominator = *NGI;
-          unsigned Latency = 0;
-          
-          for (NGI++; NGI != NGE; NGI++) {
-            NodeInfo* NGNI = *NGI;
-            Latency += NGNI->Latency;
-            if (Dominator->Latency < NGNI->Latency) Dominator = NGNI;
-          }
-          
-          Dominator->Latency = Latency;
-          Group->setDominator(Dominator);
-        }
-      }
-    }
-  }
-}
-
-/// FakeGroupDominators - Set dominators for non-scheduling.
-/// 
-void SimpleSched::FakeGroupDominators() {
-  for (unsigned i = 0, N = NodeCount; i < N; i++) {
-    NodeInfo* NI = &Info[i];
-    
-    if (NI->isInGroup()) {
-      NodeGroup *Group = NI->Group;
-      
-      if (!Group->getDominator()) {
-        Group->setDominator(NI);
-      }
-    }
-  }
-}
-
-/// PrepareNodeInfo - Set up the basic minimum node info for scheduling.
-/// 
-void SimpleSched::PrepareNodeInfo() {
-  // Allocate node information
-  Info = new NodeInfo[NodeCount];
-
-  unsigned i = 0;
-  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
-       E = DAG.allnodes_end(); I != E; ++I, ++i) {
-    // Fast reference to node schedule info
-    NodeInfo* NI = &Info[i];
-    // Set up map
-    Map[I] = NI;
-    // Set node
-    NI->Node = I;
-    // Set pending visit count
-    NI->setPending(I->use_size());
-  }
-}
-
-/// isStrongDependency - Return true if node A has results used by node B. 
-/// I.E., B must wait for latency of A.
-bool SimpleSched::isStrongDependency(NodeInfo *A, NodeInfo *B) {
-  // If A defines for B then it's a strong dependency or
-  // if a load follows a store (may be dependent but why take a chance.)
-  return isDefiner(A, B) || (A->IsStore && B->IsLoad);
-}
-
-/// isWeakDependency Return true if node A produces a result that will
-/// conflict with operands of B.  It is assumed that we have called
-/// isStrongDependency prior.
-bool SimpleSched::isWeakDependency(NodeInfo *A, NodeInfo *B) {
-  // TODO check for conflicting real registers and aliases
-#if 0 // FIXME - Since we are in SSA form and not checking register aliasing
-  return A->Node->getOpcode() == ISD::EntryToken || isStrongDependency(B, A);
-#else
-  return A->Node->getOpcode() == ISD::EntryToken;
-#endif
-}
-
-/// ScheduleBackward - Schedule instructions so that any long latency
-/// instructions and the critical path get pushed back in time. Time is run in
-/// reverse to allow code reuse of the Tally and eliminate the overhead of
-/// biasing every slot indices against NSlots.
-void SimpleSched::ScheduleBackward() {
-  // Size and clear the resource tally
-  Tally.Initialize(NSlots);
-  // Get number of nodes to schedule
-  unsigned N = Ordering.size();
-  
-  // For each node being scheduled
-  for (unsigned i = N; 0 < i--;) {
-    NodeInfo *NI = Ordering[i];
-    // Track insertion
-    unsigned Slot = NotFound;
-    
-    // Compare against those previously scheduled nodes
-    unsigned j = i + 1;
-    for (; j < N; j++) {
-      // Get following instruction
-      NodeInfo *Other = Ordering[j];
-      
-      // Check dependency against previously inserted nodes
-      if (isStrongDependency(NI, Other)) {
-        Slot = Other->Slot + Other->Latency;
-        break;
-      } else if (isWeakDependency(NI, Other)) {
-        Slot = Other->Slot;
-        break;
-      }
-    }
-    
-    // If independent of others (or first entry)
-    if (Slot == NotFound) Slot = 0;
-    
-#if 0 // FIXME - measure later
-    // Find a slot where the needed resources are available
-    if (NI->StageBegin != NI->StageEnd)
-      Slot = Tally.FindAndReserve(Slot, NI->StageBegin, NI->StageEnd);
-#endif
-      
-    // Set node slot
-    NI->Slot = Slot;
-    
-    // Insert sort based on slot
-    j = i + 1;
-    for (; j < N; j++) {
-      // Get following instruction
-      NodeInfo *Other = Ordering[j];
-      // Should we look further (remember slots are in reverse time)
-      if (Slot >= Other->Slot) break;
-      // Shuffle other into ordering
-      Ordering[j - 1] = Other;
-    }
-    // Insert node in proper slot
-    if (j != i + 1) Ordering[j - 1] = NI;
-  }
-}
-
-/// ScheduleForward - Schedule instructions to maximize packing.
-///
-void SimpleSched::ScheduleForward() {
-  // Size and clear the resource tally
-  Tally.Initialize(NSlots);
-  // Get number of nodes to schedule
-  unsigned N = Ordering.size();
-  
-  // For each node being scheduled
-  for (unsigned i = 0; i < N; i++) {
-    NodeInfo *NI = Ordering[i];
-    // Track insertion
-    unsigned Slot = NotFound;
-    
-    // Compare against those previously scheduled nodes
-    unsigned j = i;
-    for (; 0 < j--;) {
-      // Get following instruction
-      NodeInfo *Other = Ordering[j];
-      
-      // Check dependency against previously inserted nodes
-      if (isStrongDependency(Other, NI)) {
-        Slot = Other->Slot + Other->Latency;
-        break;
-      } else if (Other->IsCall || isWeakDependency(Other, NI)) {
-        Slot = Other->Slot;
-        break;
-      }
-    }
-    
-    // If independent of others (or first entry)
-    if (Slot == NotFound) Slot = 0;
-    
-    // Find a slot where the needed resources are available
-    if (NI->StageBegin != NI->StageEnd)
-      Slot = Tally.FindAndReserve(Slot, NI->StageBegin, NI->StageEnd);
-      
-    // Set node slot
-    NI->Slot = Slot;
-    
-    // Insert sort based on slot
-    j = i;
-    for (; 0 < j--;) {
-      // Get prior instruction
-      NodeInfo *Other = Ordering[j];
-      // Should we look further
-      if (Slot >= Other->Slot) break;
-      // Shuffle other into ordering
-      Ordering[j + 1] = Other;
-    }
-    // Insert node in proper slot
-    if (j != i) Ordering[j + 1] = NI;
-  }
-}
-
-/// EmitAll - Emit all nodes in schedule sorted order.
-///
-void SimpleSched::EmitAll() {
-  // For each node in the ordering
-  for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
-    // Get the scheduling info
-    NodeInfo *NI = Ordering[i];
-    if (NI->isInGroup()) {
-      NodeGroupIterator NGI(Ordering[i]);
-      while (NodeInfo *NI = NGI.next()) EmitNode(NI);
-    } else {
-      EmitNode(NI);
-    }
-  }
-}
 
 /// CountResults - The results of target nodes have register or immediate
 /// operands first, then an optional chain, and optional flag operands (which do
 /// not go into the machine instrs.)
-unsigned SimpleSched::CountResults(SDNode *Node) {
+static unsigned CountResults(SDNode *Node) {
   unsigned N = Node->getNumValues();
   while (N && Node->getValueType(N - 1) == MVT::Flag)
     --N;
@@ -1023,7 +42,7 @@
 /// CountOperands  The inputs to target nodes have any actual inputs first,
 /// followed by an optional chain operand, then flag operands.  Compute the
 /// number of actual operands that  will go into the machine instr.
-unsigned SimpleSched::CountOperands(SDNode *Node) {
+static unsigned CountOperands(SDNode *Node) {
   unsigned N = Node->getNumOperands();
   while (N && Node->getOperand(N - 1).getValueType() == MVT::Flag)
     --N;
@@ -1034,7 +53,7 @@
 
 /// CreateVirtualRegisters - Add result register values for things that are
 /// defined by this instruction.
-unsigned SimpleSched::CreateVirtualRegisters(MachineInstr *MI,
+unsigned ScheduleDAG::CreateVirtualRegisters(MachineInstr *MI,
                                              unsigned NumResults,
                                              const TargetInstrDescriptor &II) {
   // Create the result registers for this node and add the result regs to
@@ -1052,14 +71,14 @@
 
 /// EmitNode - Generate machine code for an node and needed dependencies.
 ///
-void SimpleSched::EmitNode(NodeInfo *NI) {
+void ScheduleDAG::EmitNode(NodeInfo *NI) {
   unsigned VRBase = 0;                 // First virtual register for node
   SDNode *Node = NI->Node;
   
   // If machine instruction
   if (Node->isTargetOpcode()) {
     unsigned Opc = Node->getTargetOpcode();
-    const TargetInstrDescriptor &II = TII.get(Opc);
+    const TargetInstrDescriptor &II = TII->get(Opc);
 
     unsigned NumResults = CountResults(Node);
     unsigned NodeOperands = CountOperands(Node);
@@ -1176,8 +195,8 @@
       unsigned InReg = getVR(Node->getOperand(2));
       unsigned DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
       if (InReg != DestReg)   // Coallesced away the copy?
-        MRI.copyRegToReg(*BB, BB->end(), DestReg, InReg,
-                         RegMap->getRegClass(InReg));
+        MRI->copyRegToReg(*BB, BB->end(), DestReg, InReg,
+                          RegMap->getRegClass(InReg));
       break;
     }
     case ISD::CopyFromReg: {
@@ -1209,8 +228,8 @@
       } else {
 
         // Pick the register class of the right type that contains this physreg.
-        for (MRegisterInfo::regclass_iterator I = MRI.regclass_begin(),
-             E = MRI.regclass_end(); I != E; ++I)
+        for (MRegisterInfo::regclass_iterator I = MRI->regclass_begin(),
+             E = MRI->regclass_end(); I != E; ++I)
           if ((*I)->hasType(Node->getValueType(0)) &&
               (*I)->contains(SrcReg)) {
             TRC = *I;
@@ -1221,7 +240,7 @@
         // Create the reg, emit the copy.
         VRBase = RegMap->createVirtualRegister(TRC);
       }
-      MRI.copyRegToReg(*BB, BB->end(), VRBase, SrcReg, TRC);
+      MRI->copyRegToReg(*BB, BB->end(), VRBase, SrcReg, TRC);
       break;
     }
     }
@@ -1231,143 +250,21 @@
   NI->VRBase = VRBase;
 }
 
-/// Schedule - Order nodes according to selected style.
-///
-void SimpleSched::Schedule() {
-  // Number the nodes
-  NodeCount = std::distance(DAG.allnodes_begin(), DAG.allnodes_end());
-  // Test to see if scheduling should occur
-  bool ShouldSchedule = NodeCount > 3 && ScheduleStyle != noScheduling;
-  // Set up minimum info for scheduling
-  PrepareNodeInfo();
-  // Construct node groups for flagged nodes
-  IdentifyGroups();
-
-  // Don't waste time if is only entry and return
-  if (ShouldSchedule) {
-    // Get latency and resource requirements
-    GatherSchedulingInfo();
-  } else if (HasGroups) {
-    // Make sure all the groups have dominators
-    FakeGroupDominators();
-  }
-
-  // Breadth first walk of DAG
-  VisitAll();
-
-#ifndef NDEBUG
-  static unsigned Count = 0;
-  Count++;
-  for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
-    NodeInfo *NI = Ordering[i];
-    NI->Preorder = i;
-  }
-#endif  
-  
-  // Don't waste time if is only entry and return
-  if (ShouldSchedule) {
-    // Push back long instructions and critical path
-    ScheduleBackward();
-    
-    // Pack instructions to maximize resource utilization
-    ScheduleForward();
-  }
-  
-  DEBUG(printChanges(Count));
-  
-  // Emit in scheduled order
-  EmitAll();
+void ScheduleDAG::dump(const char *tag) const {
+  std::cerr << tag; dump();
 }
 
-/// printChanges - Hilight changes in order caused by scheduling.
-///
-void SimpleSched::printChanges(unsigned Index) {
-#ifndef NDEBUG
-  // Get the ordered node count
-  unsigned N = Ordering.size();
-  // Determine if any changes
-  unsigned i = 0;
-  for (; i < N; i++) {
-    NodeInfo *NI = Ordering[i];
-    if (NI->Preorder != i) break;
-  }
-  
-  if (i < N) {
-    std::cerr << Index << ". New Ordering\n";
-    
-    for (i = 0; i < N; i++) {
-      NodeInfo *NI = Ordering[i];
-      std::cerr << "  " << NI->Preorder << ". ";
-      printSI(std::cerr, NI);
-      std::cerr << "\n";
-      if (NI->isGroupDominator()) {
-        NodeGroup *Group = NI->Group;
-        for (NIIterator NII = Group->group_begin(), E = Group->group_end();
-             NII != E; NII++) {
-          std::cerr << "          ";
-          printSI(std::cerr, *NII);
-          std::cerr << "\n";
-        }
-      }
-    }
-  } else {
-    std::cerr << Index << ". No Changes\n";
-  }
-#endif
-}
-
-/// printSI - Print schedule info.
-///
-void SimpleSched::printSI(std::ostream &O, NodeInfo *NI) const {
-#ifndef NDEBUG
-  SDNode *Node = NI->Node;
-  O << " "
-    << std::hex << Node << std::dec
-    << ", Lat=" << NI->Latency
-    << ", Slot=" << NI->Slot
-    << ", ARITY=(" << Node->getNumOperands() << ","
-                   << Node->getNumValues() << ")"
-    << " " << Node->getOperationName(&DAG);
-  if (isFlagDefiner(Node)) O << "<#";
-  if (isFlagUser(Node)) O << ">#";
-#endif
-}
-
-/// print - Print ordering to specified output stream.
-///
-void SimpleSched::print(std::ostream &O) const {
-#ifndef NDEBUG
-  using namespace std;
-  O << "Ordering\n";
-  for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
-    NodeInfo *NI = Ordering[i];
-    printSI(O, NI);
-    O << "\n";
-    if (NI->isGroupDominator()) {
-      NodeGroup *Group = NI->Group;
-      for (NIIterator NII = Group->group_begin(), E = Group->group_end();
-           NII != E; NII++) {
-        O << "    ";
-        printSI(O, *NII);
-        O << "\n";
-      }
-    }
-  }
-#endif
-}
-
-/// dump - Print ordering to std::cerr.
-///
-void SimpleSched::dump() const {
+void ScheduleDAG::dump() const {
   print(std::cerr);
 }
-//===----------------------------------------------------------------------===//
 
-
-//===----------------------------------------------------------------------===//
-/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
-/// target node in the graph.
-void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &SD) {
-  if (ViewDAGs) SD.viewGraph();
-  BB = SimpleSched(SD, BB).Run();  
+/// Run - perform scheduling.
+///
+MachineBasicBlock *ScheduleDAG::Run() {
+  TII = TM.getInstrInfo();
+  MRI = TM.getRegisterInfo();
+  RegMap = BB->getParent()->getSSARegMap();
+  ConstPool = BB->getParent()->getConstantPool();
+  Schedule();
+  return BB;
 }
diff --git a/lib/CodeGen/SelectionDAG/ScheduleDAGSimple.cpp b/lib/CodeGen/SelectionDAG/ScheduleDAGSimple.cpp
new file mode 100644
index 0000000..b22eae4
--- /dev/null
+++ b/lib/CodeGen/SelectionDAG/ScheduleDAGSimple.cpp
@@ -0,0 +1,891 @@
+//===-- ScheduleDAGSimple.cpp - Implement a trivial DAG scheduler ---------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by James M. Laskey and is distributed under the
+// University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This implements a simple two pass scheduler.  The first pass attempts to push
+// backward any lengthy instructions and critical paths.  The second pass packs
+// instructions into semi-optimal time slots.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "sched"
+#include "llvm/CodeGen/ScheduleDAG.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include <iostream>
+#include <ios>
+#include <algorithm>
+using namespace llvm;
+
+namespace {
+  // Style of scheduling to use.
+  enum ScheduleChoices {
+    noScheduling,
+    simpleScheduling,
+    simpleNoItinScheduling
+  };
+} // namespace
+
+cl::opt<ScheduleChoices> ScheduleStyle("sched",
+  cl::desc("Choose scheduling style"),
+  cl::init(noScheduling),
+  cl::values(
+    clEnumValN(noScheduling, "none",
+              "Trivial emission with no analysis"),
+    clEnumValN(simpleScheduling, "simple",
+              "Minimize critical path and maximize processor utilization"),
+    clEnumValN(simpleNoItinScheduling, "simple-noitin",
+              "Same as simple except using generic latency"),
+   clEnumValEnd));
+
+
+namespace {
+//===----------------------------------------------------------------------===//
+///
+/// BitsIterator - Provides iteration through individual bits in a bit vector.
+///
+template<class T>
+class BitsIterator {
+private:
+  T Bits;                               // Bits left to iterate through
+
+public:
+  /// Ctor.
+  BitsIterator(T Initial) : Bits(Initial) {}
+  
+  /// Next - Returns the next bit set or zero if exhausted.
+  inline T Next() {
+    // Get the rightmost bit set
+    T Result = Bits & -Bits;
+    // Remove from rest
+    Bits &= ~Result;
+    // Return single bit or zero
+    return Result;
+  }
+};
+  
+//===----------------------------------------------------------------------===//
+
+
+//===----------------------------------------------------------------------===//
+///
+/// ResourceTally - Manages the use of resources over time intervals.  Each
+/// item (slot) in the tally vector represents the resources used at a given
+/// moment.  A bit set to 1 indicates that a resource is in use, otherwise
+/// available.  An assumption is made that the tally is large enough to schedule 
+/// all current instructions (asserts otherwise.)
+///
+template<class T>
+class ResourceTally {
+private:
+  std::vector<T> Tally;                 // Resources used per slot
+  typedef typename std::vector<T>::iterator Iter;
+                                        // Tally iterator 
+  
+  /// SlotsAvailable - Returns true if all units are available.
+	///
+  bool SlotsAvailable(Iter Begin, unsigned N, unsigned ResourceSet,
+                                              unsigned &Resource) {
+    assert(N && "Must check availability with N != 0");
+    // Determine end of interval
+    Iter End = Begin + N;
+    assert(End <= Tally.end() && "Tally is not large enough for schedule");
+    
+    // Iterate thru each resource
+    BitsIterator<T> Resources(ResourceSet & ~*Begin);
+    while (unsigned Res = Resources.Next()) {
+      // Check if resource is available for next N slots
+      Iter Interval = End;
+      do {
+        Interval--;
+        if (*Interval & Res) break;
+      } while (Interval != Begin);
+      
+      // If available for N
+      if (Interval == Begin) {
+        // Success
+        Resource = Res;
+        return true;
+      }
+    }
+    
+    // No luck
+    Resource = 0;
+    return false;
+  }
+	
+	/// RetrySlot - Finds a good candidate slot to retry search.
+  Iter RetrySlot(Iter Begin, unsigned N, unsigned ResourceSet) {
+    assert(N && "Must check availability with N != 0");
+    // Determine end of interval
+    Iter End = Begin + N;
+    assert(End <= Tally.end() && "Tally is not large enough for schedule");
+		
+		while (Begin != End--) {
+			// Clear units in use
+			ResourceSet &= ~*End;
+			// If no units left then we should go no further 
+			if (!ResourceSet) return End + 1;
+		}
+		// Made it all the way through
+		return Begin;
+	}
+  
+  /// FindAndReserveStages - Return true if the stages can be completed. If
+  /// so mark as busy.
+  bool FindAndReserveStages(Iter Begin,
+                            InstrStage *Stage, InstrStage *StageEnd) {
+    // If at last stage then we're done
+    if (Stage == StageEnd) return true;
+    // Get number of cycles for current stage
+    unsigned N = Stage->Cycles;
+    // Check to see if N slots are available, if not fail
+    unsigned Resource;
+    if (!SlotsAvailable(Begin, N, Stage->Units, Resource)) return false;
+    // Check to see if remaining stages are available, if not fail
+    if (!FindAndReserveStages(Begin + N, Stage + 1, StageEnd)) return false;
+    // Reserve resource
+    Reserve(Begin, N, Resource);
+    // Success
+    return true;
+  }
+
+  /// Reserve - Mark busy (set) the specified N slots.
+  void Reserve(Iter Begin, unsigned N, unsigned Resource) {
+    // Determine end of interval
+    Iter End = Begin + N;
+    assert(End <= Tally.end() && "Tally is not large enough for schedule");
+ 
+    // Set resource bit in each slot
+    for (; Begin < End; Begin++)
+      *Begin |= Resource;
+  }
+
+  /// FindSlots - Starting from Begin, locate consecutive slots where all stages
+  /// can be completed.  Returns the address of first slot.
+  Iter FindSlots(Iter Begin, InstrStage *StageBegin, InstrStage *StageEnd) {
+    // Track position      
+    Iter Cursor = Begin;
+    
+    // Try all possible slots forward
+    while (true) {
+      // Try at cursor, if successful return position.
+      if (FindAndReserveStages(Cursor, StageBegin, StageEnd)) return Cursor;
+      // Locate a better position
+			Cursor = RetrySlot(Cursor + 1, StageBegin->Cycles, StageBegin->Units);
+    }
+  }
+  
+public:
+  /// Initialize - Resize and zero the tally to the specified number of time
+  /// slots.
+  inline void Initialize(unsigned N) {
+    Tally.assign(N, 0);   // Initialize tally to all zeros.
+  }
+
+  // FindAndReserve - Locate an ideal slot for the specified stages and mark
+  // as busy.
+  unsigned FindAndReserve(unsigned Slot, InstrStage *StageBegin,
+                                         InstrStage *StageEnd) {
+		// Where to begin 
+		Iter Begin = Tally.begin() + Slot;
+		// Find a free slot
+		Iter Where = FindSlots(Begin, StageBegin, StageEnd);
+		// Distance is slot number
+		unsigned Final = Where - Tally.begin();
+    return Final;
+  }
+
+};
+
+//===----------------------------------------------------------------------===//
+///
+/// ScheduleDAGSimple - Simple two pass scheduler.
+///
+class ScheduleDAGSimple : public ScheduleDAG {
+private:
+  unsigned NodeCount;                   // Number of nodes in DAG
+  bool HasGroups;                       // True if there are any groups
+  NodeInfo *Info;                       // Info for nodes being scheduled
+  NIVector Ordering;                    // Emit ordering of nodes
+  ResourceTally<unsigned> Tally;        // Resource usage tally
+  unsigned NSlots;                      // Total latency
+  static const unsigned NotFound = ~0U; // Search marker
+  
+public:
+
+  // Ctor.
+  ScheduleDAGSimple(SelectionDAG &dag, MachineBasicBlock *bb,
+                    const TargetMachine &tm)
+    : ScheduleDAG(dag, bb, tm),
+      NodeCount(0), HasGroups(false), Info(NULL), Tally(), NSlots(0) {
+    assert(&TII && "Target doesn't provide instr info?");
+    assert(&MRI && "Target doesn't provide register info?");
+  }
+
+  virtual ~ScheduleDAGSimple() {};
+
+private:
+  static bool isFlagDefiner(SDNode *A);
+  static bool isFlagUser(SDNode *A);
+  static bool isDefiner(NodeInfo *A, NodeInfo *B);
+  static bool isPassiveNode(SDNode *Node);
+  void IncludeNode(NodeInfo *NI);
+  void VisitAll();
+  void Schedule();
+  void IdentifyGroups();
+  void GatherSchedulingInfo();
+  void FakeGroupDominators(); 
+  void PrepareNodeInfo();
+  bool isStrongDependency(NodeInfo *A, NodeInfo *B);
+  bool isWeakDependency(NodeInfo *A, NodeInfo *B);
+  void ScheduleBackward();
+  void ScheduleForward();
+  void EmitAll();
+
+  void printChanges(unsigned Index);
+  void printSI(std::ostream &O, NodeInfo *NI) const;
+  void print(std::ostream &O) const;
+};
+
+
+//===----------------------------------------------------------------------===//
+/// Special case itineraries.
+///
+enum {
+  CallLatency = 40,          // To push calls back in time
+
+  RSInteger   = 0xC0000000,  // Two integer units
+  RSFloat     = 0x30000000,  // Two float units
+  RSLoadStore = 0x0C000000,  // Two load store units
+  RSBranch    = 0x02000000   // One branch unit
+};
+static InstrStage CallStage  = { CallLatency, RSBranch };
+static InstrStage LoadStage  = { 5, RSLoadStore };
+static InstrStage StoreStage = { 2, RSLoadStore };
+static InstrStage IntStage   = { 2, RSInteger };
+static InstrStage FloatStage = { 3, RSFloat };
+//===----------------------------------------------------------------------===//
+
+
+//===----------------------------------------------------------------------===//
+
+} // namespace
+
+//===----------------------------------------------------------------------===//
+
+
+//===----------------------------------------------------------------------===//
+/// Add - Adds a definer and user pair to a node group.
+///
+void NodeGroup::Add(NodeInfo *D, NodeInfo *U) {
+  // Get current groups
+  NodeGroup *DGroup = D->Group;
+  NodeGroup *UGroup = U->Group;
+  // If both are members of groups
+  if (DGroup && UGroup) {
+    // There may have been another edge connecting 
+    if (DGroup == UGroup) return;
+    // Add the pending users count
+    DGroup->addPending(UGroup->getPending());
+    // For each member of the users group
+    NodeGroupIterator UNGI(U);
+    while (NodeInfo *UNI = UNGI.next() ) {
+      // Change the group
+      UNI->Group = DGroup;
+      // For each member of the definers group
+      NodeGroupIterator DNGI(D);
+      while (NodeInfo *DNI = DNGI.next() ) {
+        // Remove internal edges
+        DGroup->addPending(-CountInternalUses(DNI, UNI));
+      }
+    }
+    // Merge the two lists
+    DGroup->group_insert(DGroup->group_end(),
+                         UGroup->group_begin(), UGroup->group_end());
+  } else if (DGroup) {
+    // Make user member of definers group
+    U->Group = DGroup;
+    // Add users uses to definers group pending
+    DGroup->addPending(U->Node->use_size());
+    // For each member of the definers group
+    NodeGroupIterator DNGI(D);
+    while (NodeInfo *DNI = DNGI.next() ) {
+      // Remove internal edges
+      DGroup->addPending(-CountInternalUses(DNI, U));
+    }
+    DGroup->group_push_back(U);
+  } else if (UGroup) {
+    // Make definer member of users group
+    D->Group = UGroup;
+    // Add definers uses to users group pending
+    UGroup->addPending(D->Node->use_size());
+    // For each member of the users group
+    NodeGroupIterator UNGI(U);
+    while (NodeInfo *UNI = UNGI.next() ) {
+      // Remove internal edges
+      UGroup->addPending(-CountInternalUses(D, UNI));
+    }
+    UGroup->group_insert(UGroup->group_begin(), D);
+  } else {
+    D->Group = U->Group = DGroup = new NodeGroup();
+    DGroup->addPending(D->Node->use_size() + U->Node->use_size() -
+                       CountInternalUses(D, U));
+    DGroup->group_push_back(D);
+    DGroup->group_push_back(U);
+  }
+}
+
+/// CountInternalUses - Returns the number of edges between the two nodes.
+///
+unsigned NodeGroup::CountInternalUses(NodeInfo *D, NodeInfo *U) {
+  unsigned N = 0;
+  for (unsigned M = U->Node->getNumOperands(); 0 < M--;) {
+    SDOperand Op = U->Node->getOperand(M);
+    if (Op.Val == D->Node) N++;
+  }
+
+  return N;
+}
+//===----------------------------------------------------------------------===//
+
+
+//===----------------------------------------------------------------------===//
+/// isFlagDefiner - Returns true if the node defines a flag result.
+bool ScheduleDAGSimple::isFlagDefiner(SDNode *A) {
+  unsigned N = A->getNumValues();
+  return N && A->getValueType(N - 1) == MVT::Flag;
+}
+
+/// isFlagUser - Returns true if the node uses a flag result.
+///
+bool ScheduleDAGSimple::isFlagUser(SDNode *A) {
+  unsigned N = A->getNumOperands();
+  return N && A->getOperand(N - 1).getValueType() == MVT::Flag;
+}
+
+/// isDefiner - Return true if node A is a definer for B.
+///
+bool ScheduleDAGSimple::isDefiner(NodeInfo *A, NodeInfo *B) {
+  // While there are A nodes
+  NodeGroupIterator NII(A);
+  while (NodeInfo *NI = NII.next()) {
+    // Extract node
+    SDNode *Node = NI->Node;
+    // While there operands in nodes of B
+    NodeGroupOpIterator NGOI(B);
+    while (!NGOI.isEnd()) {
+      SDOperand Op = NGOI.next();
+      // If node from A defines a node in B
+      if (Node == Op.Val) return true;
+    }
+  }
+  return false;
+}
+
+/// isPassiveNode - Return true if the node is a non-scheduled leaf.
+///
+bool ScheduleDAGSimple::isPassiveNode(SDNode *Node) {
+  if (isa<ConstantSDNode>(Node))       return true;
+  if (isa<RegisterSDNode>(Node))       return true;
+  if (isa<GlobalAddressSDNode>(Node))  return true;
+  if (isa<BasicBlockSDNode>(Node))     return true;
+  if (isa<FrameIndexSDNode>(Node))     return true;
+  if (isa<ConstantPoolSDNode>(Node))   return true;
+  if (isa<ExternalSymbolSDNode>(Node)) return true;
+  return false;
+}
+
+/// IncludeNode - Add node to NodeInfo vector.
+///
+void ScheduleDAGSimple::IncludeNode(NodeInfo *NI) {
+  // Get node
+  SDNode *Node = NI->Node;
+  // Ignore entry node
+  if (Node->getOpcode() == ISD::EntryToken) return;
+  // Check current count for node
+  int Count = NI->getPending();
+  // If the node is already in list
+  if (Count < 0) return;
+  // Decrement count to indicate a visit
+  Count--;
+  // If count has gone to zero then add node to list
+  if (!Count) {
+    // Add node
+    if (NI->isInGroup()) {
+      Ordering.push_back(NI->Group->getDominator());
+    } else {
+      Ordering.push_back(NI);
+    }
+    // indicate node has been added
+    Count--;
+  }
+  // Mark as visited with new count 
+  NI->setPending(Count);
+}
+
+/// VisitAll - Visit each node breadth-wise to produce an initial ordering.
+/// Note that the ordering in the Nodes vector is reversed.
+void ScheduleDAGSimple::VisitAll() {
+  // Add first element to list
+  NodeInfo *NI = getNI(DAG.getRoot().Val);
+  if (NI->isInGroup()) {
+    Ordering.push_back(NI->Group->getDominator());
+  } else {
+    Ordering.push_back(NI);
+  }
+
+  // Iterate through all nodes that have been added
+  for (unsigned i = 0; i < Ordering.size(); i++) { // note: size() varies
+    // Visit all operands
+    NodeGroupOpIterator NGI(Ordering[i]);
+    while (!NGI.isEnd()) {
+      // Get next operand
+      SDOperand Op = NGI.next();
+      // Get node
+      SDNode *Node = Op.Val;
+      // Ignore passive nodes
+      if (isPassiveNode(Node)) continue;
+      // Check out node
+      IncludeNode(getNI(Node));
+    }
+  }
+
+  // Add entry node last (IncludeNode filters entry nodes)
+  if (DAG.getEntryNode().Val != DAG.getRoot().Val)
+    Ordering.push_back(getNI(DAG.getEntryNode().Val));
+    
+  // Reverse the order
+  std::reverse(Ordering.begin(), Ordering.end());
+}
+
+/// IdentifyGroups - Put flagged nodes into groups.
+///
+void ScheduleDAGSimple::IdentifyGroups() {
+  for (unsigned i = 0, N = NodeCount; i < N; i++) {
+    NodeInfo* NI = &Info[i];
+    SDNode *Node = NI->Node;
+
+    // For each operand (in reverse to only look at flags)
+    for (unsigned N = Node->getNumOperands(); 0 < N--;) {
+      // Get operand
+      SDOperand Op = Node->getOperand(N);
+      // No more flags to walk
+      if (Op.getValueType() != MVT::Flag) break;
+      // Add to node group
+      NodeGroup::Add(getNI(Op.Val), NI);
+      // Let evryone else know
+      HasGroups = true;
+    }
+  }
+}
+
+/// GatherSchedulingInfo - Get latency and resource information about each node.
+///
+void ScheduleDAGSimple::GatherSchedulingInfo() {
+  // Get instruction itineraries for the target
+  const InstrItineraryData InstrItins = TM.getInstrItineraryData();
+  
+  // For each node
+  for (unsigned i = 0, N = NodeCount; i < N; i++) {
+    // Get node info
+    NodeInfo* NI = &Info[i];
+    SDNode *Node = NI->Node;
+    
+    // If there are itineraries and it is a machine instruction
+    if (InstrItins.isEmpty() || ScheduleStyle == simpleNoItinScheduling) {
+      // If machine opcode
+      if (Node->isTargetOpcode()) {
+        // Get return type to guess which processing unit 
+        MVT::ValueType VT = Node->getValueType(0);
+        // Get machine opcode
+        MachineOpCode TOpc = Node->getTargetOpcode();
+        NI->IsCall = TII->isCall(TOpc);
+        NI->IsLoad = TII->isLoad(TOpc);
+        NI->IsStore = TII->isStore(TOpc);
+
+        if (TII->isLoad(TOpc))             NI->StageBegin = &LoadStage;
+        else if (TII->isStore(TOpc))       NI->StageBegin = &StoreStage;
+        else if (MVT::isInteger(VT))       NI->StageBegin = &IntStage;
+        else if (MVT::isFloatingPoint(VT)) NI->StageBegin = &FloatStage;
+        if (NI->StageBegin) NI->StageEnd = NI->StageBegin + 1;
+      }
+    } else if (Node->isTargetOpcode()) {
+      // get machine opcode
+      MachineOpCode TOpc = Node->getTargetOpcode();
+      // Check to see if it is a call
+      NI->IsCall = TII->isCall(TOpc);
+      // Get itinerary stages for instruction
+      unsigned II = TII->getSchedClass(TOpc);
+      NI->StageBegin = InstrItins.begin(II);
+      NI->StageEnd = InstrItins.end(II);
+    }
+    
+    // One slot for the instruction itself
+    NI->Latency = 1;
+    
+    // Add long latency for a call to push it back in time
+    if (NI->IsCall) NI->Latency += CallLatency;
+    
+    // Sum up all the latencies
+    for (InstrStage *Stage = NI->StageBegin, *E = NI->StageEnd;
+        Stage != E; Stage++) {
+      NI->Latency += Stage->Cycles;
+    }
+    
+    // Sum up all the latencies for max tally size
+    NSlots += NI->Latency;
+  }
+  
+  // Unify metrics if in a group
+  if (HasGroups) {
+    for (unsigned i = 0, N = NodeCount; i < N; i++) {
+      NodeInfo* NI = &Info[i];
+      
+      if (NI->isInGroup()) {
+        NodeGroup *Group = NI->Group;
+        
+        if (!Group->getDominator()) {
+          NIIterator NGI = Group->group_begin(), NGE = Group->group_end();
+          NodeInfo *Dominator = *NGI;
+          unsigned Latency = 0;
+          
+          for (NGI++; NGI != NGE; NGI++) {
+            NodeInfo* NGNI = *NGI;
+            Latency += NGNI->Latency;
+            if (Dominator->Latency < NGNI->Latency) Dominator = NGNI;
+          }
+          
+          Dominator->Latency = Latency;
+          Group->setDominator(Dominator);
+        }
+      }
+    }
+  }
+}
+
+/// FakeGroupDominators - Set dominators for non-scheduling.
+/// 
+void ScheduleDAGSimple::FakeGroupDominators() {
+  for (unsigned i = 0, N = NodeCount; i < N; i++) {
+    NodeInfo* NI = &Info[i];
+    
+    if (NI->isInGroup()) {
+      NodeGroup *Group = NI->Group;
+      
+      if (!Group->getDominator()) {
+        Group->setDominator(NI);
+      }
+    }
+  }
+}
+
+/// PrepareNodeInfo - Set up the basic minimum node info for scheduling.
+/// 
+void ScheduleDAGSimple::PrepareNodeInfo() {
+  // Allocate node information
+  Info = new NodeInfo[NodeCount];
+
+  unsigned i = 0;
+  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
+       E = DAG.allnodes_end(); I != E; ++I, ++i) {
+    // Fast reference to node schedule info
+    NodeInfo* NI = &Info[i];
+    // Set up map
+    Map[I] = NI;
+    // Set node
+    NI->Node = I;
+    // Set pending visit count
+    NI->setPending(I->use_size());
+  }
+}
+
+/// isStrongDependency - Return true if node A has results used by node B. 
+/// I.E., B must wait for latency of A.
+bool ScheduleDAGSimple::isStrongDependency(NodeInfo *A, NodeInfo *B) {
+  // If A defines for B then it's a strong dependency or
+  // if a load follows a store (may be dependent but why take a chance.)
+  return isDefiner(A, B) || (A->IsStore && B->IsLoad);
+}
+
+/// isWeakDependency Return true if node A produces a result that will
+/// conflict with operands of B.  It is assumed that we have called
+/// isStrongDependency prior.
+bool ScheduleDAGSimple::isWeakDependency(NodeInfo *A, NodeInfo *B) {
+  // TODO check for conflicting real registers and aliases
+#if 0 // FIXME - Since we are in SSA form and not checking register aliasing
+  return A->Node->getOpcode() == ISD::EntryToken || isStrongDependency(B, A);
+#else
+  return A->Node->getOpcode() == ISD::EntryToken;
+#endif
+}
+
+/// ScheduleBackward - Schedule instructions so that any long latency
+/// instructions and the critical path get pushed back in time. Time is run in
+/// reverse to allow code reuse of the Tally and eliminate the overhead of
+/// biasing every slot indices against NSlots.
+void ScheduleDAGSimple::ScheduleBackward() {
+  // Size and clear the resource tally
+  Tally.Initialize(NSlots);
+  // Get number of nodes to schedule
+  unsigned N = Ordering.size();
+  
+  // For each node being scheduled
+  for (unsigned i = N; 0 < i--;) {
+    NodeInfo *NI = Ordering[i];
+    // Track insertion
+    unsigned Slot = NotFound;
+    
+    // Compare against those previously scheduled nodes
+    unsigned j = i + 1;
+    for (; j < N; j++) {
+      // Get following instruction
+      NodeInfo *Other = Ordering[j];
+      
+      // Check dependency against previously inserted nodes
+      if (isStrongDependency(NI, Other)) {
+        Slot = Other->Slot + Other->Latency;
+        break;
+      } else if (isWeakDependency(NI, Other)) {
+        Slot = Other->Slot;
+        break;
+      }
+    }
+    
+    // If independent of others (or first entry)
+    if (Slot == NotFound) Slot = 0;
+    
+#if 0 // FIXME - measure later
+    // Find a slot where the needed resources are available
+    if (NI->StageBegin != NI->StageEnd)
+      Slot = Tally.FindAndReserve(Slot, NI->StageBegin, NI->StageEnd);
+#endif
+      
+    // Set node slot
+    NI->Slot = Slot;
+    
+    // Insert sort based on slot
+    j = i + 1;
+    for (; j < N; j++) {
+      // Get following instruction
+      NodeInfo *Other = Ordering[j];
+      // Should we look further (remember slots are in reverse time)
+      if (Slot >= Other->Slot) break;
+      // Shuffle other into ordering
+      Ordering[j - 1] = Other;
+    }
+    // Insert node in proper slot
+    if (j != i + 1) Ordering[j - 1] = NI;
+  }
+}
+
+/// ScheduleForward - Schedule instructions to maximize packing.
+///
+void ScheduleDAGSimple::ScheduleForward() {
+  // Size and clear the resource tally
+  Tally.Initialize(NSlots);
+  // Get number of nodes to schedule
+  unsigned N = Ordering.size();
+  
+  // For each node being scheduled
+  for (unsigned i = 0; i < N; i++) {
+    NodeInfo *NI = Ordering[i];
+    // Track insertion
+    unsigned Slot = NotFound;
+    
+    // Compare against those previously scheduled nodes
+    unsigned j = i;
+    for (; 0 < j--;) {
+      // Get following instruction
+      NodeInfo *Other = Ordering[j];
+      
+      // Check dependency against previously inserted nodes
+      if (isStrongDependency(Other, NI)) {
+        Slot = Other->Slot + Other->Latency;
+        break;
+      } else if (Other->IsCall || isWeakDependency(Other, NI)) {
+        Slot = Other->Slot;
+        break;
+      }
+    }
+    
+    // If independent of others (or first entry)
+    if (Slot == NotFound) Slot = 0;
+    
+    // Find a slot where the needed resources are available
+    if (NI->StageBegin != NI->StageEnd)
+      Slot = Tally.FindAndReserve(Slot, NI->StageBegin, NI->StageEnd);
+      
+    // Set node slot
+    NI->Slot = Slot;
+    
+    // Insert sort based on slot
+    j = i;
+    for (; 0 < j--;) {
+      // Get prior instruction
+      NodeInfo *Other = Ordering[j];
+      // Should we look further
+      if (Slot >= Other->Slot) break;
+      // Shuffle other into ordering
+      Ordering[j + 1] = Other;
+    }
+    // Insert node in proper slot
+    if (j != i) Ordering[j + 1] = NI;
+  }
+}
+
+/// EmitAll - Emit all nodes in schedule sorted order.
+///
+void ScheduleDAGSimple::EmitAll() {
+  // For each node in the ordering
+  for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
+    // Get the scheduling info
+    NodeInfo *NI = Ordering[i];
+    if (NI->isInGroup()) {
+      NodeGroupIterator NGI(Ordering[i]);
+      while (NodeInfo *NI = NGI.next()) EmitNode(NI);
+    } else {
+      EmitNode(NI);
+    }
+  }
+}
+
+/// Schedule - Order nodes according to selected style.
+///
+void ScheduleDAGSimple::Schedule() {
+  // Number the nodes
+  NodeCount = std::distance(DAG.allnodes_begin(), DAG.allnodes_end());
+  // Test to see if scheduling should occur
+  bool ShouldSchedule = NodeCount > 3 && ScheduleStyle != noScheduling;
+  // Set up minimum info for scheduling
+  PrepareNodeInfo();
+  // Construct node groups for flagged nodes
+  IdentifyGroups();
+
+  // Don't waste time if is only entry and return
+  if (ShouldSchedule) {
+    // Get latency and resource requirements
+    GatherSchedulingInfo();
+  } else if (HasGroups) {
+    // Make sure all the groups have dominators
+    FakeGroupDominators();
+  }
+
+  // Breadth first walk of DAG
+  VisitAll();
+
+#ifndef NDEBUG
+  static unsigned Count = 0;
+  Count++;
+  for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
+    NodeInfo *NI = Ordering[i];
+    NI->Preorder = i;
+  }
+#endif  
+  
+  // Don't waste time if is only entry and return
+  if (ShouldSchedule) {
+    // Push back long instructions and critical path
+    ScheduleBackward();
+    
+    // Pack instructions to maximize resource utilization
+    ScheduleForward();
+  }
+  
+  DEBUG(printChanges(Count));
+  
+  // Emit in scheduled order
+  EmitAll();
+}
+
+/// printChanges - Hilight changes in order caused by scheduling.
+///
+void ScheduleDAGSimple::printChanges(unsigned Index) {
+#ifndef NDEBUG
+  // Get the ordered node count
+  unsigned N = Ordering.size();
+  // Determine if any changes
+  unsigned i = 0;
+  for (; i < N; i++) {
+    NodeInfo *NI = Ordering[i];
+    if (NI->Preorder != i) break;
+  }
+  
+  if (i < N) {
+    std::cerr << Index << ". New Ordering\n";
+    
+    for (i = 0; i < N; i++) {
+      NodeInfo *NI = Ordering[i];
+      std::cerr << "  " << NI->Preorder << ". ";
+      printSI(std::cerr, NI);
+      std::cerr << "\n";
+      if (NI->isGroupDominator()) {
+        NodeGroup *Group = NI->Group;
+        for (NIIterator NII = Group->group_begin(), E = Group->group_end();
+             NII != E; NII++) {
+          std::cerr << "          ";
+          printSI(std::cerr, *NII);
+          std::cerr << "\n";
+        }
+      }
+    }
+  } else {
+    std::cerr << Index << ". No Changes\n";
+  }
+#endif
+}
+
+/// printSI - Print schedule info.
+///
+void ScheduleDAGSimple::printSI(std::ostream &O, NodeInfo *NI) const {
+#ifndef NDEBUG
+  SDNode *Node = NI->Node;
+  O << " "
+    << std::hex << Node << std::dec
+    << ", Lat=" << NI->Latency
+    << ", Slot=" << NI->Slot
+    << ", ARITY=(" << Node->getNumOperands() << ","
+                   << Node->getNumValues() << ")"
+    << " " << Node->getOperationName(&DAG);
+  if (isFlagDefiner(Node)) O << "<#";
+  if (isFlagUser(Node)) O << ">#";
+#endif
+}
+
+/// print - Print ordering to specified output stream.
+///
+void ScheduleDAGSimple::print(std::ostream &O) const {
+#ifndef NDEBUG
+  using namespace std;
+  O << "Ordering\n";
+  for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
+    NodeInfo *NI = Ordering[i];
+    printSI(O, NI);
+    O << "\n";
+    if (NI->isGroupDominator()) {
+      NodeGroup *Group = NI->Group;
+      for (NIIterator NII = Group->group_begin(), E = Group->group_end();
+           NII != E; NII++) {
+        O << "    ";
+        printSI(O, *NII);
+        O << "\n";
+      }
+    }
+  }
+#endif
+}
+
+/// createSimpleDAGScheduler - This creates a simple two pass instruction
+/// scheduler.
+llvm::ScheduleDAG* llvm::createSimpleDAGScheduler(SelectionDAG &DAG,
+                                                  MachineBasicBlock *BB) {
+  return new ScheduleDAGSimple(DAG, BB, DAG.getTarget());
+}
diff --git a/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp b/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
index 02ae710..d70ffd9 100644
--- a/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
+++ b/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
@@ -13,6 +13,7 @@
 
 #define DEBUG_TYPE "isel"
 #include "llvm/CodeGen/SelectionDAGISel.h"
+#include "llvm/CodeGen/ScheduleDAG.h"
 #include "llvm/CallingConv.h"
 #include "llvm/Constants.h"
 #include "llvm/DerivedTypes.h"
@@ -43,10 +44,14 @@
 
 #ifndef NDEBUG
 static cl::opt<bool>
-ViewDAGs("view-isel-dags", cl::Hidden,
-         cl::desc("Pop up a window to show isel dags as they are selected"));
+ViewISelDAGs("view-isel-dags", cl::Hidden,
+          cl::desc("Pop up a window to show isel dags as they are selected"));
+static cl::opt<bool>
+ViewSchedDAGs("view-sched-dags", cl::Hidden,
+          cl::desc("Pop up a window to show sched dags as they are processed"));
 #else
-static const bool ViewDAGs = 0;
+static const bool ViewISelDAGs = 0;
+static const bool ViewSchedDAGs = 0;
 #endif
 
 namespace llvm {
@@ -1708,7 +1713,7 @@
   // Run the DAG combiner in post-legalize mode.
   DAG.Combine(true);
   
-  if (ViewDAGs) DAG.viewGraph();
+  if (ViewISelDAGs) DAG.viewGraph();
   
   // Third, instruction select all of the operations to machine code, adding the
   // code to the MachineBasicBlock.
@@ -1735,3 +1740,12 @@
     BB->addSuccessor(Succ0MBB);
   }
 }
+
+//===----------------------------------------------------------------------===//
+/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
+/// target node in the graph.
+void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
+  if (ViewSchedDAGs) DAG.viewGraph();
+  ScheduleDAG *SL = createSimpleDAGScheduler(DAG, BB);
+  SL->Run();
+}