Split the Add, Sub, and Mul instruction opcodes into separate
integer and floating-point opcodes, introducing
FAdd, FSub, and FMul.
For now, the AsmParser, BitcodeReader, and IRBuilder all preserve
backwards compatability, and the Core LLVM APIs preserve backwards
compatibility for IR producers. Most front-ends won't need to change
immediately.
This implements the first step of the plan outlined here:
http://nondot.org/sabre/LLVMNotes/IntegerOverflow.txt
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72897 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/ExecutionEngine/Interpreter/Execution.cpp b/lib/ExecutionEngine/Interpreter/Execution.cpp
index 765fed2..7dfeae0 100644
--- a/lib/ExecutionEngine/Interpreter/Execution.cpp
+++ b/lib/ExecutionEngine/Interpreter/Execution.cpp
@@ -64,45 +64,35 @@
Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \
break
-#define IMPLEMENT_INTEGER_BINOP1(OP, TY) \
- case Type::IntegerTyID: { \
- Dest.IntVal = Src1.IntVal OP Src2.IntVal; \
- break; \
- }
-
-
-static void executeAddInst(GenericValue &Dest, GenericValue Src1,
- GenericValue Src2, const Type *Ty) {
+static void executeFAddInst(GenericValue &Dest, GenericValue Src1,
+ GenericValue Src2, const Type *Ty) {
switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_BINOP1(+, Ty);
IMPLEMENT_BINARY_OPERATOR(+, Float);
IMPLEMENT_BINARY_OPERATOR(+, Double);
default:
- cerr << "Unhandled type for Add instruction: " << *Ty << "\n";
+ cerr << "Unhandled type for FAdd instruction: " << *Ty << "\n";
abort();
}
}
-static void executeSubInst(GenericValue &Dest, GenericValue Src1,
- GenericValue Src2, const Type *Ty) {
+static void executeFSubInst(GenericValue &Dest, GenericValue Src1,
+ GenericValue Src2, const Type *Ty) {
switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_BINOP1(-, Ty);
IMPLEMENT_BINARY_OPERATOR(-, Float);
IMPLEMENT_BINARY_OPERATOR(-, Double);
default:
- cerr << "Unhandled type for Sub instruction: " << *Ty << "\n";
+ cerr << "Unhandled type for FSub instruction: " << *Ty << "\n";
abort();
}
}
-static void executeMulInst(GenericValue &Dest, GenericValue Src1,
- GenericValue Src2, const Type *Ty) {
+static void executeFMulInst(GenericValue &Dest, GenericValue Src1,
+ GenericValue Src2, const Type *Ty) {
switch (Ty->getTypeID()) {
- IMPLEMENT_INTEGER_BINOP1(*, Ty);
IMPLEMENT_BINARY_OPERATOR(*, Float);
IMPLEMENT_BINARY_OPERATOR(*, Double);
default:
- cerr << "Unhandled type for Mul instruction: " << *Ty << "\n";
+ cerr << "Unhandled type for FMul instruction: " << *Ty << "\n";
abort();
}
}
@@ -550,11 +540,14 @@
GenericValue R; // Result
switch (I.getOpcode()) {
- case Instruction::Add: executeAddInst (R, Src1, Src2, Ty); break;
- case Instruction::Sub: executeSubInst (R, Src1, Src2, Ty); break;
- case Instruction::Mul: executeMulInst (R, Src1, Src2, Ty); break;
- case Instruction::FDiv: executeFDivInst (R, Src1, Src2, Ty); break;
- case Instruction::FRem: executeFRemInst (R, Src1, Src2, Ty); break;
+ case Instruction::Add: R.IntVal = Src1.IntVal + Src2.IntVal; break;
+ case Instruction::Sub: R.IntVal = Src1.IntVal - Src2.IntVal; break;
+ case Instruction::Mul: R.IntVal = Src1.IntVal * Src2.IntVal; break;
+ case Instruction::FAdd: executeFAddInst(R, Src1, Src2, Ty); break;
+ case Instruction::FSub: executeFSubInst(R, Src1, Src2, Ty); break;
+ case Instruction::FMul: executeFMulInst(R, Src1, Src2, Ty); break;
+ case Instruction::FDiv: executeFDivInst(R, Src1, Src2, Ty); break;
+ case Instruction::FRem: executeFRemInst(R, Src1, Src2, Ty); break;
case Instruction::UDiv: R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break;
case Instruction::SDiv: R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break;
case Instruction::URem: R.IntVal = Src1.IntVal.urem(Src2.IntVal); break;
@@ -1258,18 +1251,21 @@
GenericValue Dest;
const Type * Ty = CE->getOperand(0)->getType();
switch (CE->getOpcode()) {
- case Instruction::Add: executeAddInst (Dest, Op0, Op1, Ty); break;
- case Instruction::Sub: executeSubInst (Dest, Op0, Op1, Ty); break;
- case Instruction::Mul: executeMulInst (Dest, Op0, Op1, Ty); break;
+ case Instruction::Add: Dest.IntVal = Op0.IntVal + Op1.IntVal; break;
+ case Instruction::Sub: Dest.IntVal = Op0.IntVal - Op1.IntVal; break;
+ case Instruction::Mul: Dest.IntVal = Op0.IntVal * Op1.IntVal; break;
+ case Instruction::FAdd: executeFAddInst(Dest, Op0, Op1, Ty); break;
+ case Instruction::FSub: executeFSubInst(Dest, Op0, Op1, Ty); break;
+ case Instruction::FMul: executeFMulInst(Dest, Op0, Op1, Ty); break;
case Instruction::FDiv: executeFDivInst(Dest, Op0, Op1, Ty); break;
case Instruction::FRem: executeFRemInst(Dest, Op0, Op1, Ty); break;
case Instruction::SDiv: Dest.IntVal = Op0.IntVal.sdiv(Op1.IntVal); break;
case Instruction::UDiv: Dest.IntVal = Op0.IntVal.udiv(Op1.IntVal); break;
case Instruction::URem: Dest.IntVal = Op0.IntVal.urem(Op1.IntVal); break;
case Instruction::SRem: Dest.IntVal = Op0.IntVal.srem(Op1.IntVal); break;
- case Instruction::And: Dest.IntVal = Op0.IntVal.And(Op1.IntVal); break;
- case Instruction::Or: Dest.IntVal = Op0.IntVal.Or(Op1.IntVal); break;
- case Instruction::Xor: Dest.IntVal = Op0.IntVal.Xor(Op1.IntVal); break;
+ case Instruction::And: Dest.IntVal = Op0.IntVal & Op1.IntVal; break;
+ case Instruction::Or: Dest.IntVal = Op0.IntVal | Op1.IntVal; break;
+ case Instruction::Xor: Dest.IntVal = Op0.IntVal ^ Op1.IntVal; break;
case Instruction::Shl:
Dest.IntVal = Op0.IntVal.shl(Op1.IntVal.getZExtValue());
break;