| //===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file was developed by the LLVM research group and is distributed under | 
 | // the University of Illinois Open Source License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file implements the LiveVariable analysis pass.  For each machine | 
 | // instruction in the function, this pass calculates the set of registers that | 
 | // are immediately dead after the instruction (i.e., the instruction calculates | 
 | // the value, but it is never used) and the set of registers that are used by | 
 | // the instruction, but are never used after the instruction (i.e., they are | 
 | // killed). | 
 | // | 
 | // This class computes live variables using are sparse implementation based on | 
 | // the machine code SSA form.  This class computes live variable information for | 
 | // each virtual and _register allocatable_ physical register in a function.  It | 
 | // uses the dominance properties of SSA form to efficiently compute live | 
 | // variables for virtual registers, and assumes that physical registers are only | 
 | // live within a single basic block (allowing it to do a single local analysis | 
 | // to resolve physical register lifetimes in each basic block).  If a physical | 
 | // register is not register allocatable, it is not tracked.  This is useful for | 
 | // things like the stack pointer and condition codes. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/CodeGen/LiveVariables.h" | 
 | #include "llvm/CodeGen/MachineInstr.h" | 
 | #include "llvm/Target/MRegisterInfo.h" | 
 | #include "llvm/Target/TargetInstrInfo.h" | 
 | #include "llvm/Target/TargetMachine.h" | 
 | #include "llvm/ADT/DepthFirstIterator.h" | 
 | #include "llvm/ADT/STLExtras.h" | 
 | #include "llvm/Config/alloca.h" | 
 | using namespace llvm; | 
 |  | 
 | static RegisterAnalysis<LiveVariables> X("livevars", "Live Variable Analysis"); | 
 |  | 
 | LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) { | 
 |   assert(MRegisterInfo::isVirtualRegister(RegIdx) && | 
 |          "getVarInfo: not a virtual register!"); | 
 |   RegIdx -= MRegisterInfo::FirstVirtualRegister; | 
 |   if (RegIdx >= VirtRegInfo.size()) { | 
 |     if (RegIdx >= 2*VirtRegInfo.size()) | 
 |       VirtRegInfo.resize(RegIdx*2); | 
 |     else | 
 |       VirtRegInfo.resize(2*VirtRegInfo.size()); | 
 |   } | 
 |   return VirtRegInfo[RegIdx]; | 
 | } | 
 |  | 
 |  | 
 |  | 
 | void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo, | 
 |                                             MachineBasicBlock *MBB) { | 
 |   unsigned BBNum = MBB->getNumber(); | 
 |  | 
 |   // Check to see if this basic block is one of the killing blocks.  If so, | 
 |   // remove it... | 
 |   for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) | 
 |     if (VRInfo.Kills[i]->getParent() == MBB) { | 
 |       VRInfo.Kills.erase(VRInfo.Kills.begin()+i);  // Erase entry | 
 |       break; | 
 |     } | 
 |  | 
 |   if (MBB == VRInfo.DefInst->getParent()) return;  // Terminate recursion | 
 |  | 
 |   if (VRInfo.AliveBlocks.size() <= BBNum) | 
 |     VRInfo.AliveBlocks.resize(BBNum+1);  // Make space... | 
 |  | 
 |   if (VRInfo.AliveBlocks[BBNum]) | 
 |     return;  // We already know the block is live | 
 |  | 
 |   // Mark the variable known alive in this bb | 
 |   VRInfo.AliveBlocks[BBNum] = true; | 
 |  | 
 |   for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), | 
 |          E = MBB->pred_end(); PI != E; ++PI) | 
 |     MarkVirtRegAliveInBlock(VRInfo, *PI); | 
 | } | 
 |  | 
 | void LiveVariables::HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB, | 
 |                                      MachineInstr *MI) { | 
 |   assert(VRInfo.DefInst && "Register use before def!"); | 
 |  | 
 |   // Check to see if this basic block is already a kill block... | 
 |   if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) { | 
 |     // Yes, this register is killed in this basic block already.  Increase the | 
 |     // live range by updating the kill instruction. | 
 |     VRInfo.Kills.back() = MI; | 
 |     return; | 
 |   } | 
 |  | 
 | #ifndef NDEBUG | 
 |   for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) | 
 |     assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!"); | 
 | #endif | 
 |  | 
 |   assert(MBB != VRInfo.DefInst->getParent() && | 
 |          "Should have kill for defblock!"); | 
 |  | 
 |   // Add a new kill entry for this basic block. | 
 |   VRInfo.Kills.push_back(MI); | 
 |  | 
 |   // Update all dominating blocks to mark them known live. | 
 |   for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), | 
 |          E = MBB->pred_end(); PI != E; ++PI) | 
 |     MarkVirtRegAliveInBlock(VRInfo, *PI); | 
 | } | 
 |  | 
 | void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) { | 
 |   PhysRegInfo[Reg] = MI; | 
 |   PhysRegUsed[Reg] = true; | 
 |  | 
 |   for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg); | 
 |        unsigned Alias = *AliasSet; ++AliasSet) { | 
 |     PhysRegInfo[Alias] = MI; | 
 |     PhysRegUsed[Alias] = true; | 
 |   } | 
 | } | 
 |  | 
 | void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) { | 
 |   // Does this kill a previous version of this register? | 
 |   if (MachineInstr *LastUse = PhysRegInfo[Reg]) { | 
 |     if (PhysRegUsed[Reg]) | 
 |       RegistersKilled.insert(std::make_pair(LastUse, Reg)); | 
 |     else | 
 |       RegistersDead.insert(std::make_pair(LastUse, Reg)); | 
 |   } | 
 |   PhysRegInfo[Reg] = MI; | 
 |   PhysRegUsed[Reg] = false; | 
 |  | 
 |   for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg); | 
 |        unsigned Alias = *AliasSet; ++AliasSet) { | 
 |     if (MachineInstr *LastUse = PhysRegInfo[Alias]) { | 
 |       if (PhysRegUsed[Alias]) | 
 |         RegistersKilled.insert(std::make_pair(LastUse, Alias)); | 
 |       else | 
 |         RegistersDead.insert(std::make_pair(LastUse, Alias)); | 
 |     } | 
 |     PhysRegInfo[Alias] = MI; | 
 |     PhysRegUsed[Alias] = false; | 
 |   } | 
 | } | 
 |  | 
 | bool LiveVariables::runOnMachineFunction(MachineFunction &MF) { | 
 |   const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo(); | 
 |   RegInfo = MF.getTarget().getRegisterInfo(); | 
 |   assert(RegInfo && "Target doesn't have register information?"); | 
 |  | 
 |   AllocatablePhysicalRegisters = RegInfo->getAllocatableSet(MF); | 
 |  | 
 |   // PhysRegInfo - Keep track of which instruction was the last use of a | 
 |   // physical register.  This is a purely local property, because all physical | 
 |   // register references as presumed dead across basic blocks. | 
 |   // | 
 |   PhysRegInfo = (MachineInstr**)alloca(sizeof(MachineInstr*) * | 
 |                                        RegInfo->getNumRegs()); | 
 |   PhysRegUsed = (bool*)alloca(sizeof(bool)*RegInfo->getNumRegs()); | 
 |   std::fill(PhysRegInfo, PhysRegInfo+RegInfo->getNumRegs(), (MachineInstr*)0); | 
 |  | 
 |   /// Get some space for a respectable number of registers... | 
 |   VirtRegInfo.resize(64); | 
 |  | 
 |   // Mark live-in registers as live-in. | 
 |   for (MachineFunction::livein_iterator I = MF.livein_begin(), | 
 |          E = MF.livein_end(); I != E; ++I) { | 
 |     assert(MRegisterInfo::isPhysicalRegister(I->first) && | 
 |            "Cannot have a live-in virtual register!"); | 
 |     HandlePhysRegDef(I->first, 0); | 
 |   } | 
 |  | 
 |   // Calculate live variable information in depth first order on the CFG of the | 
 |   // function.  This guarantees that we will see the definition of a virtual | 
 |   // register before its uses due to dominance properties of SSA (except for PHI | 
 |   // nodes, which are treated as a special case). | 
 |   // | 
 |   MachineBasicBlock *Entry = MF.begin(); | 
 |   std::set<MachineBasicBlock*> Visited; | 
 |   for (df_ext_iterator<MachineBasicBlock*> DFI = df_ext_begin(Entry, Visited), | 
 |          E = df_ext_end(Entry, Visited); DFI != E; ++DFI) { | 
 |     MachineBasicBlock *MBB = *DFI; | 
 |     unsigned BBNum = MBB->getNumber(); | 
 |  | 
 |     // Loop over all of the instructions, processing them. | 
 |     for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); | 
 |          I != E; ++I) { | 
 |       MachineInstr *MI = I; | 
 |       const TargetInstrDescriptor &MID = TII.get(MI->getOpcode()); | 
 |  | 
 |       // Process all of the operands of the instruction... | 
 |       unsigned NumOperandsToProcess = MI->getNumOperands(); | 
 |  | 
 |       // Unless it is a PHI node.  In this case, ONLY process the DEF, not any | 
 |       // of the uses.  They will be handled in other basic blocks. | 
 |       if (MI->getOpcode() == TargetInstrInfo::PHI) | 
 |         NumOperandsToProcess = 1; | 
 |  | 
 |       // Loop over implicit uses, using them. | 
 |       for (const unsigned *ImplicitUses = MID.ImplicitUses; | 
 |            *ImplicitUses; ++ImplicitUses) | 
 |         HandlePhysRegUse(*ImplicitUses, MI); | 
 |  | 
 |       // Process all explicit uses... | 
 |       for (unsigned i = 0; i != NumOperandsToProcess; ++i) { | 
 |         MachineOperand &MO = MI->getOperand(i); | 
 |         if (MO.isUse() && MO.isRegister() && MO.getReg()) { | 
 |           if (MRegisterInfo::isVirtualRegister(MO.getReg())){ | 
 |             HandleVirtRegUse(getVarInfo(MO.getReg()), MBB, MI); | 
 |           } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) && | 
 |                      AllocatablePhysicalRegisters[MO.getReg()]) { | 
 |             HandlePhysRegUse(MO.getReg(), MI); | 
 |           } | 
 |         } | 
 |       } | 
 |  | 
 |       // Loop over implicit defs, defining them. | 
 |       for (const unsigned *ImplicitDefs = MID.ImplicitDefs; | 
 |            *ImplicitDefs; ++ImplicitDefs) | 
 |         HandlePhysRegDef(*ImplicitDefs, MI); | 
 |  | 
 |       // Process all explicit defs... | 
 |       for (unsigned i = 0; i != NumOperandsToProcess; ++i) { | 
 |         MachineOperand &MO = MI->getOperand(i); | 
 |         if (MO.isDef() && MO.isRegister() && MO.getReg()) { | 
 |           if (MRegisterInfo::isVirtualRegister(MO.getReg())) { | 
 |             VarInfo &VRInfo = getVarInfo(MO.getReg()); | 
 |  | 
 |             assert(VRInfo.DefInst == 0 && "Variable multiply defined!"); | 
 |             VRInfo.DefInst = MI; | 
 |             // Defaults to dead | 
 |             VRInfo.Kills.push_back(MI); | 
 |           } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) && | 
 |                      AllocatablePhysicalRegisters[MO.getReg()]) { | 
 |             HandlePhysRegDef(MO.getReg(), MI); | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     // Handle any virtual assignments from PHI nodes which might be at the | 
 |     // bottom of this basic block.  We check all of our successor blocks to see | 
 |     // if they have PHI nodes, and if so, we simulate an assignment at the end | 
 |     // of the current block. | 
 |     for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), | 
 |            E = MBB->succ_end(); SI != E; ++SI) { | 
 |       MachineBasicBlock *Succ = *SI; | 
 |  | 
 |       // PHI nodes are guaranteed to be at the top of the block... | 
 |       for (MachineBasicBlock::iterator MI = Succ->begin(), ME = Succ->end(); | 
 |            MI != ME && MI->getOpcode() == TargetInstrInfo::PHI; ++MI) { | 
 |         for (unsigned i = 1; ; i += 2) { | 
 |           assert(MI->getNumOperands() > i+1 && | 
 |                  "Didn't find an entry for our predecessor??"); | 
 |           if (MI->getOperand(i+1).getMachineBasicBlock() == MBB) { | 
 |             MachineOperand &MO = MI->getOperand(i); | 
 |             if (!MO.getVRegValueOrNull()) { | 
 |               VarInfo &VRInfo = getVarInfo(MO.getReg()); | 
 |  | 
 |               // Only mark it alive only in the block we are representing... | 
 |               MarkVirtRegAliveInBlock(VRInfo, MBB); | 
 |               break;   // Found the PHI entry for this block... | 
 |             } | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     // Finally, if the last block in the function is a return, make sure to mark | 
 |     // it as using all of the live-out values in the function. | 
 |     if (!MBB->empty() && TII.isReturn(MBB->back().getOpcode())) { | 
 |       MachineInstr *Ret = &MBB->back(); | 
 |       for (MachineFunction::liveout_iterator I = MF.liveout_begin(), | 
 |              E = MF.liveout_end(); I != E; ++I) { | 
 |         assert(MRegisterInfo::isPhysicalRegister(*I) && | 
 |                "Cannot have a live-in virtual register!"); | 
 |         HandlePhysRegUse(*I, Ret); | 
 |       } | 
 |     } | 
 |  | 
 |     // Loop over PhysRegInfo, killing any registers that are available at the | 
 |     // end of the basic block.  This also resets the PhysRegInfo map. | 
 |     for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i) | 
 |       if (PhysRegInfo[i]) | 
 |         HandlePhysRegDef(i, 0); | 
 |   } | 
 |  | 
 |   // Convert the information we have gathered into VirtRegInfo and transform it | 
 |   // into a form usable by RegistersKilled. | 
 |   // | 
 |   for (unsigned i = 0, e = VirtRegInfo.size(); i != e; ++i) | 
 |     for (unsigned j = 0, e = VirtRegInfo[i].Kills.size(); j != e; ++j) { | 
 |       if (VirtRegInfo[i].Kills[j] == VirtRegInfo[i].DefInst) | 
 |         RegistersDead.insert(std::make_pair(VirtRegInfo[i].Kills[j], | 
 |                              i + MRegisterInfo::FirstVirtualRegister)); | 
 |  | 
 |       else | 
 |         RegistersKilled.insert(std::make_pair(VirtRegInfo[i].Kills[j], | 
 |                                i + MRegisterInfo::FirstVirtualRegister)); | 
 |     } | 
 |  | 
 |   // Check to make sure there are no unreachable blocks in the MC CFG for the | 
 |   // function.  If so, it is due to a bug in the instruction selector or some | 
 |   // other part of the code generator if this happens. | 
 | #ifndef NDEBUG | 
 |   for(MachineFunction::iterator i = MF.begin(), e = MF.end(); i != e; ++i) | 
 |     assert(Visited.count(&*i) != 0 && "unreachable basic block found"); | 
 | #endif | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// instructionChanged - When the address of an instruction changes, this | 
 | /// method should be called so that live variables can update its internal | 
 | /// data structures.  This removes the records for OldMI, transfering them to | 
 | /// the records for NewMI. | 
 | void LiveVariables::instructionChanged(MachineInstr *OldMI, | 
 |                                        MachineInstr *NewMI) { | 
 |   // If the instruction defines any virtual registers, update the VarInfo for | 
 |   // the instruction. | 
 |   for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { | 
 |     MachineOperand &MO = OldMI->getOperand(i); | 
 |     if (MO.isRegister() && MO.getReg() && | 
 |         MRegisterInfo::isVirtualRegister(MO.getReg())) { | 
 |       unsigned Reg = MO.getReg(); | 
 |       VarInfo &VI = getVarInfo(Reg); | 
 |       if (MO.isDef()) { | 
 |         // Update the defining instruction. | 
 |         if (VI.DefInst == OldMI) | 
 |           VI.DefInst = NewMI; | 
 |       } | 
 |       if (MO.isUse()) { | 
 |         // If this is a kill of the value, update the VI kills list. | 
 |         if (VI.removeKill(OldMI)) | 
 |           VI.Kills.push_back(NewMI);   // Yes, there was a kill of it | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Move the killed information over... | 
 |   killed_iterator I, E; | 
 |   tie(I, E) = killed_range(OldMI); | 
 |   std::vector<unsigned> Regs; | 
 |   for (killed_iterator A = I; A != E; ++A) | 
 |     Regs.push_back(A->second); | 
 |   RegistersKilled.erase(I, E); | 
 |  | 
 |   for (unsigned i = 0, e = Regs.size(); i != e; ++i) | 
 |     RegistersKilled.insert(std::make_pair(NewMI, Regs[i])); | 
 |   Regs.clear(); | 
 |  | 
 |   // Move the dead information over... | 
 |   tie(I, E) = dead_range(OldMI); | 
 |   for (killed_iterator A = I; A != E; ++A) | 
 |     Regs.push_back(A->second); | 
 |   RegistersDead.erase(I, E); | 
 |  | 
 |   for (unsigned i = 0, e = Regs.size(); i != e; ++i) | 
 |     RegistersDead.insert(std::make_pair(NewMI, Regs[i])); | 
 | } |