| //===- MachineSSAUpdater.cpp - Unstructured SSA Update Tool ---------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the MachineSSAUpdater class. It's based on SSAUpdater |
| // class in lib/Transforms/Utils. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/MachineSSAUpdater.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/Support/AlignOf.h" |
| #include "llvm/Support/Allocator.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| using namespace llvm; |
| |
| /// BBInfo - Per-basic block information used internally by MachineSSAUpdater. |
| class MachineSSAUpdater::BBInfo { |
| public: |
| MachineBasicBlock *BB; // Back-pointer to the corresponding block. |
| unsigned AvailableVal; // Value to use in this block. |
| BBInfo *DefBB; // Block that defines the available value. |
| int BlkNum; // Postorder number. |
| BBInfo *IDom; // Immediate dominator. |
| unsigned NumPreds; // Number of predecessor blocks. |
| BBInfo **Preds; // Array[NumPreds] of predecessor blocks. |
| MachineInstr *PHITag; // Marker for existing PHIs that match. |
| |
| BBInfo(MachineBasicBlock *ThisBB, unsigned V) |
| : BB(ThisBB), AvailableVal(V), DefBB(V ? this : 0), BlkNum(0), IDom(0), |
| NumPreds(0), Preds(0), PHITag(0) { } |
| }; |
| |
| typedef DenseMap<MachineBasicBlock*, MachineSSAUpdater::BBInfo*> BBMapTy; |
| |
| typedef DenseMap<MachineBasicBlock*, unsigned> AvailableValsTy; |
| static AvailableValsTy &getAvailableVals(void *AV) { |
| return *static_cast<AvailableValsTy*>(AV); |
| } |
| |
| static BBMapTy *getBBMap(void *BM) { |
| return static_cast<BBMapTy*>(BM); |
| } |
| |
| MachineSSAUpdater::MachineSSAUpdater(MachineFunction &MF, |
| SmallVectorImpl<MachineInstr*> *NewPHI) |
| : AV(0), BM(0), InsertedPHIs(NewPHI) { |
| TII = MF.getTarget().getInstrInfo(); |
| MRI = &MF.getRegInfo(); |
| } |
| |
| MachineSSAUpdater::~MachineSSAUpdater() { |
| delete &getAvailableVals(AV); |
| } |
| |
| /// Initialize - Reset this object to get ready for a new set of SSA |
| /// updates. ProtoValue is the value used to name PHI nodes. |
| void MachineSSAUpdater::Initialize(unsigned V) { |
| if (AV == 0) |
| AV = new AvailableValsTy(); |
| else |
| getAvailableVals(AV).clear(); |
| |
| VR = V; |
| VRC = MRI->getRegClass(VR); |
| } |
| |
| /// HasValueForBlock - Return true if the MachineSSAUpdater already has a value for |
| /// the specified block. |
| bool MachineSSAUpdater::HasValueForBlock(MachineBasicBlock *BB) const { |
| return getAvailableVals(AV).count(BB); |
| } |
| |
| /// AddAvailableValue - Indicate that a rewritten value is available in the |
| /// specified block with the specified value. |
| void MachineSSAUpdater::AddAvailableValue(MachineBasicBlock *BB, unsigned V) { |
| getAvailableVals(AV)[BB] = V; |
| } |
| |
| /// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is |
| /// live at the end of the specified block. |
| unsigned MachineSSAUpdater::GetValueAtEndOfBlock(MachineBasicBlock *BB) { |
| return GetValueAtEndOfBlockInternal(BB); |
| } |
| |
| static |
| unsigned LookForIdenticalPHI(MachineBasicBlock *BB, |
| SmallVector<std::pair<MachineBasicBlock*, unsigned>, 8> &PredValues) { |
| if (BB->empty()) |
| return 0; |
| |
| MachineBasicBlock::iterator I = BB->front(); |
| if (!I->isPHI()) |
| return 0; |
| |
| AvailableValsTy AVals; |
| for (unsigned i = 0, e = PredValues.size(); i != e; ++i) |
| AVals[PredValues[i].first] = PredValues[i].second; |
| while (I != BB->end() && I->isPHI()) { |
| bool Same = true; |
| for (unsigned i = 1, e = I->getNumOperands(); i != e; i += 2) { |
| unsigned SrcReg = I->getOperand(i).getReg(); |
| MachineBasicBlock *SrcBB = I->getOperand(i+1).getMBB(); |
| if (AVals[SrcBB] != SrcReg) { |
| Same = false; |
| break; |
| } |
| } |
| if (Same) |
| return I->getOperand(0).getReg(); |
| ++I; |
| } |
| return 0; |
| } |
| |
| /// InsertNewDef - Insert an empty PHI or IMPLICIT_DEF instruction which define |
| /// a value of the given register class at the start of the specified basic |
| /// block. It returns the virtual register defined by the instruction. |
| static |
| MachineInstr *InsertNewDef(unsigned Opcode, |
| MachineBasicBlock *BB, MachineBasicBlock::iterator I, |
| const TargetRegisterClass *RC, |
| MachineRegisterInfo *MRI, const TargetInstrInfo *TII) { |
| unsigned NewVR = MRI->createVirtualRegister(RC); |
| return BuildMI(*BB, I, DebugLoc(), TII->get(Opcode), NewVR); |
| } |
| |
| /// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that |
| /// is live in the middle of the specified block. |
| /// |
| /// GetValueInMiddleOfBlock is the same as GetValueAtEndOfBlock except in one |
| /// important case: if there is a definition of the rewritten value after the |
| /// 'use' in BB. Consider code like this: |
| /// |
| /// X1 = ... |
| /// SomeBB: |
| /// use(X) |
| /// X2 = ... |
| /// br Cond, SomeBB, OutBB |
| /// |
| /// In this case, there are two values (X1 and X2) added to the AvailableVals |
| /// set by the client of the rewriter, and those values are both live out of |
| /// their respective blocks. However, the use of X happens in the *middle* of |
| /// a block. Because of this, we need to insert a new PHI node in SomeBB to |
| /// merge the appropriate values, and this value isn't live out of the block. |
| /// |
| unsigned MachineSSAUpdater::GetValueInMiddleOfBlock(MachineBasicBlock *BB) { |
| // If there is no definition of the renamed variable in this block, just use |
| // GetValueAtEndOfBlock to do our work. |
| if (!HasValueForBlock(BB)) |
| return GetValueAtEndOfBlockInternal(BB); |
| |
| // If there are no predecessors, just return undef. |
| if (BB->pred_empty()) { |
| // Insert an implicit_def to represent an undef value. |
| MachineInstr *NewDef = InsertNewDef(TargetOpcode::IMPLICIT_DEF, |
| BB, BB->getFirstTerminator(), |
| VRC, MRI, TII); |
| return NewDef->getOperand(0).getReg(); |
| } |
| |
| // Otherwise, we have the hard case. Get the live-in values for each |
| // predecessor. |
| SmallVector<std::pair<MachineBasicBlock*, unsigned>, 8> PredValues; |
| unsigned SingularValue = 0; |
| |
| bool isFirstPred = true; |
| for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(), |
| E = BB->pred_end(); PI != E; ++PI) { |
| MachineBasicBlock *PredBB = *PI; |
| unsigned PredVal = GetValueAtEndOfBlockInternal(PredBB); |
| PredValues.push_back(std::make_pair(PredBB, PredVal)); |
| |
| // Compute SingularValue. |
| if (isFirstPred) { |
| SingularValue = PredVal; |
| isFirstPred = false; |
| } else if (PredVal != SingularValue) |
| SingularValue = 0; |
| } |
| |
| // Otherwise, if all the merged values are the same, just use it. |
| if (SingularValue != 0) |
| return SingularValue; |
| |
| // If an identical PHI is already in BB, just reuse it. |
| unsigned DupPHI = LookForIdenticalPHI(BB, PredValues); |
| if (DupPHI) |
| return DupPHI; |
| |
| // Otherwise, we do need a PHI: insert one now. |
| MachineBasicBlock::iterator Loc = BB->empty() ? BB->end() : BB->front(); |
| MachineInstr *InsertedPHI = InsertNewDef(TargetOpcode::PHI, BB, |
| Loc, VRC, MRI, TII); |
| |
| // Fill in all the predecessors of the PHI. |
| MachineInstrBuilder MIB(InsertedPHI); |
| for (unsigned i = 0, e = PredValues.size(); i != e; ++i) |
| MIB.addReg(PredValues[i].second).addMBB(PredValues[i].first); |
| |
| // See if the PHI node can be merged to a single value. This can happen in |
| // loop cases when we get a PHI of itself and one other value. |
| if (unsigned ConstVal = InsertedPHI->isConstantValuePHI()) { |
| InsertedPHI->eraseFromParent(); |
| return ConstVal; |
| } |
| |
| // If the client wants to know about all new instructions, tell it. |
| if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI); |
| |
| DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n"); |
| return InsertedPHI->getOperand(0).getReg(); |
| } |
| |
| static |
| MachineBasicBlock *findCorrespondingPred(const MachineInstr *MI, |
| MachineOperand *U) { |
| for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) { |
| if (&MI->getOperand(i) == U) |
| return MI->getOperand(i+1).getMBB(); |
| } |
| |
| llvm_unreachable("MachineOperand::getParent() failure?"); |
| return 0; |
| } |
| |
| /// RewriteUse - Rewrite a use of the symbolic value. This handles PHI nodes, |
| /// which use their value in the corresponding predecessor. |
| void MachineSSAUpdater::RewriteUse(MachineOperand &U) { |
| MachineInstr *UseMI = U.getParent(); |
| unsigned NewVR = 0; |
| if (UseMI->isPHI()) { |
| MachineBasicBlock *SourceBB = findCorrespondingPred(UseMI, &U); |
| NewVR = GetValueAtEndOfBlockInternal(SourceBB); |
| } else { |
| NewVR = GetValueInMiddleOfBlock(UseMI->getParent()); |
| } |
| |
| U.setReg(NewVR); |
| } |
| |
| void MachineSSAUpdater::ReplaceRegWith(unsigned OldReg, unsigned NewReg) { |
| MRI->replaceRegWith(OldReg, NewReg); |
| |
| AvailableValsTy &AvailableVals = getAvailableVals(AV); |
| for (DenseMap<MachineBasicBlock*, unsigned>::iterator |
| I = AvailableVals.begin(), E = AvailableVals.end(); I != E; ++I) |
| if (I->second == OldReg) |
| I->second = NewReg; |
| } |
| |
| /// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry |
| /// for the specified BB and if so, return it. If not, construct SSA form by |
| /// first calculating the required placement of PHIs and then inserting new |
| /// PHIs where needed. |
| unsigned MachineSSAUpdater::GetValueAtEndOfBlockInternal(MachineBasicBlock *BB){ |
| AvailableValsTy &AvailableVals = getAvailableVals(AV); |
| if (unsigned V = AvailableVals[BB]) |
| return V; |
| |
| // Pool allocation used internally by GetValueAtEndOfBlock. |
| BumpPtrAllocator Allocator; |
| BBMapTy BBMapObj; |
| BM = &BBMapObj; |
| |
| SmallVector<BBInfo*, 100> BlockList; |
| BuildBlockList(BB, &BlockList, &Allocator); |
| |
| // Special case: bail out if BB is unreachable. |
| if (BlockList.size() == 0) { |
| BM = 0; |
| // Insert an implicit_def to represent an undef value. |
| MachineInstr *NewDef = InsertNewDef(TargetOpcode::IMPLICIT_DEF, |
| BB, BB->getFirstTerminator(), |
| VRC, MRI, TII); |
| unsigned V = NewDef->getOperand(0).getReg(); |
| AvailableVals[BB] = V; |
| return V; |
| } |
| |
| FindDominators(&BlockList); |
| FindPHIPlacement(&BlockList); |
| FindAvailableVals(&BlockList); |
| |
| BM = 0; |
| return BBMapObj[BB]->DefBB->AvailableVal; |
| } |
| |
| /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds |
| /// vector, set Info->NumPreds, and allocate space in Info->Preds. |
| static void FindPredecessorBlocks(MachineSSAUpdater::BBInfo *Info, |
| SmallVectorImpl<MachineBasicBlock*> *Preds, |
| BumpPtrAllocator *Allocator) { |
| MachineBasicBlock *BB = Info->BB; |
| for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(), |
| E = BB->pred_end(); PI != E; ++PI) |
| Preds->push_back(*PI); |
| |
| Info->NumPreds = Preds->size(); |
| Info->Preds = static_cast<MachineSSAUpdater::BBInfo**> |
| (Allocator->Allocate(Info->NumPreds * sizeof(MachineSSAUpdater::BBInfo*), |
| AlignOf<MachineSSAUpdater::BBInfo*>::Alignment)); |
| } |
| |
| /// BuildBlockList - Starting from the specified basic block, traverse back |
| /// through its predecessors until reaching blocks with known values. Create |
| /// BBInfo structures for the blocks and append them to the block list. |
| void MachineSSAUpdater::BuildBlockList(MachineBasicBlock *BB, |
| BlockListTy *BlockList, |
| BumpPtrAllocator *Allocator) { |
| AvailableValsTy &AvailableVals = getAvailableVals(AV); |
| BBMapTy *BBMap = getBBMap(BM); |
| SmallVector<BBInfo*, 10> RootList; |
| SmallVector<BBInfo*, 64> WorkList; |
| |
| BBInfo *Info = new (*Allocator) BBInfo(BB, 0); |
| (*BBMap)[BB] = Info; |
| WorkList.push_back(Info); |
| |
| // Search backward from BB, creating BBInfos along the way and stopping when |
| // reaching blocks that define the value. Record those defining blocks on |
| // the RootList. |
| SmallVector<MachineBasicBlock*, 10> Preds; |
| while (!WorkList.empty()) { |
| Info = WorkList.pop_back_val(); |
| Preds.clear(); |
| FindPredecessorBlocks(Info, &Preds, Allocator); |
| |
| // Treat an unreachable predecessor as a definition with 'undef'. |
| if (Info->NumPreds == 0) { |
| // Insert an implicit_def to represent an undef value. |
| MachineInstr *NewDef = InsertNewDef(TargetOpcode::IMPLICIT_DEF, |
| Info->BB, |
| Info->BB->getFirstTerminator(), |
| VRC, MRI, TII); |
| Info->AvailableVal = NewDef->getOperand(0).getReg(); |
| Info->DefBB = Info; |
| RootList.push_back(Info); |
| continue; |
| } |
| |
| for (unsigned p = 0; p != Info->NumPreds; ++p) { |
| MachineBasicBlock *Pred = Preds[p]; |
| // Check if BBMap already has a BBInfo for the predecessor block. |
| BBMapTy::value_type &BBMapBucket = BBMap->FindAndConstruct(Pred); |
| if (BBMapBucket.second) { |
| Info->Preds[p] = BBMapBucket.second; |
| continue; |
| } |
| |
| // Create a new BBInfo for the predecessor. |
| unsigned PredVal = AvailableVals.lookup(Pred); |
| BBInfo *PredInfo = new (*Allocator) BBInfo(Pred, PredVal); |
| BBMapBucket.second = PredInfo; |
| Info->Preds[p] = PredInfo; |
| |
| if (PredInfo->AvailableVal) { |
| RootList.push_back(PredInfo); |
| continue; |
| } |
| WorkList.push_back(PredInfo); |
| } |
| } |
| |
| // Now that we know what blocks are backwards-reachable from the starting |
| // block, do a forward depth-first traversal to assign postorder numbers |
| // to those blocks. |
| BBInfo *PseudoEntry = new (*Allocator) BBInfo(0, 0); |
| unsigned BlkNum = 1; |
| |
| // Initialize the worklist with the roots from the backward traversal. |
| while (!RootList.empty()) { |
| Info = RootList.pop_back_val(); |
| Info->IDom = PseudoEntry; |
| Info->BlkNum = -1; |
| WorkList.push_back(Info); |
| } |
| |
| while (!WorkList.empty()) { |
| Info = WorkList.back(); |
| |
| if (Info->BlkNum == -2) { |
| // All the successors have been handled; assign the postorder number. |
| Info->BlkNum = BlkNum++; |
| // If not a root, put it on the BlockList. |
| if (!Info->AvailableVal) |
| BlockList->push_back(Info); |
| WorkList.pop_back(); |
| continue; |
| } |
| |
| // Leave this entry on the worklist, but set its BlkNum to mark that its |
| // successors have been put on the worklist. When it returns to the top |
| // the list, after handling its successors, it will be assigned a number. |
| Info->BlkNum = -2; |
| |
| // Add unvisited successors to the work list. |
| for (MachineBasicBlock::succ_iterator SI = Info->BB->succ_begin(), |
| E = Info->BB->succ_end(); SI != E; ++SI) { |
| BBInfo *SuccInfo = (*BBMap)[*SI]; |
| if (!SuccInfo || SuccInfo->BlkNum) |
| continue; |
| SuccInfo->BlkNum = -1; |
| WorkList.push_back(SuccInfo); |
| } |
| } |
| PseudoEntry->BlkNum = BlkNum; |
| } |
| |
| /// IntersectDominators - This is the dataflow lattice "meet" operation for |
| /// finding dominators. Given two basic blocks, it walks up the dominator |
| /// tree until it finds a common dominator of both. It uses the postorder |
| /// number of the blocks to determine how to do that. |
| static MachineSSAUpdater::BBInfo * |
| IntersectDominators(MachineSSAUpdater::BBInfo *Blk1, |
| MachineSSAUpdater::BBInfo *Blk2) { |
| while (Blk1 != Blk2) { |
| while (Blk1->BlkNum < Blk2->BlkNum) { |
| Blk1 = Blk1->IDom; |
| if (!Blk1) |
| return Blk2; |
| } |
| while (Blk2->BlkNum < Blk1->BlkNum) { |
| Blk2 = Blk2->IDom; |
| if (!Blk2) |
| return Blk1; |
| } |
| } |
| return Blk1; |
| } |
| |
| /// FindDominators - Calculate the dominator tree for the subset of the CFG |
| /// corresponding to the basic blocks on the BlockList. This uses the |
| /// algorithm from: "A Simple, Fast Dominance Algorithm" by Cooper, Harvey and |
| /// Kennedy, published in Software--Practice and Experience, 2001, 4:1-10. |
| /// Because the CFG subset does not include any edges leading into blocks that |
| /// define the value, the results are not the usual dominator tree. The CFG |
| /// subset has a single pseudo-entry node with edges to a set of root nodes |
| /// for blocks that define the value. The dominators for this subset CFG are |
| /// not the standard dominators but they are adequate for placing PHIs within |
| /// the subset CFG. |
| void MachineSSAUpdater::FindDominators(BlockListTy *BlockList) { |
| bool Changed; |
| do { |
| Changed = false; |
| // Iterate over the list in reverse order, i.e., forward on CFG edges. |
| for (BlockListTy::reverse_iterator I = BlockList->rbegin(), |
| E = BlockList->rend(); I != E; ++I) { |
| BBInfo *Info = *I; |
| |
| // Start with the first predecessor. |
| assert(Info->NumPreds > 0 && "unreachable block"); |
| BBInfo *NewIDom = Info->Preds[0]; |
| |
| // Iterate through the block's other predecessors. |
| for (unsigned p = 1; p != Info->NumPreds; ++p) { |
| BBInfo *Pred = Info->Preds[p]; |
| NewIDom = IntersectDominators(NewIDom, Pred); |
| } |
| |
| // Check if the IDom value has changed. |
| if (NewIDom != Info->IDom) { |
| Info->IDom = NewIDom; |
| Changed = true; |
| } |
| } |
| } while (Changed); |
| } |
| |
| /// IsDefInDomFrontier - Search up the dominator tree from Pred to IDom for |
| /// any blocks containing definitions of the value. If one is found, then the |
| /// successor of Pred is in the dominance frontier for the definition, and |
| /// this function returns true. |
| static bool IsDefInDomFrontier(const MachineSSAUpdater::BBInfo *Pred, |
| const MachineSSAUpdater::BBInfo *IDom) { |
| for (; Pred != IDom; Pred = Pred->IDom) { |
| if (Pred->DefBB == Pred) |
| return true; |
| } |
| return false; |
| } |
| |
| /// FindPHIPlacement - PHIs are needed in the iterated dominance frontiers of |
| /// the known definitions. Iteratively add PHIs in the dom frontiers until |
| /// nothing changes. Along the way, keep track of the nearest dominating |
| /// definitions for non-PHI blocks. |
| void MachineSSAUpdater::FindPHIPlacement(BlockListTy *BlockList) { |
| bool Changed; |
| do { |
| Changed = false; |
| // Iterate over the list in reverse order, i.e., forward on CFG edges. |
| for (BlockListTy::reverse_iterator I = BlockList->rbegin(), |
| E = BlockList->rend(); I != E; ++I) { |
| BBInfo *Info = *I; |
| |
| // If this block already needs a PHI, there is nothing to do here. |
| if (Info->DefBB == Info) |
| continue; |
| |
| // Default to use the same def as the immediate dominator. |
| BBInfo *NewDefBB = Info->IDom->DefBB; |
| for (unsigned p = 0; p != Info->NumPreds; ++p) { |
| if (IsDefInDomFrontier(Info->Preds[p], Info->IDom)) { |
| // Need a PHI here. |
| NewDefBB = Info; |
| break; |
| } |
| } |
| |
| // Check if anything changed. |
| if (NewDefBB != Info->DefBB) { |
| Info->DefBB = NewDefBB; |
| Changed = true; |
| } |
| } |
| } while (Changed); |
| } |
| |
| /// FindAvailableVal - If this block requires a PHI, first check if an existing |
| /// PHI matches the PHI placement and reaching definitions computed earlier, |
| /// and if not, create a new PHI. Visit all the block's predecessors to |
| /// calculate the available value for each one and fill in the incoming values |
| /// for a new PHI. |
| void MachineSSAUpdater::FindAvailableVals(BlockListTy *BlockList) { |
| AvailableValsTy &AvailableVals = getAvailableVals(AV); |
| |
| // Go through the worklist in forward order (i.e., backward through the CFG) |
| // and check if existing PHIs can be used. If not, create empty PHIs where |
| // they are needed. |
| for (BlockListTy::iterator I = BlockList->begin(), E = BlockList->end(); |
| I != E; ++I) { |
| BBInfo *Info = *I; |
| // Check if there needs to be a PHI in BB. |
| if (Info->DefBB != Info) |
| continue; |
| |
| // Look for an existing PHI. |
| FindExistingPHI(Info->BB, BlockList); |
| if (Info->AvailableVal) |
| continue; |
| |
| MachineBasicBlock::iterator Loc = |
| Info->BB->empty() ? Info->BB->end() : Info->BB->front(); |
| MachineInstr *InsertedPHI = InsertNewDef(TargetOpcode::PHI, Info->BB, Loc, |
| VRC, MRI, TII); |
| unsigned PHI = InsertedPHI->getOperand(0).getReg(); |
| Info->AvailableVal = PHI; |
| AvailableVals[Info->BB] = PHI; |
| } |
| |
| // Now go back through the worklist in reverse order to fill in the arguments |
| // for any new PHIs added in the forward traversal. |
| for (BlockListTy::reverse_iterator I = BlockList->rbegin(), |
| E = BlockList->rend(); I != E; ++I) { |
| BBInfo *Info = *I; |
| |
| if (Info->DefBB != Info) { |
| // Record the available value at join nodes to speed up subsequent |
| // uses of this SSAUpdater for the same value. |
| if (Info->NumPreds > 1) |
| AvailableVals[Info->BB] = Info->DefBB->AvailableVal; |
| continue; |
| } |
| |
| // Check if this block contains a newly added PHI. |
| unsigned PHI = Info->AvailableVal; |
| MachineInstr *InsertedPHI = MRI->getVRegDef(PHI); |
| if (!InsertedPHI->isPHI() || InsertedPHI->getNumOperands() > 1) |
| continue; |
| |
| // Iterate through the block's predecessors. |
| MachineInstrBuilder MIB(InsertedPHI); |
| for (unsigned p = 0; p != Info->NumPreds; ++p) { |
| BBInfo *PredInfo = Info->Preds[p]; |
| MachineBasicBlock *Pred = PredInfo->BB; |
| // Skip to the nearest preceding definition. |
| if (PredInfo->DefBB != PredInfo) |
| PredInfo = PredInfo->DefBB; |
| MIB.addReg(PredInfo->AvailableVal).addMBB(Pred); |
| } |
| |
| DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n"); |
| |
| // If the client wants to know about all new instructions, tell it. |
| if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI); |
| } |
| } |
| |
| /// FindExistingPHI - Look through the PHI nodes in a block to see if any of |
| /// them match what is needed. |
| void MachineSSAUpdater::FindExistingPHI(MachineBasicBlock *BB, |
| BlockListTy *BlockList) { |
| for (MachineBasicBlock::iterator BBI = BB->begin(), BBE = BB->end(); |
| BBI != BBE && BBI->isPHI(); ++BBI) { |
| if (CheckIfPHIMatches(BBI)) { |
| RecordMatchingPHI(BBI); |
| break; |
| } |
| // Match failed: clear all the PHITag values. |
| for (BlockListTy::iterator I = BlockList->begin(), E = BlockList->end(); |
| I != E; ++I) |
| (*I)->PHITag = 0; |
| } |
| } |
| |
| /// CheckIfPHIMatches - Check if a PHI node matches the placement and values |
| /// in the BBMap. |
| bool MachineSSAUpdater::CheckIfPHIMatches(MachineInstr *PHI) { |
| BBMapTy *BBMap = getBBMap(BM); |
| SmallVector<MachineInstr*, 20> WorkList; |
| WorkList.push_back(PHI); |
| |
| // Mark that the block containing this PHI has been visited. |
| (*BBMap)[PHI->getParent()]->PHITag = PHI; |
| |
| while (!WorkList.empty()) { |
| PHI = WorkList.pop_back_val(); |
| |
| // Iterate through the PHI's incoming values. |
| for (unsigned i = 1, e = PHI->getNumOperands(); i != e; i += 2) { |
| unsigned IncomingVal = PHI->getOperand(i).getReg(); |
| BBInfo *PredInfo = (*BBMap)[PHI->getOperand(i+1).getMBB()]; |
| // Skip to the nearest preceding definition. |
| if (PredInfo->DefBB != PredInfo) |
| PredInfo = PredInfo->DefBB; |
| |
| // Check if it matches the expected value. |
| if (PredInfo->AvailableVal) { |
| if (IncomingVal == PredInfo->AvailableVal) |
| continue; |
| return false; |
| } |
| |
| // Check if the value is a PHI in the correct block. |
| MachineInstr *IncomingPHIVal = MRI->getVRegDef(IncomingVal); |
| if (!IncomingPHIVal->isPHI() || |
| IncomingPHIVal->getParent() != PredInfo->BB) |
| return false; |
| |
| // If this block has already been visited, check if this PHI matches. |
| if (PredInfo->PHITag) { |
| if (IncomingPHIVal == PredInfo->PHITag) |
| continue; |
| return false; |
| } |
| PredInfo->PHITag = IncomingPHIVal; |
| |
| WorkList.push_back(IncomingPHIVal); |
| } |
| } |
| return true; |
| } |
| |
| /// RecordMatchingPHI - For a PHI node that matches, record it and its input |
| /// PHIs in both the BBMap and the AvailableVals mapping. |
| void MachineSSAUpdater::RecordMatchingPHI(MachineInstr *PHI) { |
| BBMapTy *BBMap = getBBMap(BM); |
| AvailableValsTy &AvailableVals = getAvailableVals(AV); |
| SmallVector<MachineInstr*, 20> WorkList; |
| WorkList.push_back(PHI); |
| |
| // Record this PHI. |
| MachineBasicBlock *BB = PHI->getParent(); |
| AvailableVals[BB] = PHI->getOperand(0).getReg(); |
| (*BBMap)[BB]->AvailableVal = PHI->getOperand(0).getReg(); |
| |
| while (!WorkList.empty()) { |
| PHI = WorkList.pop_back_val(); |
| |
| // Iterate through the PHI's incoming values. |
| for (unsigned i = 1, e = PHI->getNumOperands(); i != e; i += 2) { |
| unsigned IncomingVal = PHI->getOperand(i).getReg(); |
| MachineInstr *IncomingPHIVal = MRI->getVRegDef(IncomingVal); |
| if (!IncomingPHIVal->isPHI()) continue; |
| BB = IncomingPHIVal->getParent(); |
| BBInfo *Info = (*BBMap)[BB]; |
| if (!Info || Info->AvailableVal) |
| continue; |
| |
| // Record the PHI and add it to the worklist. |
| AvailableVals[BB] = IncomingVal; |
| Info->AvailableVal = IncomingVal; |
| WorkList.push_back(IncomingPHIVal); |
| } |
| } |
| } |